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ON SOME PROPERTIES OF th,1FUNCTIONS IN THE
CALDERON-ZYGMUND THEORY∗

SILVANO DELLADIO†

Abstract. In this paper we will present some results about functions having derivatives in the
L1 sense, according to the definition of Calderon-Zygmund [1]. In particular we prove that these
functions behave nicely with respect to a certain non-homogeneous blow-up related to the generalized
Taylor polynomial.
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1. Introduction. The spaces th,p(x) of functions having derivative of order h
at x in the Lp sense, see Definition 2.1 below, were first introduced in [1] in order to
investigate the pointwise behaviour of Sobolev functions. In particular the following
remarkable facts hold, just to mention a few:

• If u ∈ W k,p(Rn) and ε > 0 then there exists an open set U with Bessel
capacity Bk−h,p(U) not exceeding ε and such that u ∈ th,p(Rn\U), with
h ≤ k and (k − h)p < n (compare [9, Theorem 3.10.4]);

• The Whitney extension theorem in the framework of th,p(x) spaces (see [9,
Theorem 3.6.3] or Theorem 2.1 below);

• Lusin-type property of Sobolev functions (with h, k, p as above): If u ∈
W k,p(Rn) and ε > 0 then there exist an open set U and v ∈ Ch(Rn) such
that Bk−h,p(U) ≤ ε and Dαv = Dαu in R

n\U , for all 0 ≤ |α| ≤ h (compare
[9, Theorem 3.10.5]).

In this paper we will present some new results about th,1(x). In particular, the
theory developed in Chapter 3 is based on the following observation (compare [3]):

Let U be a neighborhood of x ∈ R
n and u ∈ Ch(U) (with h ≥ 1). Denote by Tu,x,d

the d-th degree Taylor polynomial of u at x (with d ≤ h) and for r > 0 define

ur(z) :=
u(x+ rz)− Tu,x,h−1(x+ rz)

rh
, z ∈

U − x

r
.

Then r 7→ ur converges to the form

Hu,h(z) := Tu,x,h(x+ z)− Tu,x,h−1(x+ z), z ∈ R
n

uniformly in the compact sets, as r ↓ 0. Since one has Di(ur) = (Diu)r and DiHu,h =
HDiu,h−1, the same property yields at once the convergence of the graph of ur to the
graph of Hu,h, in the sense of varifolds.

Since th,1(x) ⊂ th−1,1(x), by Proposition 3.1, for all u ∈ th,1(x) one can define ur
and Hu,h in a similar way as above. The following results resemble the just mentioned
properties occuring in the smooth case and are provided in Chapter 3:

• If u ∈ th,1(x) then r 7→ ur converges in L1
loc to Hu,h, as r ↓ 0;

∗Received April 13, 2011; accepted for publication July 7, 2012.
†Faculty of Mathematical, Physical and Natural Sciences, via Sommarive 14, I-38123 Povo, Italy

(delladio@science.unitn.it).

1



2 S. DELLADIO

• Let u be a function of class C1 in a neighborhood of x ∈ R
n such that:

(i) Diu ∈ th−1,1(x) for all i = 1, . . . , n e for a certain integer h ≥ 2 (Propo-
sition 3.4(I));

(ii) DiPDju,x,h−1 = DjPDiu,x,h−1 for all i, j = 1, . . . , n.
Then u ∈ th,1(x) and the graphs of ur converge to the graph of Hu,h, as r ↓ 0,
in the sense of varifolds (Theorem 3.1).

In Section 4 we deal with iterated derivatives in the context of th,1(x). More pre-
cisely we prove some statements extending this trivial property of smooth functions:
If u is of class Ch (in an open set) and Dhu is of class Ck, then u is of class Ch+k.

2. Notation, some well-known and preliminary results.

2.1. Main notation. Define

I(n) := N
n, Q(m) := {1, . . . , n}m

and, for all α = (α1, . . . , αn) ∈ I(n):

|α| :=
n∑

i=1

αi, α! := α1! · · ·αn!.

Consider the map

µ :

+∞⋃

m=1

Q(m) → I(n)

defined by

µ(θ)i := #{j | θj = i} (i = 1, . . . , n)

for all θ = (θ1, . . . , θm) ∈ Q(m).
Observe that if α ∈ I(n) then µ−1(α) ⊂ Q(|α|) and

(2.1) #µ−1(α) =
|α|!

α!
.

If x = (x1, . . . , xn) ∈ R
n and α = (α1, . . . , αn) ∈ I(n), we let

xα := xα1
1 · · ·xαn

n .

For i = 1, . . . , n, we set Di := ∂/∂xi. Moreover define

Dα := Dα1

1 · · ·Dαn
n =

∂|α|

∂xα1
1 · · · ∂xαn

n
(with α = (α1, . . . , αn) ∈ I(n))

and

Dm
θ := Dθm · · ·Dθ1 (with θ = (θ1, . . . , θm) ∈ Q(m)).

Observe that (on spaces of Cm functions) one has

Dm
θ = Dµ(θ) (for all θ ∈ Q(m)).

In this paper, the open ball in R
n of radius r centered at x is denoted by B(x, r).
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2.2. Functions of class th,p. Here we adopt the notation and the statements
of [9, Sect. 3.5], where a really clear treatment of this subject is provided.

Definition 2.1. Let x ∈ R
n, p ∈ [1,+∞] and h be a non-negative integer. Then

th,p(x) denotes the family of functions u defined in a neighborhood of x which are
measurable and such that there exists a polynomial P of degree less than or equal to
h satisfying

(2.2)

( ∫

B(x,r)

|u− P |p

)1/p

= o(rh) (as r → 0).

If A is any subset of Rn then also set

th,p(A) :=

{
u ∈

⋂

x∈A

th,p(x)

∣∣∣∣ (2.2) holds uniformly in A

}
.

Remark 2.1. The polynomial P in Definition 2.1 is uniquely determined.
Throughout this paper it will be denoted by Pu,x,h.

Remark 2.2. If ϕ is of class Ch in a neighborhood of x ∈ R
n (with h ≥ 0), then

ϕ ∈ th,p(x) for all p ∈ [1,+∞] and Pϕ,x,h is just the h− th degree Taylor polynomial
of ϕ at x.

The followingWhitney-type extension theorem holds, compare [9, Theorem 3.6.3].

Theorem 2.1. Let A be a closed subset of Rn and Ã := {x ∈ R
n | dist(x,A) < 1}.

If u ∈ Lp(Ã)∩ th,p(A), where h is a positive integer and p ∈ [1,+∞], then there exists

ϕ ∈ Ch(Ã) such that

Dαϕ(x) = (DαPu,x,h)(x)

for all x ∈ A and α ∈ I(n) with 0 ≤ |α| ≤ h.

2.3. Points of enhanced density. We recall the following definition from [4, 5].

Definition 2.2. Let A be a measurable subset of Rn and m > 0. Then x ∈ R
n

is said to be a “m-density point of A” if Ln(B(x, r)\A) = o(rm), as r → 0.

Caccioppoli sets are more dense than generic measurable sets, where one has
n-density almost everywhere. Indeed the following property holds [4, Lemma 4.1].

Theorem 2.2. Let A be a locally finite perimeter subset of Rn and

m := n+ 1 +
1

n− 1
.

Then a.e. x ∈ A is a m-density point of A.

At a point of high density, classical results about differential maps can be gen-
eralized or stated in the context of spaces th,p(x). The closure result [4, Theorem
2.1] provides an example (in Section 5 below, we state a version for Lipschitz func-
tions). Another example is given by this theorem, proved in [5, Proposition 3.1],
which generalizes the obvious statement: if Dϕ is of class Ch then ϕ is of class Ch+1.

Theorem 2.3. Let ϕ ∈ Ch(Ω) and Φ ∈ Ch(Ω;Rn), where Ω is an open subset
of Rn and h ≥ 1. If x ∈ Ω is a (n+ h)-density point of {y ∈ Ω|∇ϕ(y) = Φ(y)} then
ϕ ∈ th+1,1(x).
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3. Non-homogeneous blow-up of th,1 functions. As we mentioned in the in-
troduction, this section is devoted to investigating some properties about convergence
of functions in th,1(x) subjected to non-homogeneous blow-up.

3.1. Preliminary results and further notation.

Proposition 3.1. Let k, h be integers satisfying 0 ≤ k ≤ h and let u ∈ th,1(x).
Then one has u ∈ tk,1(x) and

Pu,x,k(y) =
∑

µ∈I(n)
|µ|≤k

1

µ!
(DµPu,x,h)(x)(y − x)µ.

Proof. We can assume k < h (for k = h the statement is trivial). Then, if define

σ(r) := r−h−n

∫

B(x,r)

|u− Pu,x,h|, P (y) :=
∑

µ∈I(n)
|µ|≤k

1

µ!
(DµPu,x,h)(x)(y − x)µ

we obtain
∫

B(x,r)

|u− P | ≤

∫

B(x,r)

|u− Pu,x,h|+

∫

B(x,r)

|Pu,x,h − P |

≤ rh+nσ(r) +
∑

µ∈I(n)
k+1≤|µ|≤h

1

µ!
|(DµPu,x,h)(x)|

∫

B(x,r)

|(y − x)µ| dy.

Thus there is a constant C such that (for r small enough)

∫

B(x,r)

|u− P | ≤ rh+nσ(r) + Crk+1+n

hence

r−k−n

∫

B(x,r)

|u− P | ≤ rh−kσ(r) + Cr.

Proposition 3.2. Let f be a nonnegative measurable function defined in a neigh-
borhood of 0 and let k, l > 0. Then one has

(3.1) lim
r↓0

r−l

∫

B(0,r)

f(y)|y|−kdy = 0

if and only if

(3.2) lim
r↓0

r−l−k

∫

B(0,r)

f = 0.

Proof. In order to prove the “if” part of the statement, define

σ(r) := sup
ρ∈(0,r]

ρ−l−k

∫

B(0,ρ)

f
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and

Er,i := {y ∈ R
n | 2−i−1r ≤ |y| < 2−ir}.

We get

r−l

∫

B(0,r)

f(y)|y|−kdy = r−l
∞∑

i=0

∫

Er,i

f(y)|y|−kdy

≤ r−l
∞∑

i=0

(2−i−1r)−k

∫

B(0,2−ir)

f

≤

∞∑

i=0

2(i+1)k2−i(l+k)σ(2−ir)

≤ 2kσ(r)

∞∑

i=0

(2−l)i.

Hence (3.1) follows at once from (3.2).

The opposite implication follows from the obvious inequality

r−k

∫

B(0,r)

f ≤

∫

B(0,r)

f(y)|y|−kdy.

In the following proposition we assume h ≥ 1 because for h = 0 it reduces to a
trivial statement (compare Remark 2.2).

Proposition 3.3. Let u be a function of class C1 in a neighborhood of x ∈ R
n,

h be a positive integer and assume that

(3.3) Diu ∈ th,1(x) (i = 1, . . . , n).

Then the following conditions are equivalent:

(I) DiPDju,x,h = DjPDiu,x,h for all i, j = 1, . . . , n;
(II) u ∈ th+1,1(x) and DiPu,x,h+1 = PDiu,x,h for all i = 1, . . . , n.

Proof. The statement (I) follows from (II) trivially. In order to prove the vice
versa, let us assume the closure condition (I). Then there exists a unique potential P
of the field (PD1u,x,h, . . . , PDnu,x,h) such that P (x) = u(x). Observe that P has to be
a (h+ 1)-degree polynomial. Now, for simplicity, set

v := u− P, Bρ := B(x, ρ)

and

σ(ρ) := sup
s∈(0,ρ]

(
n∑

i=1

s−h−1

∫

Bs

|Diu(y)− PDiu,x,h(y)| |y − x|1−ndy

)
.
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Then, by the coarea formula [6, Sect. 3.4.4], one has (for ρ small enough)
∫

∂Bρ

|v|dHn−1 =

∫

Sn−1

|v(x+ ρν)− v(x)|ρn−1dHn−1(ν)

= ρn−1

∫

Sn−1

∣∣∣∣
∫ ρ

0

∇v(x+ tν) · ν dt

∣∣∣∣ dH
n−1(ν)

≤ ρn−1

∫ ρ

0

(∫

Sn−1

|∇v(x + tν)| dHn−1(ν)

)
dt

= ρn−1

∫ ρ

0

(∫

∂Bt

|∇v(y)| dHn−1(y)

)
t1−ndt

= ρn−1

∫ ρ

0

(∫

∂Bt

|∇v(y)| |y − x|1−n dHn−1(y)

)
dt

= ρn−1

∫

Bρ

|∇v(y)| |y − x|1−ndy

≤ ρn−1
n∑

i=1

∫

Bρ

|Diu(y)−DiP (y)| |y − x|1−ndy

= ρn−1
n∑

i=1

∫

Bρ

|Diu(y)− PDiu,x,h(y)| |y − x|1−ndy

whence
∫

∂Bρ

|v|dHn−1 ≤ ρn+hσ(ρ).

It follows that (for r small enough)
∫

Br

|v| =

∫ r

0

(∫

∂Bρ

|v| dHn−1

)
dρ ≤

∫ r

0

ρn+hσ(ρ) dρ ≤ σ(r)rn+h+1

namely

r−n−h−1

∫

Br

|u− P | ≤ σ(r).

But recalling (3.3) and using Proposition 3.2 (with k = n− 1 and l = h+ 1) we find

lim
r↓0

σ(r) = 0

hence u ∈ th+1,1(x) and Pu,x,h+1 = P .

3.2. Convergence L1
loc

.

Definition 3.1. Let P be a polynomyal in R
n of degree h and x ∈ R

n. Then the
“maximal form in P at x” is defined as the homogeneous polynomial of degree h

R
n ∋ z 7→

∑

µ∈I(n)
|µ|=h

1

µ!
(DµP )(x) zµ.

Proposition 3.4. Let x ∈ R
n and u be a measurable function defined in a

neighborhood of x. Then the following facts hold:
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(I) If u ∈ th,1(x) with h ≥ 1, then u ∈ th−1,1(x) and the functions

R
n ∋ z 7→ ur(z) :=

u(x+ rz)− Pu,x,h−1(x+ rz)

rh
(r > 0)

converge in L1
loc

, as r ↓ 0, to the maximal form of Pu,x,h at x, namely

H(z) :=
∑

µ∈I(n)
|µ|=h

1

µ!
(DµPu,x,h)(x) z

µ.

One has

(3.4) H(z) = Pu,x,h(x+ z)− Pu,x,h−1(x + z).

(II) If for a certain integer h ≥ 1 there exist a polynomial Q of degree h− 1 and
a homogeneous polynomial H of degree h such that the functions

(3.5) R
n ∋ z 7→

u(x+ rz)−Q(x+ rz)

rh
(r > 0)

converge in L1
loc

to H, as r ↓ 0, then u ∈ th,1(x).

Proof. (I) Assume that u ∈ th,1(x). Proposition 3.1 implies that u ∈ th−1,1(x)
and (3.4) holds. Now let Ω be a bounded measurable subset of Rn and consider R > 0
such that Ω ⊂ B(0, R). Then, for r small enough, one has

∫

Ω

∣∣∣∣ur(z)−H(z)

∣∣∣∣dz ≤
∫

B(0,R)

∣∣∣∣
u(x+ rz)− Pu,x,h−1(x+ rz)

rh
−H(z)

∣∣∣∣dz

=

∫

B(x,rR)

∣∣∣∣
u(y)− Pu,x,h−1(y)

rh
−H

(
y − x

r

)∣∣∣∣ r
−ndy

= r−h−n

∫

B(x,rR)

|u− Pu,x,h|

= Rh+n(rR)−h−n

∫

B(x,rR)

|u− Pu,x,h|.

Thus

lim
r↓0

∫

Ω

|ur(z)−H(z)| dz = 0.

(II) Let Q and H be, respectively, a polynomial of degree h − 1 and a homogeneous
polynomial of degree h such that the functions (3.5) converge in L1

loc to H , as r ↓ 0.
If set

P (y) := Q(y) +H(y − x), y ∈ R
n

then
∫

B(x,r)

|u− P | =

∫

B(x,r)

|u(y)−Q(y)−H(y − x)| dy

=

∫

B(0,1)

|u(x+ rz)−Q(x+ rz)−H(rz)| rndz

= rh+n

∫

B(0,1)

∣∣∣∣
u(x+ rz)−Q(x+ rz)

rh
−H(z)

∣∣∣∣ dz.

Hence u ∈ th,1(x).
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3.3. Graph convergence. Let {e1, . . . , en} be the standard orthonormal basis
of Rn and J : Rn → R

n+1 be the trivial isometric immersion defined by

J(x1, . . . , xn) := (x1, . . . , xn, 0)

for all (x1, . . . , xn) ∈ R
n. Let en+1 := (0, . . . , 0, 1) ∈ R

n+1 and observe that

{Je1, . . . , Jen, en+1}

is the standard orthonormal basis of Rn+1. For simplicity we will identify Jei with ei
(i = 1, . . . , n).

The space of n-vectors in R
n+1 is denoted by ΛnR

n+1. Set

e := e1 ∧ · · · ∧ en

and observe that

{e} ∪ {en+1 ∧ (e ei)}
n
i=1

form a basis of ΛnR
n+1. Let ‖ξ‖ be the length of ξ ∈ ΛnR

n+1, i.e.

‖ξ‖ =

(
n+1∑

i=0

ξ2i

)1/2

, ξ = ξ0 e+

n∑

i=1

ξi en+1 ∧ (e ei).

Recall that if U is an open subset of Rn and f ∈ C1(U) then ‖ ∧n d(I × f)e‖ is the
measure transformation factor for I × f , namely the following formula holds for all
measurable subsets A of U

(3.6) Hn({(z, f(z))|z ∈ A}) =

∫

A

‖ ∧n d(I × f)e‖ dLn

compare [7, Sect. 3.2].
One has

∧nd(I × f)e = [e1 + (D1f)en+1] ∧ · · · ∧ [e1 + (D1f)en+1]

= e +

n∑

i=1

(Dif) en+1 ∧ (e ei)
(3.7)

hence the expected result

‖ ∧n d(I × f)(e)‖ = (1 + |∇f |2)1/2.

Now, given a measurable subset E of Rn such that E ⊂⊂ U , we can consider the
following functional:

Gf,E(ϕ) :=

∫

(I×f)(E)

ϕ(w; η(w)) dHn(w), ϕ ∈ C(Rn+1 × ΛnR
n+1)

where

η(z, t) :=
∧nd(I × f)e

‖ ∧n d(I × f)e‖
(z), (z, t) ∈ U × R.
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Observe that Gf,E restricted to Cc(R
n+1 × ΛnR

n+1) is the oriented rectifiable n-
varifold naturally associated to the graph of f |E (compare [2]).

From (3.6) and (3.7) we get

Gf,E(ϕ) =

∫

E

ϕ

(
z, f(z);

∧nd(I × f)e

‖ ∧n d(I × f)e‖
(z)

)
‖ ∧n d(I × f)e‖(z) dz

=

∫

E

ϕ

(
z, f(z);

e +
∑n

i=1Dif(z) en+1 ∧ (e ei)

(1 + ‖∇f(z)‖2)1/2

)
(1 + ‖∇f(z)‖2)1/2dz

for all ϕ ∈ C(Rn+1 × ΛnR
n+1).

Let x ∈ R
n and u ∈ th,1(x) with h ≥ 2. By Proposition 3.1 we also have

u ∈ th−1(x) and thus, for r > 0, the transformation

Tr : Rn × R → R
n × R, Tr(y; t) :=

(
y − x

r
,
t− Pu,x,h−1(y)

rh

)

is well-defined.

Remark 3.1. An obvious computation shows that Tr trasforms the graph of u
into the graph of the function ur introduced in Proposition 3.4(I), namely

(3.8) ur(z) =
u(x+ rz)− Pu,x,h−1(x+ rz)

rh
, z ∈

U − x

r

where U denotes the domain of u.

Theorem 3.1. Let u be a function of class C1 in a neighborhood of x ∈ R
n such

that:
(i) Diu ∈ th−1,1(x) for all i = 1, . . . , n e for a certain integer h ≥ 2;
(ii) DiPDju,x,h−1 = DjPDiu,x,h−1 for all i, j = 1, . . . , n.

The following facts hold:
(I) u ∈ th,1(x);
(II) Let H denote the maximal form of Pu,x,h and consider an arbitrary bounded

measurable subset E of Rn. Then

Gur ,E(ϕ) → GH,E(ϕ)

for all bounded ϕ ∈ C(Rn+1×ΛnR
n+1), as r ↓ 0. In particular Gur ,E → GH,E

in the sense of oriented varifolds, as r ↓ 0.

Proof. (I) This statement follows at once from Proposition 3.3.
(II) First step. For i = 1, . . . , n and z ∈ R

n, set

Qi(z) :=
∑

µ∈I(n)
|µ|≤h−2

1

µ!
(DµPDiu,x,h−1)(x)z

µ, Hi(z) :=
∑

µ∈I(n)
|µ|=h−1

1

µ!
(DµPDiu,x,h−1)(x)z

µ

Observe that (for i = 1, . . . , n)

Diu ∈ th−2,1(x)

and

(3.9) PDiu,x,h−2(y) =
∑

µ∈I(n)
|µ|≤h−2

1

µ!
(DµPDiu,x,h−1)(x)(y − x)µ = Qi(y − x)
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for all y ∈ R
n, by Proposition 3.1. Moreover one has (for i, j = 1, . . . , n)

∂

∂yi

∑

µ∈I(n)
|µ|≤h−1

1

µ!
(DµPDju,x,h−1)(x)(y − x)µ =

∂

∂yj

∑

µ∈I(n)
|µ|≤h−1

1

µ!
(DµPDiu,x,h−1)(x)(y − x)µ

for all y ∈ R
n, by the assumption (ii), namely

DiQj +DiHj = DjQi +DjHi.

Since DiQj and DjQi are polynomials of degree h − 3 while DiHj and DjHi are
homogeneous polynomials of degree h− 2, we get DiQj = DjQi (and DiHj = DjHi)
i.e.

DiPDju,x,h−2 = DjPDiu,x,h−2

by (3.9). Hence u ∈ th−1,1(x) and

(3.10) DiPu,x,h−1 = PDiu,x,h−2

by Proposition 3.3.
Second step. Set

ξ0 := ∧nd(I ×H)e, ξr := ∧nd(I × ur)e.

From (3.7) one obtains

(3.11) ξ0 = e+

n∑

i=1

(DiH) en+1 ∧ (e ei)

and

(3.12) ξr = e+

n∑

i=1

(Diur) en+1 ∧ (e ei)

where

(3.13) Diur(z) =
Diu(x+ rz)− PDiu,x,h−2(x+ rz)

rh−1
, z ∈

U − x

r

by (3.8) and (3.10). Moreover, from (3.9), (3.10) and Proposition 3.3 it follows that

Hi(z) = PDiu,x,h−1(x+ z)−Qi(z) = PDiu,x,h−1(x+ z)− PDiu,x,h−2(x+ z)

= (DiPu,x,h)(x + z)− (DiPu,x,h−1)(x+ z)

=
∂

∂zi

(
Pu,x,h(x + z)− Pu,x,h−1(x+ z)

)

for all z ∈ R
n, hence

(3.14) Hi = DiH

by Proposition 3.1.
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Third step. Let ϕ ∈ C(Rn+1 × ΛnR
n+1) be bounded. Then, for r small enough

(in such a way that E ⊂⊂ (U − x)/r), we can define

δ(r) := |Gur ,E(ϕ)−GH,E(ϕ)|.

From

δ(r) =

∣∣∣∣
∫

E

ϕ

(
z, ur(z);

ξr(z)

‖ξr(z)‖

)
‖ξr(z)‖dz −

∫

E

ϕ

(
z,H(z);

ξ0(z)

‖ξ0(z)‖

)
‖ξ0(z)‖dz

∣∣∣∣

it follows that

δ(r) ≤ δ1(r) + δ2(r)

with

δ1(r) :=

∫

E

∣∣∣∣ϕ
(
z, ur(z);

ξr(z)

‖ξr(z)‖

)∣∣∣∣
∣∣‖ξr(z)‖ − ‖ξ0(z)‖

∣∣dz

δ2(r) :=

∫

E

∣∣∣∣ϕ
(
z, ur(z);

ξr(z)

‖ξr(z)‖

)
− ϕ

(
z,H(z);

ξ0(z)

‖ξ0(z)‖

)∣∣∣∣ ‖ξ0(z)‖dz.

Observe that

(3.15)
∣∣‖ξr‖ − ‖ξ0‖

∣∣ ≤ ‖ξr − ξ0‖ ≤

n∑

i=1

|Diur −DiH | =

n∑

i=1

|Diur −Hi|

by (3.11), (3.12) and (3.14). Thus

δ1(r) ≤ ‖ϕ‖∞

n∑

i=1

∫

E

|Diur −Hi|.

Moreover, recalling (3.13) and using Proposition 3.4(I) with Diu in place of u and
h− 1 in place of h, we get

(3.16) Diur → Hi in L1
loc(R

n)

as r ↓ 0, hence δ1(r) as r ↓ 0. It remains to prove

(3.17) lim
r↓0

δ2(r) = 0.

Recall that

(3.18) ur → H in L1
loc(R

n)

as r ↓ 0, by Proposition 3.4(I). From (3.16) and (3.18), by a well-known result (e.g.
[8, Theorem 3.12]), it follows that every sequence {rj} of positive numbers such that
rj → 0 as j → ∞ has a subsequence {rjk} such that

urjk → H, Diurjk → Hi (for i = 1, . . . , n)

a.e. in E. By (3.15) we have also ξrjk → ξ0 a.e. in E. Hence the dominated
convergence theorem yields δ2(rjk ) → 0. Finally (3.17) follows from the arbitrariness
of {rj}.
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In the special case when h = 1 the assumptions in Theorem 3.1 are trivially
verified and (as we expect) the graph of ur converges to the tangent space to the
graph of u at (x, u(x)). In the following result we prove this fact by a straighforward
adaptation of the argument above.

Proposition 3.5. Let u be a function of class C1 in a neighborhood of x ∈ R
n

and let L : Rn → R be the linear functional defined by

L(z) := ∇u(x) · z, z ∈ R
n.

Moreover consider an arbitrary measurable subset E of Rn. Then

Gur ,E(ϕ) → GL,E(ϕ)

for all bounded ϕ ∈ C(Rn+1 ×ΛnR
n+1), as r ↓ 0. In particular Gur ,E → GL,E in the

sense of oriented varifolds, as r ↓ 0.

Proof. One has

Pu,x,1(y) = u(x) +∇u(x) · (y − x), PDiu,x,0(y) = Diu(x)

for all y ∈ R
n, by Remark 2.2. Hence, if H and Hi are defined as in Theorem 3.1, we

obtain

H(z) = ∇u(x) · z = L(z), Hi(z) = Diu(x)

for all z ∈ R
n. Then (3.14) holds trivially and the conclusion follows from the third

step in the proof of Theorem 3.1.
The following corollary also holds.

Corollary 3.1. Let u satisfy the assumptions in Theorem 3.1 (if h ≥ 2) or,
alternatively, the assumptions in Proposition 3.5 (if h = 1). Moreover let Γ and Γr

denote the graphs of u and ur, while Γ0 be the graph of H (if h ≥ 2) or of L (if h = 1).
Then:

(I) For all bounded measurable subset E of R
n, the area of the graph of ur|E

converges to the area of the graph of H |E (if h ≥ 2) or of L|E (if h = 1), as
r ↓ 0, i.e.

lim
r↓0

Hn(Γr ∩ (E × R)) = Hn(Γ0 ∩ (E × R));

(II) For every fixed bounded open subset Ω of Rn, one has

Hn Γr = Hn Tr(Γ) → Hn Γ0

in the weak∗ sense of measures in Ω× R, as r ↓ 0.

Proof. First consider the case when h ≥ 2.
(I) Use Theorem 3.1(II) with ϕ ≡ 1.
(II) Consider the immersion map J : Cc(Ω×R) → C(Rn+1×ΛnR

n+1) defined by

Jψ (w; η) := ψ(w), (w; η) ∈ R
n+1 × ΛnR

n+1

and observe that Jψ is bounded for all ψ ∈ Cc(Ω× R). Then Theorem 3.1(II) yields
∫

Γr

ψ dHn = Gur ,Ω(Jψ) → GH,Ω(Jψ) =

∫

Γ0

ψ dHn

for all ψ ∈ Cc(Ω× R), as r ↓ 0.
For h = 1 we repeat the previous argument with Proposition 3.5 in place of

Theorem 3.1(II).
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4. Iterated derivatives.

4.1. Part I (without enhanced density assumption).

Theorem 4.1. Let ϕ be a function of class Ch in a neighborhood of x (with
h ≥ 1) such that:

(i) Dβϕ ∈ tk,1(x) for all β ∈ I(n), |β| = h (with k ≥ 1);
(ii) The number (Dρ−βPDβϕ,x,k)(x), with

h+ 1 ≤ |ρ| ≤ h+ k and |β| = h (β, ρ ∈ I(n))

does not depend on β (“compatibility condition at x”). It will be denoted by
dx,ρ.

Then ϕ ∈ th+k,1(x) and

Pϕ,x,h+k(y) = Pϕ,x,h(y) +
h+k∑

l=h+1

∑

ρ∈I(n)
|ρ|=l

dx,ρ
ρ!

(y − x)ρ.

Proof. First of all, define

P (y) := Pϕ,x,h(y) +

h+k∑

l=h+1

∑

ρ∈I(n)
|ρ|=l

dx,ρ
ρ!

(y − x)ρ

and

I(r) :=

∫

B(x,r)

|ϕ− P |.

Then, for h ≥ 1, one has

I(r) ≤

∫

B(x,r)

|y − x|mAm(y) dy (m = 0, 1, . . . , h)(4.1)

where A0 := |ϕ− P | and (for m = 1, . . . , h)

Am(y) :=

∫

[0,1]m

∑

θ∈Q(m)

|Dm
θ (ϕ− P )(x+ t1 · · · tm(y − x))| dt1 · · · dtm.

The formula (4.1) follows at once from the inequality

Am(y) ≤ |y − x|Am+1(y) (m+ 1 ≤ h)

which is again an easy application of the Fundamental Theorem of Calculus and of

Dm
θ ϕ(x) = (Dm

θ Pϕ,x,h)(x) = Dm
θ P (x) (m = 1, . . . , h).

By (4.1) with m = h and (2.1), we find

I(r) ≤

∫

B(x,r)

|y − x|h
(∫

[0,1]h

∑

θ∈Q(h)

∣∣Dh
θ (ϕ− P )(x + t1 · · · th(y − x))

∣∣ dt1 · · · dth
)
dy

≤
∑

β∈I(n)
|β|=h

rhh!

β!

∫

(0,1)h

(∫

B(x,r)

∣∣(Dβϕ−DβP )(x+ t1 · · · th(y − x))
∣∣ dy
)
dt1 · · · dth.
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Hence, by recalling the formula for the change of variables in the integrals, we get

I(r) ≤
∑

β∈I(n)
|β|=h

rhh!

β!

∫

(0,1)h
(t1 · · · th)

−n

(∫

B(x,t1···thr)

∣∣(Dβϕ−DβP )(z)
∣∣ dz
)
dt1 · · · dth.

Observe that, for β ∈ I(n) with |β| = h, the polynomial DβP has degree (at most
equal to) k. Recalling (ii), it follows that

DβP (y) =
∑

µ∈I(n)
|µ|≤k

1

µ!
Dµ(DβP )(x) (y − x)µ

=
∑

µ∈I(n)
|µ|≤k

1

µ!
(Dµ+βP )(x) (y − x)µ

= Dβϕ(x) +
∑

µ∈I(n)
1≤|µ|≤k

1

µ!
dx,µ+β (y − x)µ

= Dβϕ(x) +
∑

µ∈I(n)
1≤|µ|≤k

1

µ!

(
Dµ+β−βPDβϕ,x,k

)
(x) (y − x)µ

namely

DβP = PDβϕ,x,k.

Substituting into the last inequality we find

I(r) ≤
∑

β∈I(n)
|β|=h

rhh!

β!

∫

(0,1)h
(t1 · · · th)

−n

(∫

B(x,t1···thr)

∣∣Dβϕ− PDβϕ,x,k

∣∣
)
dt1 · · · dth

≤ C rn+h
∑

β∈I(n)
|β|=h

∫

(0,1)h

( ∫

B(x,t1···thr)

∣∣Dβϕ− PDβϕ,x,k

∣∣
)
dt1 · · · dth

where C depends only on n and h. Hence I(r) = o(rn+h+k), namely

∫

B(x,r)

|ϕ− P | = o(rh+k).

The following uniform version of Theorem 4.1 holds (same proof).

Theorem 4.2. Let A be a subset of Rn and ϕ be a function of class Ch in a
neighborhood of A (with h ≥ 1). Assume that:

(i) Dβϕ ∈ tk,1(A) for all β ∈ I(n), |β| = h (with k ≥ 1);
(ii) the number (Dρ−βPDβϕ,x,k)(x), with x ∈ A and

h+ 1 ≤ |ρ| ≤ h+ k, |β| = h (β, ρ ∈ I(n))

does not depend on β.
Then ϕ ∈ th+k,1(A).
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4.2. Part II (with enhanced density assumption).

Theorem 4.3. Let be given: a measurable subset A of Rn, a point x ∈ R
n, a

measurable function u defined in a neighborhood of x and a family {vα ∈ tk,1(x) |α ∈
I(n), |α| = h} (with h, k ≥ 1). Assume that:

(i) x is a (n+ h+ k)-density point of A;
(ii) There is a constant C such that

∫
B(x,r)\A

|u| ≤ CLn(B(x, r)\A) provided r is

small enough;
(iii) There exists a function ϕ of class Ch in a neighborhood of x such that

u = ϕ, vβ = Dβϕ

a.e. in A ∩B(x, r), for a certain positive r and for all β ∈ I(n) with |β| = h
(“jet-connectedness condition”);

(iv) The number (Dρ−βPvβ ,x,k)(x), with

h+ 1 ≤ |ρ| ≤ h+ k and |β| = h (β, ρ ∈ I(n)),

does not depend on β (“compatibility condition at x”). It will be denoted by
dx,ρ.

Then u, ϕ ∈ th+k,1(x) and

Pu,x,h+k(y) = Pϕ,x,h+k(y) = Pϕ,x,h(y) +

h+k∑

l=h+1

∑

ρ∈I(n)
|ρ|=l

dx,ρ
ρ!

(y − x)ρ.

Proof. For r small enough and for all β ∈ I(n) with |β| = h, one has

Ln(B(x, r))

∫
B(x,r)

|Dβ
ϕ− Pvβ ,x,k| =

∫
B(x,r)∩A

|vβ − Pvβ ,x,k|+

∫
B(x,r)\A

|Dβ
ϕ− Pvβ ,x,k|

≤

∫
B(x,r)

|vβ − Pvβ ,x,k|+C Ln(B(x, r)\A)

where C does not depend on r and β. Since vβ ∈ tk,1(x) and by (i), we get at once
∫

B(x,r)

|Dβϕ− Pvβ ,x,k| = o(rk)

namely Dβϕ ∈ tk,1(x) and

PDβϕ,x,k = Pvβ ,x,k.

From Theorem 4.1 it follows that ϕ ∈ th+k,1(x) and

Pϕ,x,h+k(y) = Pϕ,x,h(y) +
h+k∑

l=h+1

∑

ρ∈I(n)
|ρ|=l

dx,ρ
ρ!

(y − x)ρ.

Now it is easy to verify that u ∈ th+k,1(x). Indeed this inequality holds (for r small
enough)

∫

B(x,r)

|u− Pϕ,x,h+k| ≤

∫

B(x,r)

|u− ϕ|+

∫

B(x,r)

|ϕ− Pϕ,x,h+k|

=

∫

B(x,r)\A

|u− ϕ|+ o(rn+h+k)

≤

∫

B(x,r)\A

|u|+

∫

B(x,r)\A

|ϕ|+ o(rn+h+k)
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and the conclusion follows by recalling assumptions (i) and (ii).

Corollary 4.1. Let be given u ∈ L1(Rn), a closed subset A of Rn and a compact
subset K of A. Suppose that:

(i) u ∈ th,1(A);
(ii) Ln(B(x, r)\A) = o(rn+h+k), as r → 0, uniformly with respect to x ∈ K

(where h, k ∈ N\{0});
(iii) There are r0, C0 > 0 such that

∫

B(x,r)\A

|u| ≤ C0 L
n(B(x, r)\A)

for all x ∈ K and r ∈ [0, r0];
(iv) For all β ∈ I(n) with |β| = h, there exists vβ ∈ tk,1(K) such that

vβ(x) = (DβPu,x,h)(x)

for a.e. x ∈ A. Moreover the number (Dρ−βPvβ ,x,k)(x), with x ∈ K and

h+ 1 ≤ |ρ| ≤ h+ k, |β| = h (β, ρ ∈ I(n))

does not depend on β.
Then u ∈ th+k,1(K), hence there exists ψ ∈ Ch+k(K̃), with K̃ := {z ∈
R

n | dist(z,K) < 1}, such that

Dαψ(x) = (DαPu,x,h+k)(x)

for all x ∈ K and α ∈ I(n) with 0 ≤ |α| ≤ h+ k.

Proof. By Theorem 2.1 there is ϕ ∈ Ch(Ã), with Ã := {x ∈ R
n | dist(x,A) < 1},

such that

(4.2) Dαϕ(x) = (DαPu,x,h)(x)

for all x ∈ A and α ∈ I(n) with 0 ≤ |α| ≤ h. Since K is compact and by (iv) and
(4.2), we obtain
∫

B(x,r)

|Dβϕ− Pvβ ,x,k| =

∫

B(x,r)∩A

|Dβϕ− Pvβ ,x,k|+

∫

B(x,r)\A

|Dβϕ− Pvβ ,x,k|

≤

∫

B(x,r)

|vβ − Pvβ ,x,k|+ CLn(B(x, r)\A)

for all x ∈ K, for r small enough (uniformly w.r.t. x) and for all β ∈ I(n) with
|β| = h, where C does not depend on r, x. Hence

Dβϕ ∈ tk,1(K), PDβϕ,x,k = Pvβ ,x,k (x ∈ K; β ∈ I(n), |β| = h).

From Theorem 4.2 it follows that ϕ ∈ th+k,1(K). Finally (use (4.2) and compare the
last lines in the proof of Theorem 4.3)

∫

B(x,r)

|u − Pϕ,x,h+k| ≤

∫

B(x,r)\A

|u|+

∫

B(x,r)\A

|ϕ|+

∫

B(x,r)

|ϕ− Pϕ,x,h+k|

for all x ∈ K. Hence the conclusion follows by assumptions (ii), (iii) and by the
compactness of K.
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5. Appendix. The argument used for [4, Theorem 2.1] can be easily adapted
to prove the next result. For the convenience of the reader, we provide here such a
slightly modified proof.

Theorem 5.1. Let U be an open subset of Rn, f ∈ Lip (U) and Ψ ∈ Lip (U,Rn).
Consider a point x0 ∈ R

n such that:
(i) x0 is a (n + 1)-density point of {x ∈

U | f is differentiable at x, ∇f(x) = Ψ(x)};
(ii) x0 is in the Lebesgue set of curlΨ;
(iii) Ψ is differentiable at x0.

Then one has curlΨ(x0) = 0.

Proof. Let Ψi denote the i-th component of Ψ. Then we are reduced to prove
that, for i, j ∈ {1, . . . , n} and i 6= j, the following crossed derivative condition holds

(5.1) DiΨj(x0)−DjΨi(x0) = 0.

To this aim, given ρ ∈ (0, 1), consider ϕ ∈ C2
c (B(0, 1)) such that

0 ≤ ϕ ≤ 1, ϕ|B(0, ρ) ≡ 1

and

|Dhϕ| ≤
2

1− ρ
(h = 1, . . . , n).

For r > 0 and x ∈ R
n, define

ϕr(x) := ϕ

(
x− x0
r

)

and observe that

Dhϕr(x) =
1

r
Dhϕ

(
x− x0
r

)

hence

(5.2) |Dhϕr| ≤
2

r(1 − ρ)
.

If for simplicity we set

Λ := DiΨj −DjΨi, Br := B(x0, r)

then
∫

Br

Λϕr =

∫

Br

ΨiDjϕr −ΨjDiϕr

=

∫

Br\K

ΨiDjϕr −ΨjDiϕr +

∫

Br∩K

Dif Djϕr −Djf Diϕr

=

∫

Br\K

(Ψi −Dif)Djϕr + (Djf −Ψj)Diϕr +

∫

Br

Dif Djϕr −Djf Diϕr
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where
∫

Br

Dif Djϕr −Djf Diϕr = −

∫

Br

f (DiDjϕr −DjDiϕr) = 0

by the Schwartz theorem. Thus

∫

Br

Λϕr =

∫

Br\K

(Ψi −Dif)Djϕr + (Djf −Ψj)Diϕr.

It follows from (5.2) that there exists a constant C, not depending on r and ρ, such
that

∣∣∣∣
∫

Br

Λϕr

∣∣∣∣ ≤
C

r(1 − ρ)
Ln(Br\K).

On the other hand
∣∣∣∣
∫

Br

Λϕr

∣∣∣∣ ≥
∣∣∣∣
∫

Bρr

Λ

∣∣∣∣−
∣∣∣∣
∫

Br\Bρr

Λϕr

∣∣∣∣

hence there are constants C1 and C2, which do not depend on r and ρ, such that

ρn
∣∣∣∣
∫

Bρr

Λ

∣∣∣∣ ≤
∣∣∣∣
∫

Br

Λϕr

∣∣∣∣+
1

Ln(Br)

∣∣∣∣
∫

Br\Bρr

Λϕr

∣∣∣∣

≤ C1(1− ρ)−1L
n(Br\K)

rn+1
+ C2

rn − (ρr)n

rn

= C1(1− ρ)−1L
n(Br\K)

rn+1
+ C2(1− ρn).

Passing to the limit for r ↓ 0, we obtain

ρnΛ(x0) ≤ C2(1 − ρn).

Finally the arbitrariness of ρ ∈ (0, 1) yields at once Λ(x0) = 0, that is just (5.1).
This corollary of Theorem 5.1 holds.

Corollary 5.1. Let U be an open set in R
n, h ≥ 2 and ϕ ∈ Ch−1,1(U). Then

DiDj(D
βϕ) = DjDi(D

βϕ) a.e. in U

for all i, j = 1, . . . , n and β ∈ I(n) with |β| = h− 2.

Proof. Let β ∈ I(n) with |β| = h− 2. Then

f := Dβϕ ∈ C1,1(U) ⊂ Lip (U), Ψ := ∇(Dβϕ) ∈ Lip (U,Rn)

and

{x ∈ U | f is differentiable at x, ∇f(x) = Ψ(x)} = U.

The conclusion follows at once from Theorem 5.1.
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