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ON SOME PROPERTIES OF t"'FUNCTIONS IN THE
CALDERON-ZYGMUND THEORY™

SILVANO DELLADIOf

Abstract. In this paper we will present some results about functions having derivatives in the
L' sense, according to the definition of Calderon-Zygmund [1]. In particular we prove that these
functions behave nicely with respect to a certain non-homogeneous blow-up related to the generalized
Taylor polynomial.
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1. Introduction. The spaces t""?(z) of functions having derivative of order h
at x in the LP sense, see Definition 2.1 below, were first introduced in [1] in order to
investigate the pointwise behaviour of Sobolev functions. In particular the following
remarkable facts hold, just to mention a few:

o If u € WEP(R") and & > 0 then there exists an open set U with Bessel
capacity By_pn(U) not exceeding e and such that u € t"P(R"\U), with
h <k and (k—h)p <n (compare [9, Theorem 3.10.4));

e The Whitney extension theorem in the framework of t"P(x) spaces (see [9,
Theorem 3.6.3] or Theorem 2.1 below);

e Lusin-type property of Sobolev functions (with h,k,p as above): If u €
WkP(R") and € > 0 then there exist an open set U and v € C"(R") such
that By—p»(U) < € and D% = D% in R™\U, for all 0 < |a| < h (compare
[9, Theorem 3.10.5]).

In this paper we will present some new results about t"!(x). In particular, the
theory developed in Chapter 3 is based on the following observation (compare [3]):

Let U be a neighborhood of x € R™ and u € C*(U) (with h > 1). Denote by Ty, 4.
the d-th degree Taylor polynomial of u at x (with d < h) and for r > 0 define

w(x+rz) —Tyrh1(x+rz U-—=x
wn(2) = ( ) & h—1( ), Jap '

r

Then r — u, converges to the form
Hyn(z) :=Typn(x+2) — Tyzn-1(x+ 2), z€eR"

uniformly in the compact sets, asr | 0. Since one has D;(u,) = (D;u), and D;H, j, =
Hp,un—1, the same property yields at once the convergence of the graph of u, to the
graph of H, 1, in the sense of varifolds.

Since th!(z) C th=11(z), by Proposition 3.1, for all u € t"1(x) one can define u,
and H, j in a similar way as above. The following results resemble the just mentioned
properties occuring in the smooth case and are provided in Chapter 3:

e If u € t"!(x) then r — u, converges in Li . to Hyp, as ] 0;
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2 S. DELLADIO

e Let u be a function of class C! in a neighborhood of z € R™ such that:
(i) Dyju € th~V1(z) for alli = 1,...,n e for a certain integer h > 2 (Propo-
sition 3.4(I));
(11) DiPDju,z,hfl = DjPDiu,z,hfl for all i,j = ]., sy
Then u € t"(z) and the graphs of u, converge to the graph of Hyp,asr |0,
in the sense of varifolds (Theorem 3.1).
In Section 4 we deal with iterated derivatives in the context of t"!(x). More pre-
cisely we prove some statements extending this trivial property of smooth functions:
If u is of class C" (in an open set) and D"u is of class C*, then u is of class ChF.

2. Notation, some well-known and preliminary results.

2.1. Main notation. Define
I(n) :=N", Q(m) :={1,...,n}™

and, for all & = (a1,...,a,) € I(n):

|| ::Zai, ol i=a1!- oyl
i=1
Consider the map
—+o0
i | Qm) = I(n)
m=1

defined by
w(@); = #{jl0, =i} (i=1,...,n)

for all 0 = (0y,...,60,) € Q(m).
Observe that if o € I(n) then p=1(a) C Q(Jaf) and

_ Jof!

(2.1) #u7 (a)

al

If v =(z1,...,2n) € R™ and a = (01, ..., ) € I(n), we let

x®i=aft oz,
Fori=1,...,n, we set D; := 3/0x;. Moreover define
oled
D% :=D".--Di" = —(— (with @ = (a1, ...,a,) € I(n))

Ozt -+ Oxpn
and

Dy :=Dy ---Dy,  (with 0= (61,...,0,) € Q(m)).

Observe that (on spaces of C™ functions) one has
Dyt = DH®  (for all § € Q(m)).

In this paper, the open ball in R™ of radius r centered at x is denoted by B(z,r).
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2.2. Functions of class ¢"?. Here we adopt the notation and the statements
of 9, Sect. 3.5], where a really clear treatment of this subject is provided.

DEFINITION 2.1. Let x € R™, p € [1,+00] and h be a non-negative integer. Then
tP(z) denotes the family of functions u defined in a neighborhood of x which are
measurable and such that there exists a polynomial P of degree less than or equal to
h satisfying

1/p
(2.2) <]{3( , lu — P|p> = o(r") (as T — 0).

If A is any subset of R™ then also set

thP(A) = {u € ﬂ th?(2)

z€A

(2.2) holds uniformly in A}.

REMARK 2.1. The polynomial P in Definition 2.1 is uniquely determined.
Throughout this paper it will be denoted by P, , 4.

REMARK 2.2. If ¢ is of class C" in a neighborhood of x € R™ (with h > 0), then
@ € t"P(z) for all p € [1, +oc] and P, , 5, is just the h — th degree Taylor polynomial
of v at x.

The following Whitney-type extension theorem holds, compare [9, Theorem 3.6.3].
THEOREM 2.1. Let A be a closed subset of R™ and A := {x € R™ | dist(z, A) < 1}.

Ifu € LP(A)Nt"P(A), where h is a positive integer and p € [1,+00], then there evists

¢ € C"(A) such that
D%p(x) = (D Puz,n)(x)
for allz € A and o € I(n) with 0 < |a| < h.

2.3. Points of enhanced density. We recall the following definition from [4, 5].

DEFINITION 2.2. Let A be a measurable subset of R™ and m > 0. Then x € R™
is said to be a “m-density point of A” if L™(B(x,r)\A) = o(r™), as r — 0.

Caccioppoli sets are more dense than generic measurable sets, where one has
n-density almost everywhere. Indeed the following property holds [4, Lemma 4.1].

THEOREM 2.2. Let A be a locally finite perimeter subset of R™ and

1
m:=n+14+—-:.
n—1

Then a.e. x € A is a m-density point of A.

At a point of high density, classical results about differential maps can be gen-
eralized or stated in the context of spaces t"P(x). The closure result [4, Theorem
2.1] provides an example (in Section 5 below, we state a version for Lipschitz func-
tions). Another example is given by this theorem, proved in [5, Proposition 3.1],
which generalizes the obvious statement: if Dy is of class C" then ¢ is of class C+1.

THEOREM 2.3. Let ¢ € C"(Q) and ® € C*(Q;R™), where Q is an open subset
of R" and h > 1. If x € Q is a (n+ h)-density point of {y € QVe(y) = ®(y)} then
@ € thtli(z).
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3. Non-homogeneous blow-up of t"! functions. As we mentioned in the in-
troduction, this section is devoted to investigating some properties about convergence
of functions in ¢! (x) subjected to non-homogeneous blow-up.

3.1. Preliminary results and further notation.

PROPOSITION 3.1. Let k, h be integers satisfying 0 < k < h and let u € t"1(x).
Then one has u € t*1(z) and

Pyi(y) = Z l(DMPu,:c,h)(x)(y — ).

|
neIl(n) M
[l <k

Proof. We can assume k < h (for k = h the statement is trivial). Then, if define

1
U(T) = ,r—h—n/ |U - Pu,:c,h|7 P(y) = Z _'(DuPu,w7h)(x)(y - x)u

B(z,r) perim H

|| <k
we obtain
[ow-pi [ uePualt [ (PP
B(z,r) B(z,r) B(z,r)
1
<r"ro(r)+ Y |(DFPugn) (@) (y — x)"| dy.
pnel(n) . B(a:,r)

k+1< | <h

Thus there is a constant C' such that (for r small enough)
/ lu — P| < Mo (r) + Cph it
B(z,r)
hence
Pk / lu — P| <" *a(r) + Cr.
B(z,r)

|

PROPOSITION 3.2. Let f be a nonnegative measurable function defined in a neigh-
borhood of 0 and let k,l > 0. Then one has

(3.1) lim s~ / F@)lyl*dy =0
0 B(0,r)

if and only if

(3.2) 1imr_l_k/ f=0.
40 B(0,r)

Proof. In order to prove the “if” part of the statement, define

o(r):= sup p_l_k/ f
p€(0,7] B(0,p)
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and
E.;:={yeR"|27"r <|yl <277}

We get

—1 —kd _ » [e'e] _kd
o O =S [ sy

S

i=0 B(0,2—r)
(o)
=0

< 2%o(r) i(rl)i.

K]
Hence (3.1) follows at once from (3.2).

The opposite implication follows from the obvious inequality

r*k/ fS/ FW)lyl ™" dy.
B(0,r) B(0,r)

0

In the following proposition we assume h > 1 because for h = 0 it reduces to a
trivial statement (compare Remark 2.2).

PROPOSITION 3.3. Let u be a function of class C* in a neighborhood of x € R",
h be a positive integer and assume that

(3.3) Diu € thl(z) (i=1,...,n).
Then the following conditions are equivalent:

(I) DiPDju,a:,h = DjPDiu,m,h fOT’ all i,j = ]., ey

(II) u € th*+1:1(z) and DiPy zht1 = Ppugzn foralli=1,... n.

Proof. The statement (I) follows from (II) trivially. In order to prove the vice
versa, let us assume the closure condition (I). Then there exists a unique potential P
of the field (Pp,u,z,hs - - - » PDyu,z,n) such that P(x) = u(x). Observe that P has to be
a (h + 1)-degree polynomial. Now, for simplicity, set

v:=u—P, B,:=B(z,p)

and

a(p) = sup <Zs‘”‘1/3 IDiu(y)—PDiu,x,h(y)Ily—wll‘"dy>-

s€(0,0] \ 5—1 s
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Then, by the coarea formula [6, Sect. 3.4.4], one has (for p small enough)

/ [o]dH = / ol + pv) — v(@)] " dH" (v)
a8, sn—1

_1/
Snfl
p
Sp”_l/ (/ |Vv(ac+tu)|d7-£"_1(1/)) dt
0 gn—1
p
= [ el e
0 OB
p
= [ 1vetlly - e )
0 OB
:p”‘l/ Vo(y)| |y — =['"dy
BP
Sp“’IZ/ |Diu(y) — DiP(y)| |y — «|'"dy
i=1"7B»

n
=pt Z/ |Diu(y) — Ppiuan ()] ly — 2|~ "dy
i=1"B»

p
/ Vou(z +tv) - th‘ dH" 1 (v)
0

whence
[ toldnt < prttop),
oB,

It follows that (for » small enough)

/ v| = / (/BB |v| dH"™ 1) dp</ ot (p) dp < o (r)rnthtl

r_”_h_l/B |lu — P| < o(r).

T

namely

But recalling (3.3) and using Proposition 3.2 (with k =n — 1 and [ = h + 1) we find

lrlilol o(r)=0

hence u € t"*11(z) and P, 4 p1 = P. O

3.2. Convergence Lj__.

DEFINITION 3.1. Let P be a polynomyal in R™ of degree h and x € R™. Then the
“mazimal form in P at x” is defined as the homogeneous polynomial of degree h

R" > z — Z (D" P)(

pnEI(n)
|nl=h

ProposiTION 3.4. Let x € R™ and u be a measurable function defined in a
neighborhood of x. Then the following facts hold:
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(I) If u € t"Y(x) with h > 1, then u € t"~11(2) and the functions

u(x +71z) — Pygn-1(x+12)
o

R" 3 z = u,(2) := (r>0)

1

converge in Lj, .,

as r | 0, to the mazimal form of Py n at x, namely

H(z) =Y i!(mpu,z,h)(x)zu.

pnel(n)
[pnl=h
One has
(3.4) H(z) = Pyzn(x+2)— Pygh1(x+2).

(IT) If for a certain integer h > 1 there exist a polynomial Q of degree h — 1 and
a homogeneous polynomial H of degree h such that the functions

u(lx+rz)—Qx+rz2)

(3.5) R" 3z +— o

(r>0)

converge in L1 to H, asr | 0, then u € t"1(x).

loc

Proof. (I) Assume that u € t"1(x). Proposition 3.1 implies that v € t"~11(z)
and (3.4) holds. Now let © be a bounded measurable subset of R” and consider R > 0
such that Q@ C B(0, R). Then, for r small enough, one has

[Joio-mobe<
Q B(0,R)
B /B(:v,TR)

=t / [u = Pu,znl
B(z,rR)

— Rh+"(rR)_h_”/ |u — Pyl
B(z,rR)

u(x+rz) — Pyugh_1(x+12) &

ur(z) — H(z)

— H(2)

wy) = Puwn-1(y) H<y — z)

r

r~"dy

Thus

lim/ lur(z) — H(z)|dz = 0.
T¢0 (9]

(IT) Let @ and H be, respectively, a polynomial of degree h — 1 and a homogeneous
polynomial of degree h such that the functions (3.5) converge in L{. . to H, as 7 | 0.
If set

P(y)=Qy)+H(y—=), yeR"
then

/ ju— P| = / () — Q) — H(y — )| dy
B(z,r) B(z,r)

= / |lu(z +rz) — Q(xz+1rz) — H(rz)|r"dz
B(0,1)

_ 7,,thn /
B(0,1)

u(lx+rz) —Q(xz+rz2)
h

— H(2)| dz.

Hence u € t"!(z). O
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3.3. Graph convergence. Let {e1,...,e,} be the standard orthonormal basis
of R® and J : R® — R"™*! be the trivial isometric immersion defined by

J(@1, .., 2p) = (21,...,2p,0)
for all (z1,...,7,) € R™ Let e,41 := (0,...,0,1) € R**"! and observe that
{Je1,...,Jen,ent1}
is the standard orthonormal basis of R"*!. For simplicity we will identify Je; with e;
(i=1,...,n).
The space of n-vectors in R"*! is denoted by A,R"*!. Set
e:=e N---Nep
and observe that
{e} U{enta A(eloei)}ic,

form a basis of A,,R""1. Let ||£]| be the length of £ € A, R"T1| i.e.

nt1 O\ V2 n
€l = <Z§2) ; §:§0€+Z§i€n+1/\(€|—€i)~
i=0

i=1

Recall that if U is an open subset of R® and f € C*(U) then || A" d(I x f)el| is the
measure transformation factor for I x f, namely the following formula holds for all
measurable subsets A of U

(3.6) MU=l € A4)) = [ w7 dlr x pref ac”
compare [7, Sect. 3.2].
One has
A"d(I x fle = lex + (D1f)ens1] A+ Aler + (D1f)ensa]
(3.7)

=e+ Z(Dif) en+1 A (el e;)

i=1
hence the expected result
IA™d(I % f)(e)l| = (1+[VfI})2.

Now, given a measurable subset E of R™ such that £ CC U, we can consider the
following functional:

Grulp) = / o(ws n(w)) dH (w), @ € C(R™ x A, R™1)
(Ixf)(E)

where

n(z,t) = %(z), (z,t) e U x R.
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Observe that Gy g restricted to C.(R™™ x A,R"*!) is the oriented rectifiable n-
varifold naturally associated to the graph of f|g (compare [2]).
From (3.6) and (3.7) we get

Greo) = [ (0 er Tt @) ) dlr x el s

B e+ X Dif(2) enpa Afele)
- /E“"(*"’f N T BIPLE
for all p € C(R™ x A, R"T1).

Let x € R™ and u € t"!(x) with h > 2. By Proposition 3.1 we also have
u € t"~1(z) and thus, for 7 > 0, the transformation

)(1 LIV

—2 t—Puan-
T :R" xR R" xR, T (yt):= <y r o 1(y))
r r

is well-defined.

REMARK 3.1. An obvious computation shows that 7, trasforms the graph of u
into the graph of the function w, introduced in Proposition 3.4(I), namely

w(x+7rz) — Pygn-1(x +12) e U-—zx

)

rh r

(3.8) ur(z) =

where U denotes the domain of u.

THEOREM 3.1. Let u be a function of class C' in a neighborhood of x € R™ such
that:

(i) Diu € th=VY(x) for alli=1,...,n e for a certain integer h > 2;

(ZZ) DiPDju,x,h—l =D;Ppygn- foralli,j=1,...,n.
The following facts hold:

(1) u et (x);

(II) Let H denote the maximal form of Py 5 and consider an arbitrary bounded

measurable subset E of R™. Then

Gu,.5(¢) = Gu.e(p)

for all bounded p € C(R" ™ x A,,R") asr | 0. In particular Gy, g — Gu.E
in the sense of oriented varifolds, as r ] 0.

Proof. (I) This statement follows at once from Proposition 3.3.
(IT) First step. For i =1,...,n and z € R", set

1 1
Qi(z) = > =(D'Ppupn-1)(@)z", Hi(z):= > —(D'Ppuwn1)(@)z"
WEI(n) : WEI(n) :
|p|<h—2 |n|=h—1
Observe that (for i =1,...,n)
Dju € th=21(x)

and

(39 Powena®)= Y w5 (D"Pouen )@y~ 2 = Qily - o)

pnel(n)
Iul<h—2
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for all y € R™, by Proposition 3.1. Moreover one has (for ¢,j =1,...,n)

0 1 0 1
_(D#PD'u,:c,h—l)(w)(y o)t = — _(D#PDiu,:c,h—l)(x)(y — )t
ayl uezf(:n) ‘LL' ’ ayj u;(n) 'LL'

lul<h=1 Inl<h=1
for all y € R™, by the assumption (ii), namely
D;Q; +D;H; = D;Q; + D;H;.
Since D;Q; and D;Q); are polynomials of degree h — 3 while D;H; and D;H; are
homogeneous polynomials of degree h — 2, we get D;Q; = D;Q; (and D;H; = D; H;)
ie.
DiPpuzh—2=DjPp,uuzn—2
by (3.9). Hence u € th=11(z) and
(3.10) D;Pyoh—1 = Ppuaz,h—2

by Proposition 3.3.
Second step. Set

§o1= (I x H)e, & = A"d(I x uy)e.

From (3.7) one obtains

(3.11) So=e+ Y (DiH)ens1 A(ele;)

i=1
and

n
(3.12) & =e+ Z(Diu,.) ent1 A (el_e;)

i=1
where

D; — Ppuah— —

(313)  Duug(s) = 212 St CRECI R Ur d

by (3.8) and (3.10). Moreover, from (3.9), (3.10) and Proposition 3.3 it follows that

Hﬁ(z) = PDiu7x7h71(1’ + Z) - Qz(z) = PDiu,a:,hfl(l' + Z) - PDiu,z,h72(1’ + Z)
= (DiPu,z,h)(x + Z) - (Dipu,a:,hfl)(x + Z)

0
— 6_21 (Pu,z’h(:c +2)— Pygh-1(r+ z)>

for all z € R™, hence
(3.14) H,=D;H

by Proposition 3.1.
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Third step. Let ¢ € C(R"*! x A,R"*!) be bounded. Then, for  small enough
(in such a way that E CC (U — z)/r), we can define

o(r) := |Gu,.B(p) = Gr,E(p)]

0= [olemter e o - fLo(s e iy et

it follows that

From

o(r) < o1(r) + da(r)
with

Z

)= | 66

ss0) 1= [ (e g5y ) — o (= H e ) o

Observe that
(3.15) &l = loll] < 11& = &oll < IDiuy — DiH| =Y | Dyu, — Hyl
i=1 i=1

o (2o ) e o) - et

by (3.11), (3.12) and (3.14). Thus

) <lele > [ Do~ Hil
=1

Moreover, recalling (3.13) and using Proposition 3.4(I) with D;u in place of u and
h — 1 in place of h, we get

(3.16) Dju, — H; in L (R™)
as r } 0, hence 01(r) as r | 0. It remains to prove

(3.17) lriirolég(r) =0.

Recall that
(3.18) u, — H in L, (R™)

as r | 0, by Proposition 3.4(I). From (3.16) and (3.18), by a well-known result (e.g.
[8, Theorem 3.12]), it follows that every sequence {r;} of positive numbers such that
r; — 0 as j — oo has a subsequence {r;, } such that

Up, — H, Diurjk — H;(fori=1,...,n)

Jk
a.e. in E. By (3.15) we have also &, — § a.e. in E. Hence the dominated
convergence theorem yields d2(r;, ) — 0. Finally (3.17) follows from the arbitrariness

of {r;}. O
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In the special case when h = 1 the assumptions in Theorem 3.1 are trivially
verified and (as we expect) the graph of u, converges to the tangent space to the
graph of u at (z,u(z)). In the following result we prove this fact by a straighforward
adaptation of the argument above.

PROPOSITION 3.5. Let u be a function of class C' in a neighborhood of x € R™
and let L : R™ — R be the linear functional defined by
L(z) .= Vu(z) - z, z € R™
Moreover consider an arbitrary measurable subset E of R™. Then

Gu,,5(p) = GL,E(p)
for all bounded ¢ € C(R"! x A, R"™Y) asr | 0. In particular Gy, g — G g in the
sense of oriented varifolds, as r | 0.

Proof. One has
Pu,w,l(y) = u(x) + Vu(x) ' (y - I), PDiu,x,O(y) = Dzu(x)

for all y € R™, by Remark 2.2. Hence, if H and H; are defined as in Theorem 3.1, we
obtain

H(z) = Vu(z) -z = L(z), H;(z) = D;u(z)

for all z € R™. Then (3.14) holds trivially and the conclusion follows from the third
step in the proof of Theorem 3.1. O
The following corollary also holds.

COROLLARY 3.1. Let u satisfy the assumptions in Theorem 3.1 (if h > 2) or,
alternatively, the assumptions in Proposition 3.5 (if h = 1). Moreover let T' and T,
denote the graphs of u and u,, while Ty be the graph of H (if h > 2) or of L (if h=1).
Then:

(I) For all bounded measurable subset E of R™, the area of the graph of u,|g

converges to the area of the graph of H|g (if h > 2) or of L|g (if h=1), as
rl0, ie.

lim " (I, 0 (B x R)) = H"(To 0 (E x B));

(II) For every fixed bounded open subset Q@ of R™, one has
H'LT, =H"LT.(T') > H"LTy
in the weak®™ sense of measures in Q@ X R, asr | 0.

Proof. First consider the case when h > 2.
(I) Use Theorem 3.1(II) with ¢ = 1.
(IT) Consider the immersion map J : C.(2 x R) — C(R" ™! x A,,R""1) defined by

TP (win) = 1p(w),  (w;n) € R x A,R™
and observe that Ji is bounded for all ¢ € C.(£2 x R). Then Theorem 3.1(II) yields
/ YdH" = Gy, o(JY) = Gua(JY) = | YdH"
r. T'o

for all 9 € Co(2 x R), as r | 0.
For h = 1 we repeat the previous argument with Proposition 3.5 in place of
Theorem 3.1(II). O
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4. Iterated derivatives.
4.1. Part I (without enhanced density assumption).

THEOREM 4.1. Let ¢ be a function of class C" in a neighborhood of x (with
h > 1) such that:

(i) DPp € thl(x) for all B € I(n), |B| = h (with k > 1);

(it) The number (DP~P Ppgs, , 1) (x), with

h+1<|p|<h+k and |B8l=h (B,p€l(n))

does not depend on B (“compatibility condition at x”). It will be denoted by
de.p-
Then ¢ € t"tR1(x) and

h+k
Ptp,:n,thk(y) Lp z, h
I=h+1 pel(n)
|p|=1
Proof. First of all, define
htk
Py) = Poaa(y) + D Z
l=h+1 pel(n)

lpl=1

and

I(r) ::/ | — P].
B(z,r)

Then, for h > 1, one has
(4.1) 0 [ el Ay (m=0.1,..0)
B(z,r)
where Ag :=|p — P| and (for m =1,...,h)
/ S DR = PYw+tr ety — )] dty - dty,
01" geq(m)
The formula (4.1) follows at once from the inequality
Anm(y) <ly =zl Amia(y)  (m+1<h)
which is again an easy application of the Fundamental Theorem of Calculus and of
Dg'o(z) = (Dy' Py 2,n)(x) = Dy* P(x) (m=1,...,h).
By (4.1) with m = h and (2.1), we find

I(r)s/w)wmh(/[m S |Dhe - P><m+t1---th<ym>>|dt1-~dth)dy

0€Q(h)

rhhl /om (/ . (D%Dap)(m+t1...th(yx))}dy)dtlu-dth

/361(n)
[Bl=h
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Hence, by recalling the formula for the change of variables in the integrals, we get

rhp)
I(r) < o / "(/ |(D5<p—DBP)(z)|dz)dt1---dt
0, 1 B(az,tl---thr)

€I(w)
|Bl=h

Observe that, for 3 € I(n) with |3| = h, the polynomial D?P has degree (at most
equal to) k. Recalling (ii), it follows that

DPP(y) = § %D“(DﬁP)(x) (y — x)*
pwel(n) °
|l <k

1
= Y —(DP) () (y — )
pnel(n)
|| <k

®

1
Dlp(x) + Y —doprs(y—2)"

pnel(n)
1<|pl<k

= Dﬂ@(x) + Z l| (DlH_B_ﬂPDﬁLp,z,k) ($) (y - x)u

pnel(n)
1<|pl<k

namely
DPP = Ppsypp

Substituting into the last inequality we find

hh|
I(r) < / n(/ |DB§0_PD5¢7m7k|)dt1”'dth
BEI(n) 0,1)k B(x,t1---tpr)
[Bl=h
<or Y f ( fo 0% Posal i
BEI(n) (O,I)h’ B(:E,t1~~~th’l“)
|Bl=h

where C' depends only on n and h. Hence I(r) = o(r"*"**) namely

£ le=Pl=o™)
B(z,r)

The following uniform version of Theorem 4.1 holds (same proof).

THEOREM 4.2. Let A be a subset of R™ and ¢ be a function of class C" in a
neighborhood of A (with h > 1). Assume that:

(i) DPp € th1(A) for all B € I(n), |B| = h (with k> 1);

(it) the number (DP~P Pps,, . 1) (x), with x € A and

h+1<|pl<h+k |fl=h  (B,p€l(n)

does not depend on (3.
Then o € thtR1(A).
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4.2. Part II (with enhanced density assumption).

THEOREM 4.3. Let be given: a measurable subset A of R™, a point x € R", a
measurable function u defined in a neighborhood of x and a family {v, € t*1(z)|a €
I(n),|al = h} (with hyk > 1). Assume that:

(i) = is a (n + h + k)-density point of A;

(i) There is a constant C such that fB(z’T)\A |u] < CLY(B(z,7)\A) provided r is

small enough;
(iii) There exists a function ¢ of class C" in a neighborhood of x such that

U=, ’UﬂZDﬂgD

a.e. in AN B(xz,r), for a certain positive r and for all B € I(n) with |5] = h
( “jet-connectedness condition”);
(iv) The number (DP~PP,, , r)(z), with

htl<lpl<h+k and |8/=h (B.pcI(n),

does not depend on B (“compatibility condition at x”). It will be denoted by
de.p-
Then u, ¢ € th**1(x) and

h+k

Py zn+k(y) = Pozhtk(y) = Pozn(y

l=h+1 p€I(n)
|p|=1

Proof. For r small enough and for all § € I(n) with |5] = h, one has

LB f D Pl = [ e Pl [ D= Py
B(z,r) B(z,r)NA B(z,r)\A
< / |vg fPUﬁ,,c,k|+C£"(B(x,r)\A)
B(x,r)
where C' does not depend on r and 3. Since vg € th1(x) and by (i), we get at once
fo D% Popaal = olr™)
B(z,r)

namely DPp € t51(z) and

PDﬁgo,a:,k = P’U@,l‘,k"
From Theorem 4.1 it follows that ¢ € t"*%1(z) and

h+k
Pcp,x,h-i—k(y) cp z, h Z Z

I=h+1 pei‘f(n)

Now it is easy to verify that u € t"*%1(z). Indeed this inequality holds (for 7 small
enough)

/ |u— Py oy hik| < / lu — | + / lo = P,z htkl
B(z,r) B(z,r) B(z,r)
_ / lu — | + o(r" R
B(z,r)\A

<[l [ qelomt
B(z,r)\A B(z,r)\A
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and the conclusion follows by recalling assumptions (i) and (ii). O

COROLLARY 4.1. Let be given u € L*(R"), a closed subset A of R™ and a compact
subset K of A. Suppose that:
(i) u € th1(A);
(ii) L™(B(z,7)\A) = o(r"*"*¥) as r — 0, uniformly with respect to v € K
(where h,k € N\{0});
(i1i) There are 1o, Co > 0 such that

/ lu| < Co £7(B(x, )\ A)
B(z,r)\A

for allz € K and r € [0,7¢);
(iv) For all B € I(n) with || = h, there exists vg € t*"1(K) such that
vg(2) = (D" Puo,p) ()
for a.e. x € A. Moreover the number (DP~PP,, ,1)(z), with x € K and
h+1<|pl<h+k [Bl=h  (B,pcln)

does not depend on (3. _ _
Then u € t"RYK), hence there exists v € CPMKK), with K = {z €
R™ | dist(z, K) < 1}, such that

D%(x) = (D Puzh1) ()
for allz € K and a € I(n) with 0 < |a| < h+ k.

Proof. By Theorem 2.1 there is ¢ € CM(A), with A := {z € R™|dist(z, A) < 1},
such that

(4.2) D%p(x) = (D" Puz,n)(x)

for all x € A and o € I(n) with 0 < |a] < h. Since K is compact and by (iv) and
(4.2), we obtain

[Pl = [ Do Pyt [ D% P
B(z,r) B(z,r)NA B(z,r)\A
< [ 19 Paeal 0L (B )
B(xz,r

for all + € K, for r small enough (uniformly w.r.t. z) and for all § € I(n) with
|B| = h, where C' does not depend on r, 2. Hence

Dy e th1(K), Ppsgok=Poser (x€K;BEI),|Bl=h).

From Theorem 4.2 it follows that ¢ € t"*%1(K). Finally (use (4.2) and compare the
last lines in the proof of Theorem 4.3)

/ m—m%Hus/ |m+/ |ﬂ+/ 6= Panssl
B(z,r) B(z,r)\A B(z,r)\A B(zx,r)

for all z € K. Hence the conclusion follows by assumptions (ii), (iii) and by the
compactness of K. O
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5. Appendix. The argument used for [4, Theorem 2.1] can be easily adapted
to prove the next result. For the convenience of the reader, we provide here such a
slightly modified proof.

THEOREM 5.1. Let U be an open subset of R"™, f € Lip(U) and ¥ € Lip (U,R™).
Consider a point xg € R™ such that:
(i) xo is a (n 4+ 1)-density point of {z €
U | f is differentiable at x, Vf(z) = U(x)};
(i) xo is in the Lebesque set of curlWV;
(iii) W is differentiable at xg.
Then one has curl¥(xzy) = 0.

Proof. Let U; denote the i-th component of ¥. Then we are reduced to prove
that, for 4,5 € {1,...,n} and i # j, the following crossed derivative condition holds

(5.1) D;V(x0) — D;¥;(zg) = 0.

To this aim, given p € (0, 1), consider p € C2(B(0,1)) such that
0<p<1l, ¢B0,p=1

and

2

For r > 0 and z € R", define

and observe that

hence
(5.2) Dpgy| < —2
. hPr| = r1—p .

If for simplicity we set
A= Dz\I/j — Dj\pi, BT = B(CL'(), 7’)

then

/ A(pr = / \I/iDj(pT - \I/jDi(pr
B, .

T

= / V;Djpr — VD0 +/ D;if Djpr — D;f Dip,
B’V‘\K B.NK

=/B \K(‘Ifi = Dif)Djpr + (Djf —¥;)Dip, +/B Dif Djp, — Djf Dipy
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where
/B Dif Djpr — Djf Dipy = —/B [ (DiDjor — DjDip,) =0
by the Schwartz theorem. Thus
/ Ap, = / (¥; = Dif)Djor + (Djf —¥;)Digy.
B, BA\K

It follows from (5.2) that there exists a constant C, not depending on r and p, such

‘ha,‘
‘ /
B,

‘/ A%Z‘/ AH/ Apy
B, B, B, \B,r

hence there are constants C; and C5, which do not depend on r and p, such that
1

Al < ][ A, +7/ Ag,
]é?pr ‘ ‘Br "L (B B\B,, '

LB \K n _ n
a1 BN o=

1 £7(B\K)
T"+1

C .
< mﬁ (Br\K).

On the other hand

"

=Ci(1-p)” + C2(1 = p").
Passing to the limit for r | 0, we obtain

p"A(zo) < C2(1 = p").

Finally the arbitrariness of p € (0,1) yields at once A(zg) = 0, that is just (5.1). O
This corollary of Theorem 5.1 holds.

COROLLARY 5.1. Let U be an open set in R™, h > 2 and ¢ € Ch=11(U). Then
D;D;(DPp) = D;D;(DPp) a.e. inU

foralli,j=1,....,n and g € I(n) with |5 =h — 2.
Proof. Let 8 € I(n) with |3| = h — 2. Then

f:=DPpec CV(U) CLip(U), ¥:=V (D)< Lip(U,R")
and
{z € U] f is differentiable at =, Vf(z) = ¥(z)} = U.

The conclusion follows at once from Theorem 5.1. O
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