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THE TRUNCATED MATRIX HAUSDORFF MOMENT PROBLEM∗

SERGEY M. ZAGORODNYUK†

Abstract. In this paper we obtain a description of all solutions of the truncated matrix Hausdorff
moment problem in a general case (no conditions besides solvability are assumed). We use the basic
results of Krein and Ovcharenko about generalized sc-resolvents of Hermitian contractions. Necessary
and sufficient conditions for the determinateness of the moment problem are obtained, as well. Several
numerical examples are provided.
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1. Introduction. In this paper we analyze the following problem: to find a
non-decreasing matrix-valued function M(x) = (mk,j(x))

N−1
k,j=0 on [a, b], which is left-

continuous in (a, b), M(a) = 0, and such that

(1)

∫ b

a

xndM(x) = Sn, n = 0, 1, ..., ℓ,

where {Sn}ℓn=0 is a prescribed sequence of Hermitian (N × N) complex matrices,
N ∈ N, ℓ ∈ Z+. Here a, b ∈ R: a < b. This problem is said to be the truncated

matrix Hausdorff moment problem. If this problem has a unique solution, it is
said to be determinate. In the opposite case it is said to be indeterminate.
In the scalar case this problem was solved by Krein, see [1] and references therein.
The operator moment problem on [−1, 1] with an odd number of prescribed moments
{Sn}2dn=0 was considered by Krein and Krasnoselskiy in [2]. Among other results, con-
ditions for the solvability of the moment problem were obtained there. The operator
moment problem on [0, 1] with an arbitrary number of given moments {Sn}ℓn=0 was
considered by Ando in [3]. In particular, conditions for the solvability of the moment
problem were derived.

Recently, a detailed investigation of the matrix moment problem (1) by matrix
methods was done by Choque Rivero, Dyukarev, Fritzsche and Kirstein, see [4], [5].
These authors used the Potapov method for interpolating problems which was en-
riched by the Sachnovich method of operator identities.
Set

(2) Γk = (Si+j)
k
i,j=0 =




S0 S1 . . . Sk

S1 S2 . . . Sk+1

...
...

. . .
...

Sk Sk+1 . . . S2k


 , k ∈ Z+ : 2k ≤ ℓ;

(3) Γ̃k = (−abSi+j + (a+ b)Si+j+1 − Si+j+2)
k−1
i,j=0, k ∈ N : 2k ≤ ℓ.

If we choose an arbitrary element f = (f0, f1, . . . , fN−1), where all fk are some poly-

nomials and calculate
∫ b

a
fdMf∗, one can easily deduce that

(4) Γk ≥ 0, k ∈ Z+ : 2k ≤ ℓ.
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In the case of an odd number of prescribed moments ℓ = 2d, the result of Choque
Rivero, Dyukarev, Fritzsche and Kirstein states that conditions

(5) Γd ≥ 0, Γ̃d ≥ 0,

are necessary and sufficient for the solvability of the matrix moment problem (1),

see [5, Theorem 1.3, p. 106]. In the case Γd > 0, Γ̃d > 0, they parameterized all
solutions of the moment problem by a linear fractional transformation where the set
of parameters consisted of some distinguished pairs of meromorphic matrix-valued
functions. In the case [a, b] = [−1, 1], conditions (5) were obtained by Krein and
Krasnoselskiy in [2]. In the case [a, b] = [0, 1], conditions (5) were established by
Ando in [3].

Set

(6) Hk = (−aSi+j+Si+j+1)
k
i,j=0, H̃k = (bSi+j−Si+j+1)

k
i,j=0, k ∈ Z+ : 2k+1 ≤ ℓ.

In the case ℓ = 2d+1, the result of Choque Rivero, Dyukarev, Fritzsche and Kirstein
states that conditions

(7) Hd ≥ 0, H̃d ≥ 0,

are necessary and sufficient for the solvability of the matrix moment problem (1),

see [4, Theorem 1.3, p. 127]. In the case Hd > 0, H̃d > 0, they parameterized
all solutions of the moment problem by a linear fractional transformation. The set
of parameters consisted of some distinguished pairs of meromorphic matrix-valued
functions. In the case [a, b] = [0, 1], conditions (7) were obtained by Ando in [3]. The
scalar truncated Hausdorff moment problem was also studied in [6], [7], [8].

In this work we shall study the truncated matrix Hausdorff moment problem (1)
by virtue of the operator approach. The operator approach to the moment problem
originates from the papers of Neumark [9], [10] and Krein, Krasnoselskiy [2] (see the
remarkable books [11], [12] for more references). Different versions of the operator
approach appeared afterwards. Our approach in this paper is close to the ”pure
operator” approach of Szökefalvi-Nagy and Koranyi to the Nevanlinna-Pick inter-
polation problem [13], [14]. As usual, the moment problem (1) generates a positive
definite kernel constructed by the prescribed moments. Then the well-known con-
struction [14, p.177] provides a Hilbert space and a sequence of elements in it such
that the kernel is generated by the scalar products of these elements (see more precise
statements below). This construction goes back to the paper of Gelfand, Naimark [15].
A similar construction, from the point of view of linear functionals on ∗-algebras, is
called the Gelfand-Naimark-Segal construction (GNS-construction) [16]. Also a simi-
lar construction can be found in the book of Berezansky and Kondratiev [17, pp. 401,
418, 432]. We also refer to a survey of Fuglede [18, Section 5] (see also [19]).

After the construction of a Hilbert space, we consider the shift operator in it.
The generalized resolvents of this operator are in a bijective correspondence with
the solutions of the moment problem. This situation is similar to the situation in
the case of the scalar Hamburger moment problem studied in the above-mentioned
works. However all that works used orthogonal polynomials and the Jacobi matrix
related to the Hamburger moment problem. Therefore it was not possible to study the
degenerate case of the moment problem in this framework. Lately, we showed that the
Hamburger moment problem can be studied using generalized resolvents both in the
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nondegenerate and degenerate cases, see [19]. In particular, the Nevanlinna formula
for solutions was derived.

Our goal here is to describe all solutions of the matrix moment problem (1) in
a general case. This means that no conditions besides the solvability of the moment
problem will be assumed. Firstly, we study the case of an odd number of prescribed
moments ℓ = 2d. Then we shall reduce the case of an even number of moments ℓ =
2d+1 to the previous case (d ∈ Z+). In our investigation we shall use the basic results
of Krein and Ovcharenko on generalized sc-resolvents of Hermitian contractions, as
well as Krein’s theory of self-adjoint extensions of semi-bounded symmetric operators,
see [20], [21], [22]. The necessary and sufficient conditions for the determinacy of the
moment problem (1) (in the both cases ℓ = 2d and ℓ = 2d+ 1) are obtained, as well.
Several numerical examples are provided.
Notations. As usual, we denote by R,C,N,Z,Z+ the sets of real numbers, complex
numbers, positive integers, integers and non-negative integers, respectively. The space
of n-dimensional complex vectors a = (a0, a1, . . . , an−1), will be denoted by Cn, n ∈ N.
If a ∈ Cn then a∗ means the complex conjugate vector. For a complex matrix M , by
MT we mean its transposed matrix. By P we denote the set of all complex polynomials
and by Pd we mean all complex polynomials with degrees less or equal to d, d ∈ Z+,
(including the zero polynomial). Let M(x) be a left-continuous non-decreasing matrix

function M(x) = (mk,ℓ(x))
N−1
k,ℓ=0 on R, M(−∞) = 0, and τM (x) :=

∑N−1
k=0 mk,k(x);

Ψ(x) = (dmk,ℓ/dτM )N−1
k,ℓ=0. We denote by L2(M) a set (of classes of equivalence) of

vector functions f : R → CN , f(x) = (f0(x), f1(x), . . . , fN−1(x)), such that (see,
e.g., [23])

‖f‖2L2(M) :=

∫

R

f(x)Ψ(x)f∗(x)dτM (x) < ∞.

The space L2(M) is a Hilbert space with the scalar product

(f, g)L2(M) :=

∫

R

f(x)Ψ(x)g∗(x)dτM (x), f, g ∈ L2(M).

For a separable Hilbert space H we denote by (·, ·)H and ‖ · ‖H the scalar product
and the norm in H , respectively. The indices may be omitted in obvious cases.
For a linear operator A in H we denote by D(A) its domain, by R(A) its range,
and by A∗ we denote its adjoint if it exists. If A is bounded, then ‖A‖ stands for
its operator norm. For a set of elements {xn}n∈B in H , we denote by Lin{xn}n∈B

and span{xn}n∈B the linear span and the closed linear span (in the norm of H),
respectively. Here B is an arbitrary set of indices. For a set M ⊆ H we denote by M
the closure of M in the norm of H . By EH we denote the identity operator in H , i.e.
EHx = x, x ∈ H . If H1 is a subspace of H , by PH1

= PH
H1

we denote the operator
of the orthogonal projection on H1 in H . A set of all linear bounded operators which
map H into H is denoted by [H ].

2. The case of an odd number of prescribed moments: a description

of all solutions and the determinacy. We shall use the following important fact
(e.g. [14, p.177]):

Theorem 2.1. Let K = (Kn,m)rn,m=0 ≥ 0 be a positive semi-definite complex
((r+1)× (r+1)) matrix, r ∈ Z+. Then there exist a finite-dimensional Hilbert space
H with a scalar product (·, ·) and a sequence {xn}rn=0 in H, such that

(8) Kn,m = (xn, xm), n,m = 0, 1, ..., r,
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and span{xn}rn=0 = H.

Proof. (We place the proof for the convenience of the reader). Let {xn}rn=0 be an
arbitrary orthonormal basis in Cn. Introduce the following functional:

(9) [x, y] =
r∑

n,m=0

Kn,manbm,

for x, y ∈ Cn,

x =

r∑

n=0

anxn, y =

r∑

m=0

bmxm, an, bm ∈ C.

The space Cn equipped with [·, ·] will be a quasi-Hilbert space. Factorizing and making
the completion we obtain the required space H (e.g. [12, p. 10-11]).

Consider the matrix moment problem (1) with ℓ = 2d, d ∈ N. Suppose that Γd ≥ 0
(this condition is necessary for the solvability of the moment problem). Let Γd =

(γd;n,m)
(d+1)N−1
n,m=0 , γd;n,m ∈ C. By Theorem 2.1 there exist a finite-dimensional Hilbert

space H and a sequence {xn}(d+1)N−1
n=0 in H , such that

(10) (xn, xm) = γd;n,m, n,m = 0, 1, ..., (d+ 1)N − 1,

and span{xn}(d+1)N−1
n=0 = Lin{xn}(d+1)N−1

n=0 = H . Notice that

(11) γd;rN+j,tN+n = sj,nr+t, 0 ≤ j, n ≤ N − 1; 0 ≤ r, t ≤ d,

where

Sn = (sk,ℓn )N−1
k,ℓ=0, n ∈ Z+,

are the given moments. From (11) it follows that
(12)
γd;a+N,b = γd;a,b+N , a = rN + j, b = tN +n, 0 ≤ j, n ≤ N − 1; 0 ≤ r, t ≤ d− 1.

In fact, we can write

γd;a+N,b = γd;(r+1)N+j,tN+n = sj,nr+t+1 = γd;rN+j,(t+1)N+n = γd;a,b+N .

Set Ha = Lin{xn}dN−1
n=0 . We introduce the following operator:

(13) Ax =
dN−1∑

k=0

αkxk+N , x ∈ Ha, x =
dN−1∑

k=0

αkxk, αk ∈ C.

The following proposition provides conditions for the operator A to be correctly de-
fined.

Proposition 2.1. Let the matrix moment problem (1) with ℓ = 2d, d ∈ N, be
given and conditions (5) hold. Then the operator A in (13) is correctly defined and
the following operator:

(14) Bx =
2

b− a
A− a+ b

b− a
EH , x ∈ Ha,
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is a contraction in H (i.e. ‖B‖ ≤ 1). Moreover, the operators A and B are Hermitian.

Proof. Let the matrix moment problem (1) be given and conditions (5) be satis-
fied. Then the moment problem has a solution M(x) = (mk,ℓ(x))

N−1
k,ℓ=0. Consider the

space L2(M) and let Q be the operator of multiplication by an independent variable
in L2(M). The operator Q is self-adjoint and its resolution of unity is (see [23])

(15) Eb − Ea = E([a, b)) : h(x) → χ[a,b)(x)h(x),

where χ[a,b)(x) is the characteristic function of an interval [a, b), −∞ ≤ a < b ≤ +∞.
Set ~ek = (δk,0, δk,1, . . . , δk,N−1), for k = 0, 1, . . .N − 1 (here δk,j is Kronecker’s delta).
A set of (classes of equivalence of) functions f ∈ L2(M) such that (the corresponding
class includes) f = (f0, f1, . . . , fN−1), fj ∈ Pd, 0 ≤ j ≤ N − 1, is denoted by P

2
d(M).

It is called a set of vector polynomials of order d in L2(M). Set L2
d,0(M) = P2

d(M).

Since P2
d(M) is finite-dimensional, we have L2

d,0(M) = P2
d(M).

For an arbitrary polynomial (in a class) from P2
d(M) there exists a unique repre-

sentation of the following form:

(16) f(x) =

N−1∑

k=0

d∑

j=0

αk,jx
j~ek, αk,j ∈ C.

Let a polynomial g ∈ P2
d(M) have a representation

(17) g(x) =

N−1∑

ℓ=0

d∑

r=0

βℓ,rx
r~eℓ, βℓ,r ∈ C.

We can write

(f, g)L2(M) =
N−1∑

k,ℓ=0

d∑

j,r=0

αk,jβℓ,r

∫

R

xj+r~ekdM(x)~e∗ℓ =
N−1∑

k,ℓ=0

d∑

j,r=0

αk,jβℓ,r∗

(18) ∗
∫

R

xj+rdmk,ℓ(x) =

N−1∑

k,ℓ=0

d∑

j,r=0

αk,jβℓ,rs
k,ℓ
j+r .

On the other hand, we can write



d∑

j=0

N−1∑

k=0

αk,jxjN+k,

d∑

r=0

N−1∑

ℓ=0

βℓ,rxrN+ℓ




H

=

N−1∑

k,ℓ=0

d∑

j,r=0

αk,jβℓ,r(xjN+k , xrN+ℓ)H =

(19) =

N−1∑

k,ℓ=0

d∑

j,r=0

αk,jβℓ,rγd;jN+k,rN+ℓ =

N−1∑

k,ℓ=0

d∑

j,r=0

αk,jβℓ,rs
k,ℓ
j+r,

where the space H and the elements {xk} were constructed before the statement of
the Proposition. From relations (18),(19) it follows that

(20) (f, g)L2(M) =




d∑

j=0

N−1∑

k=0

αk,jxjN+k,

d∑

r=0

N−1∑

ℓ=0

βℓ,rxrN+ℓ




H

.
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Set

(21) V f =

d∑

j=0

N−1∑

k=0

αk,jxjN+k,

for f(x) ∈ P2
d(M), f(x) =

∑N−1
k=0

∑d

j=0 αk,jx
j~ek, αk,j ∈ C.

If f , g have representations (16),(17), and ‖f − g‖L2(M) = 0, then from (20) it follows
that

‖V f − V g‖2H = (V (f − g), V (f − g))H = (f − g, f − g)L2(M) = ‖f − g‖2L2(M) = 0.

Thus, V is a correctly defined operator from P2
d(M) to H .

Relation (20) shows that V is an isometric transformation from P2
d(M) onto

Lin{xn}d(N+1)−1
n=0 . Thus, V is an isometric transformation from L2

d,0(M) onto H .
In particular, we note that

(22) V xj~ek = xjN+k, 0 ≤ j ≤ d; 0 ≤ k ≤ N − 1.

Set L2
d,1(M) := L2(M) ⊖ L2

d,0(M), and U := V ⊕ EL2
d,1

(M). The operator U is an

isometric transformation from L2(M) onto H ⊕ L2
d,1(M) =: Ĥ. Set

(23) Â := UQU−1.

The operator Â is a self-adjoint operator in Ĥ . Notice that

UQU−1xjN+k = V QV −1xjN+k = V Qxj~ek = V xj+1~ek = x(j+1)N+k = xjN+k+N ,

0 ≤ j ≤ d− 1; 0 ≤ k ≤ N − 1.

By the linearity we get

UQU−1x =

dN−1∑

k=0

αkxk+N , x ∈ Ha, x =

dN−1∑

k=0

αkxk, αk ∈ C.

Consequently, the operator A in (13) is correctly defined, Hermitian and

(24) A = Â|Ha
,

i.e. A is the operator Â restricted to the subspace Ha. Since Â is self-adjoint, the
operator A is Hermitian.
Consider the following operators:

(25) R :=
2

b− a
Q− a+ b

b− a
EL2(M),

(26) B̂ := URU−1 =
2

b− a
Â− a+ b

b− a
E

Ĥ
.

Define an operator B by the equality (14). From (24),(26) we get

(27) B = B̂|Ha
.
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For an arbitrary f ∈ D(R) = D(Q) we can write

‖Rf‖2L2(M) =

∫ b

a

∣∣∣∣
2

b − a
x− a+ b

b− a

∣∣∣∣
2

f(x)dM(x)f∗(x) ≤
∫ b

a

f(x)dM(x)f∗(x) =

= ‖f‖2,

and therefore the operators R, B̂ and B are contractions. Since R is Hermitian, the
operators B̂, B are Hermitian, as well.

Let us continue our considerations before the statement of Proposition 2.1. In
what follows we shall assume that conditions (5) are satisfied. Therefore the operators
A in (13) and B in (14) are correctly defined Hermitian operators and ‖B‖ ≤ 1.

Let B̂ be an arbitrary self-adjoint extension of B in a Hilbert space Ĥ ⊇ H . Let
Rz(B̂) be the resolvent of B̂ and {Êλ}λ∈R be an orthogonal resolution of unity of

B̂. Recall that the operator-valued function Rz: Rzh = P Ĥ
H Rz(B̂)h, h ∈ H , is said

to be a generalized resolvent of B, z ∈ C\R. The function Eλ: Eλh = P Ĥ
H Êλh,

λ ∈ R, h ∈ H , is said to be a spectral function of the symmetric operator B
(e.g. [24]). There exists a bijective correspondence between generalized resolvents
and (left-continuous or normalized in another way) spectral functions established by
the following relation ([25]):

(28) (Rzf, g)H =

∫

R

1

λ− z
d(Eλf, g)H , f, g ∈ H, z ∈ C\R.

In order to obtain the spectral function by relation (28), one should use the Stieltjes-
Perron inversion formula (e.g. [11]).

In the case when B̂ is a self-adjoint contraction, the corresponding generalized resol-

vent Rz: Rzh = P Ĥ
H Rz(B̂)h, h ∈ H , is said to be a generalized sc-resolvent of B,

see [20], [21]. The corresponding spectral function of B is said to be a sc-spectral

function of B. By Krein’s theorem [22, Theorem 2, p. 440], there always exists a

self-adjoint extension B̂ of the operator B in H . This extension has the norm ‖B‖.
Therefore the sets of generalized sc-resolvents and sc-spectral functions are non-empty.

Let B̃ be an arbitrary self-adjoint contractive extension of B in a Hilbert space
H̃ ⊇ H . Let

(29) B̃ =

∫ 1

−1

λdẼλ,

where {Ẽλ} be the left-continuous in [−1, 1), right-continuous at the point 1, constant

outside [−1, 1], orthogonal resolution of unity of B̃.
Choose an arbitrary α, 0 ≤ α ≤ d(N+1)−1, α = rN+j, 0 ≤ r ≤ d, 0 ≤ j ≤ N−1.

Notice that

xα = xrN+j = Ax(r−1)N+j = ... = Arxj .

Then choose an arbitrary β, 0 ≤ β ≤ d(N + 1) − 1, β = tN + n, 0 ≤ t ≤ d,
0 ≤ n ≤ N − 1. Using (11) we can write

sj,nr+t = γd;rN+j,tN+n = (xrN+j , xtN+n)H = (Arxj , A
txn)H =
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=

((
b− a

2
B +

a+ b

2
EH

)r

xj ,

(
b− a

2
B +

a+ b

2
EH

)t

xn

)

H

=

=

((
b− a

2
B̃ +

a+ b

2
E

H̃

)r+t

xj , xn

)

H̃

=

∫ 1

−1

(
b− a

2
λ+

a+ b

2

)r+t

d(Ẽλxj , xn)H̃

=

∫ 1

−1

(
b − a

2
λ+

a+ b

2

)r+t

d(P H̃
H Ẽλxj , xn)H .

Set

(30) m̃j,n(x) = (P H̃
H Ẽ 2

b−a
x− a+b

b−a
xj , xn)H , 0 ≤ j, n ≤ N − 1.

Then

(31) sj,nr+t =

∫ b

a

xr+tdm̃j,n(x), 0 ≤ j, n ≤ N − 1, 0 ≤ r, t ≤ d.

By relation (31) we conclude that the matrix-valued function M̃(x) = (m̃j,n(x))
N−1
j,n=0

is a solution of the matrix Hausdorff moment problem (1) (Properties of the orthogonal

resolution of unity provide that M̃(x) is left-continuous in (a, b), non-decreasing and

M̃(a) = 0).

Theorem 2.2. Let the matrix moment problem (1) with ℓ = 2d, d ∈ N, be given
and conditions (5) be true. All solutions of the moment problem have the following
form
(32)
M(x) = (mj,n(x))

N−1
j,n=0, mj,n(x) = (E 2

b−a
x− a+b

b−a
xj , xn)H , 0 ≤ j, n ≤ N − 1,

where Ez is a left-continuous in [−1, 1), right-continuous at the point 1, constant
outside [−1, 1] sc-spectral function of the operator B defined by (14).
Moreover, the correspondence between all solutions of the moment problem and left-
continuous in [−1, 1), right-continuous at the point 1, constant outside [−1, 1] sc-
spectral functions of B in (32) is one-to-one.

Proof. Choose an arbitrary left-continuous in [−1, 1), right-continuous at the
point 1, constant outside [−1, 1] sc-spectral function Ez of the operator B from (14).

This function corresponds to a resolution of unity {Êλ} of a self-adjoint contraction

B̂ ⊇ B in a Hilbert space Ĥ ⊇ H : Ezh = P Ĥ
H Êzh, h ∈ H . Considerations before the

statement of the Theorem show that formula (32) defines a solution of the moment
problem (1).

On the other hand, let M(x) = (mk,j(x))
N−1
k,j=0 be an arbitrary solution of the

matrix moment problem (1). Proceeding like at the beginning of the proof of Propo-

sition 2.1, we shall construct a self-adjoint contraction B̂ ⊇ B in a space Ĥ ⊇ H .
Repeating arguments before the statement of the Theorem, we obtain that the func-
tion M̂(x) = (m̂j,n(x))

N−1
j,n=0, where m̂j,n(x) are given by

(33) m̂j,n(x) = (P Ĥ
H Ê 2

b−a
x− a+b

b−a
xj , xn)H , 0 ≤ j, n ≤ N − 1,
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is a solution of the Hausdorff matrix moment problem. Here {Êλ} is the left-
continuous in [−1, 1), right-continuous at the point 1, constant outside [−1, 1], or-

thogonal resolution of unity of B̂.
Let us check that M(x) = M̂(x). Choose an arbitrary z ∈ C\R, λ ∈ [−1, 1], and k, j:
0 ≤ k, j ≤ N − 1. We may write

∫ 1

−1

1

λ− z
dm̂k,j

(
b − a

2
λ+

a+ b

2

)
=

∫ 1

−1

1

λ− z
d(P Ĥ

H Êλxk, xj)H

∫ 1

−1

1

λ− z
d(Êλxk, xj)Ĥ =

(∫ 1

−1

1

λ− z
dÊλxk, xj

)

Ĥ

=

(
U−1

∫ 1

−1

1

λ− z
dÊλxk, U

−1xj

)

L2(M)

=

(∫ 1

−1

1

λ− z
dU−1ÊλU~ek, ~ej

)

L2(M)

=

(∫ 1

−1

1

λ− z
dER;λ~ek, ~ej

)

L2(M)

=
(
(R− zEL2(M))

−1~ek, ~ej
)
L2(M)

=

∫ b

a

(
2

b− a
x− a+ b

b− a
− z

)−1

~ekdM(x)~e∗j =

∫ b

a

(
2

b− a
x− a+ b

b− a
− z

)−1

dmk,j(x)

=

∫ 1

−1

1

λ− z
dmk,j

(
b− a

2
λ+

a+ b

2

)
,

where {ÊR;λ} is an orthogonal resolution of unity of the operator R. By the Stieltjes-
Perron inversion formula we conclude that

M̂(x) = M(x), x ∈ [a, b].

Consequently, all solutions of the truncated matrix Hausdorff moment problem are
generated by left-continuous in [−1, 1), right-continuous at the point 1, constant out-
side [−1, 1] sc-spectral functions of B.
It remains to prove that different sc-spectral functions of the operator B produce
different solutions of the moment problem (1). Suppose to the contrary that two
different left-continuous in [−1, 1), right-continuous at the point 1, constant outside
[−1, 1] sc-spectral functions produce the same solution of the moment problem. This
means that there exist two self-adjoint contractionsBℓ ⊇ B, in Hilbert spacesHℓ ⊇ H ,
such that

(34) PH1

H E1,λ 6= PH2

H E2,λ,

(35) (PH1

H E1,λxk, xj)H = (PH2

H E2,λxk, xj)H , 0 ≤ k, j ≤ N − 1, λ ∈ [−1, 1],

where {En,λ}λ∈R are orthogonal resolutions of unity of the operators Bn, n, ℓ = 1, 2.
Set LN := Lin{xk}N−1

k=0 . By the linearity we get

(36) (PH1

H E1,λx, y)H = (PH2

H E2,λx, y)H , x, y ∈ LN , λ ∈ [−1, 1].
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Denote byRn,λ the resolvent ofBn, and setRn,λ = PHn

H Rn,λ|H , n = 1, 2. By (36),(28)
we obtain that

(37) (R1,λx, y)H = (R2,λx, y)H , x, y ∈ LN , λ ∈ C\R.

Choose an arbitrary z ∈ C\R and consider the space Hz := (B − zEH)Ha. Since

Rj,z(B − zEH)x = (Bj − zEHj
)−1(Bj − zEHj

)x = x, x ∈ Ha = D(B),

we get

(38) R1,zu = R2,zu ∈ H, u ∈ Hz;

(39) R1,zu = R2,zu, u ∈ Hz, z ∈ C\R.

We may write

(Rn,zx, u)H = (Rn,zx, u)Hn
= (x,Rn,zu)Hn

= (x,Rn,zu)H , x ∈ H, u ∈ Hz ,

(40) n = 1, 2,

and therefore we get

(41) (R1,zx, u)H = (R2,zx, u)H , x ∈ H, u ∈ Hz, z ∈ C\R.

Choose an arbitrary u ∈ H , u =
∑dN+N−1

k=0 ckxk, ck ∈ C. Consider the following
system of linear equations:

(42) −
(
a+ b

b− a
+ z

)
dk = ck, k = 0, 1, ..., N − 1;

(43)
2

b− a
dk−N −

(
a+ b

b− a
+ z

)
dk = ck, k = N,N + 1, . . . , dN +N − 1;

where {dk}dN+N−1
k=0 are unknown complex numbers, z ∈ C\R is a fixed parameter,

a, b are from (1). Set

dk = 0, k = dN, dN + 1, ..., dN +N − 1;

(44) dk−N =
b− a

2

((
a+ b

b− a
+ z

)
dk + ck

)
, k = dN +N − 1, dN +N − 2, ..., N ;

For the numbers {dk}dN+N−1
k=0 all equations in (43) are satisfied. Equations (42)

are not necessarily satisfied. Set v =
∑dN+N−1

k=0 dkxk =
∑dN−1

k=0 dkxk. Notice that
v ∈ Ha = D(B). We can write

(B − zEH)v =

(
2

b− a
A− a+ b

b− a
EH − zEH

)
v =

=
dN−1∑

k=0

dk

(
2

b− a
xk+N −

(
a+ b

b− a
+ z

)
xk

)
=
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=
dN+N−1∑

k=0

(
2

b− a
dk−N −

(
a+ b

b− a
+ z

)
dk

)
xk,

where d−1 = d−2 = ... = d−N = 0. By the construction of dk we have

(B − zEH)v − u =

N−1∑

k=0

(
−
(
a+ b

b− a
+ z

)
dk − ck

)
xk;

(45) u = (B − zEH)v +

N−1∑

k=0

((
a+ b

b− a
+ z

)
dk + ck

)
xk, u ∈ H, z ∈ C\R.

By (45) an arbitrary element y ∈ H can be represented as y = yz + y′, yz ∈ Hz,
y′ ∈ LN . By (37) and (41) we get

(R1,zx, y)H = (R1,zx, yz + y′)H = (R2,zx, yz + y′)H = (R2,zx, y)H , x ∈ LN , y ∈ H.

Thus, we obtain

(46) R1,zx = R2,zx, x ∈ LN , z ∈ C\R.

Choose an arbitrary x ∈ H , x = xz + x′, xz ∈ Hz, x
′ ∈ LN . By relations (39),(46) we

obtain

(47) R1,zx = R1,z(xz + x′) = R2,z(xz + x′) = R2,zx, x ∈ H, z ∈ C\R.

By (28) that means that the corresponding (left-continuous in [−1, 1), right-
continuous at the point 1, constant outside [−1, 1]) sc-spectral functions coincide
and we obtained a contradiction.

Let us return to the considerations before the statement of the last theorem.
We shall use some known important facts about sc-resolvents, see [20], [21]. Set
D = D(B), R = H⊖D. A set of all self-adjoint contractive extensions of B inside H ,
we denote by BH(B). A set of all self-adjoint contractive extensions of B in a Hilbert

space H̃ ⊇ H , we denote by B
H̃
(B). As it was already mentioned, the set BH(B) is

non-empty. There are the ”minimal” element Bµ and the ”maximal” element BM

in this set, such that BH(B) coincides with the operator segment

(48) Bµ ≤ B̃ ≤ BM .

In the case Bµ = BM the set BH(B) consists of a unique element. This case is said
to be determinate. The case Bµ 6= BM is called indeterminate. The case Bµx 6=
BMx, x ∈ R\{0}, is said to be completely indeterminate. The indeterminate case
can be always reduced to the completely indeterminate. If R0 = {x ∈ R : Bµx =
BMx}, we may set

(49) Bex = Bx, x ∈ D; Bex = Bµx, x ∈ R0.

The sets of generalized sc-resolvents for B and for Be coincide ([21, p. 1039]).
Elements of BH(B) are canonical (i.e. inside H) extensions of B and their resolvents
are called canonical sc-resolvents of B. On the other hand, elements of B

H̃
(B) for
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all possible H̃ ⊇ H generate generalized sc-resolvents of B (we emphasize that the

space H̃ is not fixed). The set of all generalized sc-resolvents we denote by Rc(B).
Set

(50) C = BM −Bµ,

(51) Qµ(z) =
(
C

1
2Rµ

zC
1
2 + EH

)∣∣∣
R
, z ∈ C\[−1, 1],

where Rµ
z = (Bµ − zEH)−1.

An operator-valued function k(z) with values in [R] belongs to the class RR[−1, 1] if
1) k(z) is analytic in z ∈ C\[−1, 1] and

Im k(z)

Im z
≤ 0, z ∈ C : Im z 6= 0;

2) For z ∈ R\[−1, 1], k(z) is a self-adjoint non-negative contraction.
In the completely indeterminate case, assuming that the restricted to R operator

C has a bounded inverse defined on the whole R, we come to the following theorem.

Theorem 2.3. ([21, p. 1053]). The following equality:

(52) R̃c
z = Rµ

z −Rµ
zC

1
2 k(z) (ER + (Qµ(z)− ER)k(z))

−1
C

1
2Rµ

z ,

where k(z) ∈ RR[−1, 1], R̃c
z ∈ Rc(B), establishes a bijective correspondence between

the set RR[−1, 1] and the set Rc(B).
Moreover, the canonical resolvents correspond in (52) to the constant functions

k(z) ≡ K, K ∈ [0, ER].

Set LN = Lin{xk}N−1
k=0 . Define a linear transformation G from CN onto LN by

the following relation:

(53) G~ek = xk, k = 0, 1, ..., N − 1,

where ~ek = (δ0,k, δ1,k, ..., δN−1,k). Using Theorem 2.2 and Theorem 2.3 we obtain the
following result.

Theorem 2.4. Let the matrix moment problem (1) with ℓ = 2d, d ∈ N, be
given and conditions (5) hold. Let the operator B be defined by (14). The following
statements are true:

1) If Bµ = BM , then the moment problem (1) has a unique solution. This
solution is given by
(54)
M(x) = (mj,n(x))

N−1
j,n=0, mj,n(x) = (Eµ

2
b−a

x− a+b
b−a

xj , xn)H , 0 ≤ j, n ≤ N − 1,

where {Eµ
z } is the left-continuous in [−1, 1), right-continuous at the point 1,

constant outside [−1, 1], orthogonal resolution of unity of the operator Bµ.
2) If Bµ 6= BM , define the extended operator Be by (49); Re = H ⊖D(Be) and

Q′
µ(z) =

(
C

1
2Rµ

zC
1
2 + EH

)∣∣∣
Re

, z ∈ C\[−1, 1]. An arbitrary solution M(·) of
the moment problem can be found by the Stieltjes-Perron inversion formula
from the following relation

∫ 1

−1

1

t− z
dMT

(
(b− a)t+ (a+ b)

2

)
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(55) = A(z)− C(z)k(z)(ERe
+D(z)k(z))−1B(z),

where k(z) ∈ RRe
[−1, 1], and on the left-hand side one means the matrix of

the corresponding operator in CN . Here A(z),B(z), C(z),D(z) are analytic
operator-valued functions given by

(56) A(z) = G∗PH
LN

Rµ
zP

H
LN

G : C
N → C

N ,

(57) B(z) = C
1
2Rµ

zP
H
LN

G : C
N → Re,

(58) C(z) = G∗PH
LN

Rµ
zC

1
2 : Re → C

N ,

(59) D(z) = Q′
µ(z)− ERe

: Re → Re.

Moreover, the correspondence between all solutions of the moment problem
and k(z) ∈ RRe

[−1, 1] is one-to-one.

Proof. Consider the case 1). In this case all self-adjoint contractions B̃ ⊇ B

in a Hilbert space H̃ ⊇ H coincide on H with Bµ, see [21, p. 1039]. Thus, the
corresponding sc-spectral functions are spectral functions of the self-adjoint operator
Bµ, as well. However, a self-adjoint operator has a unique (normalized) spectral
function. Thus, a set of sc-spectral functions of B consists of a unique element. This
element is the spectral function of Bµ.
Consider the case 2). By Theorem 2.2 and relation (28) it follows that an arbitrary
solution M(t) = (mj,n(t))

N−1
j,n=0 of the moment problem (1) can be found from the

following relation:

∫ 1

−1

1

t− z
dmj,n

(
(b− a)t+ (a+ b)

2

)
= (Rzxj , xn)H , 0 ≤ j, n ≤ N − 1; z ∈ C\R.

where Rz is a generalized sc-resolvent of B. Moreover, the correspondence between
the set all generalized sc-resolvents of B (which is equal to the set of all generalized
sc-resolvents of Be) and solutions of the moment problem is bijective. Notice that
Bµ = Bµ

e and BM = BM
e . By Theorem 2.3 (for the operator Be) we may rewrite the

latter relation in the following form:

∫ 1

−1

1

t− z
dmj,n

(
(b− a)t+ (a+ b)

2

)

=
({

Rµ
z −Rµ

zC
1
2 k(z)(ERe

+ (Q′
µ(z)− ERe

)k(z))−1C
1
2Rµ

z

}
xj , xn

)
H

=
(
G∗
{
PH
LN

Rµ
zP

H
LN

− PH
LN

Rµ
zC

1
2 k(z)(ERe

(60) +(Q′
µ(z)− ERe

)k(z))−1C
1
2Rµ

zP
H
LN

}
G~ej, ~en

)
CN

,

where k(z) ∈ RRe
([−1, 1]). Introducing functions A(z),B(z), C(z),D(z) by formu-

las (56)-(59) one easily obtains relation (55).
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Remark 2.1. Observe that the function B(z) in relation (57) can be not invertible
for all z ∈ C\R. The corresponding example will be given below.

Remark 2.2. Observe that the relation (55) holds for the case Bµ = BM , as
well. In this case, the class RRe

([−1, 1]) consists of a unique function k(z) ≡ 0.

Example 2.1. Let ℓ = 2d, d = 1, N = 2, a = −1, b = 1, and

S0 =

(
1 0
0 1

)
, S1 =

(
0 0
0 0

)
, S2 =

(
1 0
0 0

)
.

Consider the moment problem (1) with moments S0, S1, S2. In this case

Γ1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 ≥ 0, Γ̃ =

(
0 0
0 1

)
≥ 0,

and therefore the moment problem has a solution.
Choose H = C3, and xk = ~ek, 0 ≤ k ≤ 2; x3 = 0. Here ~ek = (δ0,k, δ1,k, δ2,k). In this
case, we have:

LN = Lin{xk}N−1
k=0 = Lin{~e0, ~e1} = D(A) = D(B), R = Lin{~e2},

and the operator B = A has the following matrix representation in the basis {~ek}2k=0:

B = (Bk,ℓ)
2
k,ℓ=0 =




0 0 ∗
0 0 ∗
1 0 ∗


 ,

where ∗ means that the corresponding value is not defined. If B̃ ⊃ B is a self-adjoint
contractive extension of B in H , then its matrix representation should be of the form:

B̃ = (B̃k,ℓ)
2
k,ℓ=0 =




0 0 1
0 0 0
1 0 w


 ,

and



1 0 1
0 1 0
1 0 w + 1


 ≥ 0,




1 0 −1
0 1 0
−1 0 1− w


 ≥ 0.

In particular,

∣∣∣∣
1 1
1 w + 1

∣∣∣∣ = w ≥ 0;

∣∣∣∣
1 −1
−1 1− w

∣∣∣∣ = −w ≥ 0, and therefore w = 0.

Thus, there exists a unique self-adjoint contractive extension

Bµ = BM =




0 0 1
0 0 0
1 0 0


 .

The direct calculation shows that for z ∈ C\R we have

Rµ
z = (Bµ − zEH)−1 =




−z 0 1
0 −z 0
1 0 −z




−1

=




z
1−z2 0 1

1−z2

0 − 1
z

0
1

1−z2 0 z
1−z2


 .
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By (54) we may write

∫ 1

−1

1

t− z
dmj,n(t) = (Rµ

zxj , xn)H , 0 ≤ j, n ≤ 1.

In particular we have

∫ 1

−1

1

t− z
dm0,0(t) =

z

1− z2
=

1

2(1− z)
+

1

2((−1)− z)
,

∫ 1

−1

1

t− z
dm1,1(t) = −1

z
,

and m0,1(t) ≡ 0, m1,0(t) ≡ 0. Therefore the unique solution of the moment problem
is given by

M(t) =

(
m0,0(t) 0

0 m1,1(t)

)
,

where m0,0(t),m1,1(t) are left-continuous in (−1, 1) and piecewise constant,
m0,0(−1) = m1,1(−1) = 0. The function m0,0(t) has jumps equal to 1

2 at points
−1 and 1. The function m1,1(t) has a jump equal to 1 at the point 0.

Example 2.2. Let ℓ = 2d, d = 1, N = 2, a = −1, b = 1, and

S0 =

(
1 0
0 1

)
, S1 =

(
0 0
0 0

)
, S2 =

(
1
3 0
0 0

)
.

Consider the moment problem (1) with moments S0, S1, S2. In this case

Γ1 =




1 0 0 0
0 1 0 0
0 0 1

3 0
0 0 0 0


 ≥ 0, Γ̃ =

(
2
3 0
0 1

)
> 0,

and therefore the moment problem has a solution.
Choose H = C3, and xk = ~ek, 0 ≤ k ≤ 1; x2 = 1√

3
~e2, x3 = 0. Here

~ek = (δ0,k, δ1,k, δ2,k). In this case, we have:

LN = Lin{xk}N−1
k=0 = Lin{~e0, ~e1} = D(A) = D(B), R = Lin{~e2},

and the operator B = A has the following matrix representation in the basis {~ek}2k=0:

B = (Bk,ℓ)
2
k,ℓ=0 =




0 0 ∗
0 0 ∗
1√
3

0 ∗


 ,

where ∗ means that the corresponding value is not defined. If B̃ ⊃ B is a self-adjoint
contractive extension of B in H , then its matrix representation should be of the
following form:

(61) B̃ = (B̃k,ℓ)
2
k,ℓ=0 =




0 0 1√
3

0 0 0
1√
3

0 w


 ,
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and

(62)




1 0 1√
3

0 1 0
1√
3

0 w + 1


 ≥ 0,




1 0 − 1√
3

0 1 0
− 1√

3
0 1− w


 ≥ 0.

Calculating all principal minors of the latter matrices we obtain that relation (62)
holds iff w ∈ [− 2

3 ,
2
3 ]. Therefore

Bµ =




0 0 1√
3

0 0 0
1√
3

0 − 2
3


 , BM =




0 0 1√
3

0 0 0
1√
3

0 2
3


 , C =




0 0 0
0 0 0
0 0 4

3


 ,

and Be = B. By the direct calculation for z ∈ C\R we obtain

Rµ
z =




−z 0 1√
3

0 −z 0
1√
3

0 − 2
3 − z




−1

=




− z+ 2
3

(z+1)(z− 1
3
)

0 − 1√
3(z+1)(z− 1

3
)

0 − 1
z

0

− 1√
3(z+1)(z− 1

3
)

0 − z+ 2
3

(z+1)(z− 1
3
)


 .

Notice that dimCN = 2 > dimR = 1, and therefore the operator B(z) defined by (57)
will be not invertible for all z ∈ C\R. Let ~u0 = (1, 0), ~u1 = (0, 1) ∈ C2. Then we may
calculate

B(z)(ξ0~u0 + ξ1~u1) = − 2

3(z + 1)(z − 1
3 )

ξ0~e2, ξ0, ξ1 ∈ C,

C(z)α~e2 = − 2

3(z + 1)(z − 1
3 )

α~u0, α ∈ C,

A(z) =

(
− z+ 2

3

(z+1)(z− 1
3
)

0

0 − 1
z

)
,

D(z)β~e2 = − 4z

3(z + 1)(z − 1
3 )

β~e2, β ∈ C.

Then

((
A(z)− C(z)k(z)(ERe

+D(z)k(z))−1B(z)
)
~u0, ~u0

)
C2

= − z + 2
3

(z + 1)(z − 1
3 )

− 4

9(z + 1)2(z − 1
3 )

2
k(z)

(
1− 4z

3(z + 1)(z − 1
3 )

k(z)

)−1

,

((
A(z)− C(z)k(z)(ERe

+D(z)k(z))−1B(z)
)
~u1, ~u0

)
C2 = 0,

((
A(z)− C(z)k(z)(ERe

+D(z)k(z))−1B(z)
)
~u1, ~u1

)
C2 = −1

z
.
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Therefore an arbitrary solution M(t) = (mn,j(t))
1
n,j=0, may be obtained from the

following relations:

∫ 1

−1

1

t− z
dm0,0(t)

= − z + 2
3

(z + 1)(z − 1
3 )

− 4

9(z + 1)2(z − 1
3 )

2
k(z)

(
1− 4z

3(z + 1)(z − 1
3 )

k(z)

)−1

,

where k(z) ∈ RR([−1, 1]), z ∈ C\R;

m0,1(t) = m1,0(t) ≡ 0,

and m1,1(t) is the same as in Example 2.1.

Consider the matrix moment problem (1) with ℓ = 0. In this case the necessary
and sufficient condition of the solvability is

(63) S0 ≥ 0.

The necessity is obvious. On the other hand, if relation (63) is true, we can choose

(64) M̂(x) =
x− a

b− a
S0, x ∈ [a, b].

This function is a solution of the moment problem. Set

(65) M̃(x) = 2
x− a

b− a
S0, x ∈

[
a,

a+ b

2

]
; M̃(x) = S0, x ∈

(
a+ b

2
, b

]
.

If S0 6= 0, then M̃ is another solution of the moment problem. Thus, in this case the
moment problem is indeterminate. On the other hand, if S0 = 0, then M(x) ≡ 0 is
the unique solution of the moment problem.

Observe that a set of all solutions consists of non-decreasing matrix functions
M(x) on [a, b], left-continuous in (a, b), with the boundary conditions M(a) = 0,
M(b) = S0.

Theorem 2.5. Let the matrix moment problem (1) with ℓ = 2d, d ∈ Z, be
given and conditions (5) hold where in the case d = 0 the second condition in (5)
is redundant. In the case d = 0, the moment problem is determinate if and only
if S0 = 0. In the case d ∈ N, the moment problem is determinate if and only if
Bµ = BM , where the operator B is defined by (14) and Bµ,BM are the corresponding
extremal extensions of B.

Proof. The first statement of the theorem follows from the above considerations.
The second statement follows from Theorem 2.4, if we take into account that the class
RRe

([−1, 1]), where dimRe > 0, has at least two different elements. In fact, from the
definition of the class RRe

([−1, 1]) it follows that k1(z) ≡ 0, and k1(z) ≡ ERe
, belong

to RRe
([−1, 1]).
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3. The case of an even number of prescribed moments: a description

of all solutions and the determinacy. Consider the matrix moment problem (1)
with ℓ = 2d + 1, d ∈ Z+. We shall use the following well-known lemma about the
block matrix (e.g. [26, p. 223]).

Lemma 3.1. The block complex matrix

(66) T =

[
A B
B∗ C

]

is non-negative, T ≥ 0, (here A and C are square complex matrices) if and only if the
following conditions hold:

1) A ≥ 0;
2) there exists a matrix solution X of the equation AX = B;
3) for the solution X the following relation holds: C −X∗AX ≥ 0.

If conditions 1)-3) are satisfied, then the value of X∗AX does not depend on the choice
of X.

We shall need some conditions of the solvability of the moment problem which are
different from conditions (7). Of course, they are equivalent (however, we do not see
an easy way to show this equivalence without a reference to the moment problem (1)).

Theorem 3.1. Let the matrix moment problem (1) with ℓ = 2d+ 1, d ∈ Z+, be
given. The moment problem has a solution if and only if

(67) Γd ≥ 0; Γ̃d ≥ 0,

and there exist matrix solutions X,Y of matrix equations

(68) ΓdX =




Sd+1

Sd+2

...
S2d+1


 , Γ̃dY =




−abSd + (a+ b)Sd+1 − Sd+2

−abSd+1 + (a+ b)Sd+2 − Sd+3

...
−abS2d−1 + (a+ b)S2d − S2d+1


 ,

and for these solutions X, Y the following relation hold:

(69) X∗ΓdX ≤ −abS2d + (a+ b)S2d+1 − Y ∗Γ̃dY.

Here, in the case d = 0, the second inequality in (67) and the second equality in (68)

are redundant, and in (69) the last term (Y ∗Γ̃dY ) should be removed.

Proof. Consider the matrix moment problem (1) with ℓ = 2d+ 1, d ∈ Z+. It has
a solution if and only if the moment problem with an odd number of moments

(70)

∫ b

a

xndM(x) = Sn, n = 0, 1, ..., 2d+ 1;

∫ b

a

x2d+2dM(x) = S2d+2,

with some complex (N × N) matrix S2d+2 has a solution. By (5) the solvability of
the moment problem (70) is equivalent to the matrix inequalities

(71) Γd+1 ≥ 0, Γ̃d+1 ≥ 0.
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If we apply to the latter inequalities Lemma 3.1, we obtain that solvability of (70) is
equivalent to the condition (67), existence of solutions X,Y of (68) and inequalities

(72) S2d+2 ≥ X∗ΓdX, S2d+2 ≤ −abS2d + (a+ b)S2d+1 − Y ∗Γ̃dY.

Consequently, we obtain that the statement of the Theorem is true.

Theorem 3.2. Let the matrix moment problem (1) with ℓ = 2d + 1, d ∈ Z+,
be given and conditions (67),(68) and (69) hold. An arbitrary solution M(·) of the
moment problem can be found by the Stieltjes-Perron inversion formula from the fol-
lowing relation

∫ 1

−1

1

t− z
dMT

(
(b− a)t+ (a+ b)

2

)

(73) = A(z;S)− C(z;S)k(z;S)(ER(S) +D(z;S)k(z;S))−1B(z;S),

where k(z;S) ∈ RR(S)[−1, 1], S ∈ [X∗ΓdX,−abS2d + (a + b)S2d+1 − Y ∗Γ̃dY ], and
on the left-hand side one means the matrix of the corresponding operator in CN .
Here A(z;S),B(z;S), C(z;S),D(z;S) are analytic operator-valued functions given by
relations (56)-(59) for the moment problem (1) with moments {Sk}2d+1

k=0 , S2d+2 = S.
Also, R(S) is the subspace R calculated for the latter moment problem.
Moreover, the correspondence between all solutions of the moment problem and pairs
k(z;S) ∈ RR(S)[−1, 1], S ∈ [X∗ΓdX,−abS2d+(a+ b)S2d+1 − Y ∗Γ̃dY ], is one-to-one.

Proof. The proof follows easily from the considerations in the proof of Theorem 3.1
and by applying Theorem 2.4 and Remark 2.2.

Theorem 3.3. Let the matrix moment problem (1) with ℓ = 2d+ 1, d ∈ Z+, be
given and conditions (67),(68) and (69) hold. The moment problem is determinate if
and only if the following two conditions hold:

1) X∗ΓdX = −abS2d + (a+ b)S2d+1 − Y ∗Γ̃dY ;
2) Bµ = BM , where Bµ, BM are extremal extensions of the operator B de-

fined by (14) for the moment problem (1) with moments {Sk}2d+1
k=0 , S2d+2 =

X∗ΓdX.

Proof. The proof follows directly from Theorem 2.4 and Theorem 3.2.

Example 3.1. Let ℓ = 2d+ 1, d = 0, N = 1, a = −1, b = 1, and

S0 = 1, S1 = 0.

Consider the moment problem (1) with moments S0, S1. In this case Γ0 = S0 = 1 > 0.
There exists a solution of Γ0X = S1 = 0: X = 0. Condition (69) is satisfied, as well.
Therefore the moment problem has a solution.
Choose an arbitrary S ∈ [0, 1] and consider the moment problem (1) with moments
S0, S1, S2 = S. It holds

Γ1 =

(
1 0
0 S

)
≥ 0, Γ̃1 = 1− S ≥ 0,

and therefore this extended moment problem has a solution.
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Case S = 0. In this case we may choose H = C, x0 = ~e0 = (1), x1 = 0. Then
LN = H , D(A) = D(B) = H , B = 0. Therefore Bµ = BM = B = 0, and the
moment problem is determinate. Then Rµ

z = − 1
z
EC,

∫ 1

−1

1

t− z
dM(t) = −1

z
,

and therefore M(t) coincides with the function m1,1(t) in Example 2.1.

Case 0 < S ≤ 1. In this case we may choose H = C2, x0 = ~e0 = (1, 0), x1 =
√
S~e1 =√

S(0, 1). Then LN = Lin{~e0}, D(A) = D(B) = Lin{~e0}, R = Lin{~e1}. The operator
B = A has the following matrix representation in the basis {~ek}1k=0:

B = (Bk,ℓ)
2
k,ℓ=0 =

(
0 ∗√
S ∗

)
,

where ∗ means that the corresponding value is not defined. If B̃ ⊃ B is a self-adjoint
contractive extension of B in H , then its matrix representation should be of the form:

B̃ = (B̃k,ℓ)
2
k,ℓ=0 =

(
0

√
S√

S w

)
,

and
(

1
√
S√

S w + 1

)
≥ 0,

(
1 −

√
S

−
√
S 1− w

)
≥ 0.

The latter relations hold iff

−(1− S) ≤ w ≤ 1− S.

Suppose that S = 1. In this case

Bµ = BM = Be =

(
0

√
S√

S 0

)
;

Rµ
z =

(
−z

√
S√

S −z

)−1

=
1

z2 − 1

(
−z −1
−1 −z

)
, z ∈ C\R.

Then
∫ 1

−1

1

t− z
dM(t) = − z

z2 − 1
,

and therefore M(t) coincides with the function m0,0(t) from Example 2.1.
Suppose that 0 < S < 1. In this case

Bµ =

(
0

√
S√

S S − 1

)
, BM =

(
0

√
S√

S 1− S

)
, C =

(
0 0
0 2(1− S)

)
;

and for z ∈ C\R we have

Rµ
z =

(
−z

√
S√

S −z + S − 1

)−1

=

(
−z+S−1

(z−S)(z+1) −
√
S

(z−S)(z+1)

−
√
S

(z−S)(z+1) − z
(z−S)(z+1)

)
.
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Let C = Lin{~u0}, ~u0 = (1). Then

B(z)ξ~u0 = −
√

2(1− S)S

(z − S)(z + 1)
ξ~e1, ξ ∈ C,

C(z)α~e1 = −
√
2(1− S)S

(z − S)(z + 1)
α~u0, α ∈ C,

A(z)βu0 = − z − S + 1

(z − S)(z + 1)
βu0, β ∈ C,

D(z)γ~e1 = − 2(1− S)z

(z − S)(z + 1)
γ~e1, γ ∈ C.

Then

((
A(z)− C(z)k(z)(ERe

+D(z)k(z))−1B(z)
)
~u0, ~u0

)
C2

= − z − S + 1

(z − S)(z + 1)
− 2(1− S)S

(z − S)2(z + 1)2
k(z)

(
1− 2(1− S)S

(z − S)(z + 1)
k(z)

)−1

.

Therefore an arbitrary solution M(t) (in the case 0 < S < 1), may be obtained from
the following relation:

∫ 1

−1

1

t− z
dM(t)

(74) = − z − S + 1

(z − S)(z + 1)
− 2(1− S)S

(z − S)2(z + 1)2
k(z)

(
1− 2(1− S)S

(z − S)(z + 1)
k(z)

)−1

,

where k(z) ∈ RR([−1, 1]), z ∈ C\R.
Finally, the set of all solutions of the moment problem (1) with moments S0 = 1,

S1 = 0, consists of functions m0,0(t), m1,1(t) from Example 2.1, and functions given
by relation (74), where k(z) ∈ RR([−1, 1]), 0 < S < 1.

Remark 3.1. It would be of interest to study the density questions for finite
sets of matrix polynomials by means of the truncated Hausdorff moment problem.
Also, the density questions for finite sets of complex polynomials on radial rays can
be studied in this framework (see [27]).
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