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POSITIVE STATIONARY SOLUTIONS AND SPREADING SPEEDS
OF KPP EQUATIONS IN LOCALLY SPATIALLY

INHOMOGENEOUS MEDIA∗

LIANG KONG† AND WENXIAN SHEN†

Abstract. The current paper is concerned with positive stationary solutions and spatial spread-
ing speeds of KPP type evolution equations with local (i.e. the standard Laplacian) or nonlocal or
discrete dispersal in locally spatially inhomogeneous media. It is shown that such an equation has
a unique globally stable positive stationary solution and has a spreading speed in every direction.
Moreover, it is shown that the localized spatial inhomogeneity of the medium neither slows down
nor speeds up the spatial spreading in all the directions.
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1. Introduction. The current paper is devoted to the study of spatial spread-
ing dynamics of species in locally spatially inhomogeneous environments or media.
Reaction diffusion equations of the form

(1.1) ut(t, x) = ∆u(t, x) + u(t, x)f1(x, u(t, x)), x ∈ R
N

are widely used to model the population dynamics of many species in unbounded
environments, where u(t, x) is the population density of the species at time t and
location x, ∆u characterizes the internal interaction of the organisms, and f1(x, u)
represents the growth rate of the population, which satisfies that f1(x, u) < 0 for
u ≫ 1 and ∂uf1(x, u) < 0 for u ≥ 0 (see [1], [2], [9], [22], [24], [25], [40], [51], [67], [69],
[71], [72], [76], etc.).

When using (1.1) to model the population dynamics of a species, it is assumed that
the underlying environment is not patchy and the internal interaction of the organisms
is random and local (i.e. the organisms move randomly between the adjacent spatial
locations). In practice, the environments in which many species live may be patchy
and/or the internal interaction of the organisms may be nonlocal. To model the
population dynamics of a species in the case that the underlying environment is
not patchy but the internal interaction is nonlocal, the following nonlocal dispersal
equation is often used,

(1.2) ut(t, x) =

∫

RN

κ(y − x)u(t, y)dy − u(t, x) + u(t, x)f2(x, u(t, x)), x ∈ R
N ,

where κ(·) is a smooth convolution kernel supported on a ball centered at the origin
(that is, there is a δ0 > 0 such that κ(z) > 0 if ‖z‖ < δ0, κ(z) = 0 if ‖z‖ ≥ δ0,
where ‖ ·‖ denotes the norm in R

N and δ0 represents the nonlocal dispersal distance),
∫

RN κ(z)dz = 1, and f2(·, ·) is of the same property as f1 in (1.1) (see [3], [10], [16],
[17], [18], [23], [27], [37], [39], [41], [42], etc.). Spatially discrete dispersal equations of
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the following form arise when modeling the population dynamics of species living in
patchy environments,

(1.3) ut(t, j) =
∑

k∈K

ak(u(t, j + k)− u(t, j)) + u(t, j)f3(j, u(t, j)), j ∈ Z
N ,

where K = {k ∈ Z
N | ‖k‖ = 1}, ak(k ∈ K) are positive constants, and f3(j, u) < 0 for

u ≫ 1 and ∂uf3(j, u) < 0 for u ≥ 0 (see [22], [48], [51], [67], [68], [71], [72], [73], etc.).
Spatial spreading dynamics is one of the central dynamical issues of (1.1)-(1.3).

Roughly speaking, it is about how fast the population spreads as time evolves. E.g.,
letting H = R

N in the case (1.1) and (1.2) and H = Z
N in the case of (1.3), ξ ∈

SN−1 := {ξ ∈ R
N | ‖ξ‖ = 1}, and a given initial population u0 satisfy for some σ0 > 0

that u0(x) ≥ σ0 for x ∈ H with x · ξ ≪ −1 and u0(x) = 0 for x ∈ H with x · ξ ≫ 1
(x · ξ is the inner product of x and ξ), how fast does the population invade into the
region with no population initially?

Since the pioneering works by Fisher [25] and Kolmogorov, Petrowsky, Piscunov
[40] on the following special case of (1.1)

(1.4) ut(t, x) = uxx(t, x) + u(t, x)(1− u(t, x)), x ∈ R,

a vast amount research has been carried out toward the spatial spreading dynamics of
(1.1)-(1.3) with fi(·, ·) (i = 1, 2, 3) being independent of the space variable or periodic
in the space variable, which reflects the spatial periodicity of the media. See, for
example, [1], [2], [6], [38], [44], [45], [46], [58], [70], [71], etc. for the study of (1.1)
in the case that f1(x, u) is independent of x and see [5], [7], [26], [31], [35], [52], [54],
[55], [72], etc. for the study of (1.1) in the case that f1(x, u) is periodic in x; see
[20], [21], [43], etc. for the study of (1.2) in the case that f2(x, u) is independent of
x and see [33], [64], [65], [66], etc. for the study of (1.2) in the case that f2(x, u)
is periodic in x; and see [11], [12], [13], [36], [47], [71], [74], etc. for the study of
(1.3) in the case that f3(j, u) is independent of j and [28], [29], [30], [72], etc. for
the study of (1.3) in the case that f3(j, u) is periodic in j. In such cases, the spatial
spreading dynamics is quite well understood. For example, consider (1.1) and assume
that f1(x + piei, u) = f1(x, u) for i = 1, 2, · · · , N , where pi (i = 1, 2, · · · , N) are
positive constants and

ei = (δi1, δi2, · · · , δiN ), δij = 1 if i = j and 0 if i 6= j.

If the principal eigenvalue of the following eigenvalue problem associated to the lin-
earized equation of (1.1) at u = 0,

(1.5)

{

∆u(x) + f1(x, 0)u(x) = λu(x), x ∈ R
N

u(x+ piei) = u(x), x ∈ R
N ,

is positive, then (1.1) has a unique positive stationary solution u∗
1(·) with u∗

1(·+piei) =
u∗
1(·) and for any ξ ∈ SN−1 := {ξ ∈ R

N | ‖ξ‖ = 1}, (1.1) has a positive spreading
speed c∗1(ξ) in the direction of ξ in the following sense (see Definition 2.1 for detail):
for any given bounded u0 ∈ C(RN ,R+) with lim infx·ξ→−∞ u0(x) > 0 and u0(x) = 0
for x · ξ ≫ 1,

lim inf
t→∞

inf
x·ξ≤ct

u1(t, x;u0) > 0 ∀c < c∗1(ξ)
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and

lim sup
t→∞

sup
x·ξ≥ct

u1(t, x;u0) = 0 ∀c > c∗1(ξ),

where u1(t, x;u0) denotes the solution of (1.1) with u1(0, x;u0) = u0(x). Observe
that (1.1) has also traveling wave solutions which connect u∗

1(·) and 0 and propagate
in the direction of ξ with speeds greater than or equal c∗1(ξ) and there is no such
traveling wave solution of slower speed (see [7], [45], [59], [72] for the definition of
spatially periodic traveling wave solutions). Hence c∗1(ξ) is also the minimal wave
speed of traveling wave solutions propagating in the direction of ξ. See [7], [35], [45],
[72] for the above mentioned results for (1.1) and see [64], [65], [66] for similar results
for (1.2) and [29], [30], [36], [45], [72], [74] for similar results for (1.3).

In the current paper, we consider (1.1)-(1.3) in the case that the growth rates
depend on the space variable, but only when it is in some bounded subset of the
underlying media, which reflects the localized spatial inhomogeneity of the media.
More precisely, let

(1.6)

{

H1 = H2 = R
N

H3 = Z
N .

We assume

(H1) fi : Hi × R → R is a C2 function, fi(x, u) < 0 for all (x, u) ∈ Hi × R
+ with

u ≥ β0 for some β0 > 0, and ∂ufi(x, u) < 0 for all (x, u) ∈ Hi×R
+, where i = 1, 2, 3.

(H2) fi(x, u) = f0
i (u) for some C2 function f0

i : R → R and all (x, u) ∈ Hi ×R with
‖x‖ ≥ L0 for some L0 > 0, and f0

i (0) > 0, where i = 1, 2, 3.

Assume (H1) and (H2). Then (1.1), (1.2), and (1.3) have the following limit
equations as ‖x‖ → ∞ or ‖j‖ → ∞,

(1.7) ut(t, x) = ∆u(t, x) + u(t, x)f0
1 (u(t, x)), x ∈ R

N ,

(1.8) ut(t, x) =

∫

RN

κ(y − x)u(t, y)dy − u(t, x) + u(t, x)f0
2 (u(t, x)), x ∈ R

N ,

and

(1.9) ut(t, j) =
∑

k∈K

ak(u(t, j + k)− u(t, j)) + u(t, j)f0
3 (u(t, j)), j ∈ Z

N .

Equations (1.7), (1.8), and (1.9) will play an important role in the study of (1.1),
(1.2), and (1.3). Clearly, (1.7) has similar spatial spreading dynamics as that of (1.4),
that is, it has a unique positive constant solution u0

1 and has a spatial spreading speed
c01(ξ) in the direction of ξ for every ξ ∈ SN−1. Equations (1.8) (resp. (1.9)) has similar
properties as that of (1.7), that is, (1.8) (resp. (1.9)) has a unique positive constant
stationary solution u0

2 (resp. u0
3) and has a spatial spreading speed c02(ξ) (resp. c

0
3(ξ))

in the direction of ξ for every ξ ∈ SN−1 (see Definition 2.1 for detail).
Our objective is to explore the spatial spreading dynamics of (1.1)-(1.3) with

localized spatial inhomogeneity. The main results of this paper can be summarized
as follows:

• Assume (H1) and (H2). Then (1.1) (resp. (1.2), (1.3)) has a unique positive
stationary solution u∗

1 ∈ C(RN ,R+) (resp. u∗
2 ∈ C(RN ,R+), u∗

3 ∈ C(ZN ,R+))



430 L. KONG AND W. SHEN

satisfying that infx∈RN u∗
1(x) > 0 (resp. infx∈RN u∗

2(x) > 0, infj∈ZN u∗
3(j)) and

lim‖x‖→∞ u∗
1(x) = u0

1 (resp. lim‖x‖→∞ u∗
2(x) = u0

2, lim‖j‖→∞ u∗
3(j) = u0

3). More-
over, u = u∗

i (·) is globally asymptotically stable with respect to (strongly) positive
perturbations (and hence u ≡ 0 is an unstable stationary solution of (1.i)) (i = 1, 2, 3)
(see Theorem 2.1).

• Assume (H1) and (H2). Then (1.1) (resp. (1.2), (1.3)) has a positive spatial spread-
ing speed c∗1(ξ) (resp. c∗2(ξ), c∗3(ξ)) in the direction of ξ for every ξ ∈ SN−1 (see
Definition 2.1 for the definition of spreading speeds). Moreover, c∗1(ξ) = c01(ξ) (resp.
c∗2(ξ) = c02(ξ), c

∗
3(ξ) = c03(ξ)) for all ξ ∈ SN−1, where c01(ξ) (resp. c02(ξ), c

0
3(ξ)) is the

spatial spreading speed of (1.7) (resp. (1.8), (1.9)) in the direction of ξ (see Theorem
2.2).

• Assume (H1) and (H2). Then the solution of (1.1) (resp. (1.2), (1.3)) with a
nonnegative initial data which has a nonempty compact set spreads neither slower
than inf{c∗1(ξ)|ξ ∈ SN−1} (resp inf{c∗2(ξ)|ξ ∈ SN−1}, inf{c∗3(ξ)|ξ ∈ SN−1}) nor faster
than sup{c∗1(ξ)|ξ ∈ SN−1} (resp sup{c∗2(ξ)|ξ ∈ SN−1}, sup{c∗3(ξ)|ξ ∈ SN−1}) (see
Theorem 2.3 for detail).

The above results reveal such an important biological scenario: the localized
spatial inhomogeneity of the media does not prevent the population to persist and
to spread, moreover, it neither slows down nor speeds up the spatial spread of the
population.

It should be pointed out that the authors of [56] considered the transition fronts,
which are generalizations of traveling wave solutions, of (1.1) in the case that N = 1,
f(x, 1) = 0, and f(x, 0) > 0. They provided conditions under which transition fronts
of (1.1) exist and also showed that (1.1) may not have transition fronts. Hence the
localized spatial inhomogeneity of the media may prevent the existence of transition
fronts.

We remark that in literature (1.1) (resp. (1.2), (1.3)) with f1(x, u) (resp. f2(x, u),
f3(j, u)) being decreasing in u and negative for u ≫ 1 and u ≡ 0 being an unstable
solution is called a Fisher type or KPP type or monostable equation. The reader
is referred to [4], [56], and references therein for the study of transition solutions of
general spatially inhomogeneous Fisher or KPP type equations and to [34], [60]-[63] for
the study of spatial spreading dynamics of general temporally inhomogeneous Fisher
or KPP type equations. The reader is also referred to [49], [50], and references therein
for the study of transition solutions of general spatially inhomogeneous ignition type
equations.

We also remark that it would be interesting to study the spatial spreading dynam-
ics of KPP type equations in inhomogeneous media with more general limit media,
say, equation (1.i) (i = 1, 2, 3) with fi(x, u) being replaced by fi(t, x, u) satisfying that
fi(t, x, u)− f0

i (t, x, u) → 0 as ‖x‖ → ∞ for some function f0
i (t, x, u) which is periodic

in t and/or x. We will consider such general case elsewhere.

The rest of the paper is organized as follows. In section 2, we introduce the
standing notions to be used in the paper and the definition of spreading speeds and
state the main results of the paper (i.e. Theorems 2.1, 2.2, and 2.3). In section 3, we
present some preliminary materials to be used in later sections. Section 4 is devoted
to the study of positive stationary solutions of (1.1)-(1.3). Theorem 2.1 is proved in
this section. In section 5, we explore the existence of spreading speeds of (1.1)-(1.3)
and prove Theorems 2.2 and 2.3.
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2. Standing notions, definitions, and main results. In this section, we first
introduce some standing notations and the definition of spreading speeds. We then
state the main results of the paper.

Let Hi be as in (1.6). Let p = (p1, p2, · · · , pN ) with pi > 0 for i = 1, 2, · · · , N .
We define the Banach spaces Xi,p (i = 1, 2) by

(2.1) X1,p = {u ∈ C(RN ,R) |u(·+ piei) = u(·), i = 1, ..., N}

with norm ‖u‖X1,p = maxx∈RN |u(x)|, and

(2.2) X2,p = X1,p

(the introduction of X2,p is for the convenience in notation). If pi ∈ N, we define X3,p

by

(2.3) X3,p = {u ∈ C(ZN ,R) |u(·+ piei) = u(·), i = 1, 2, · · · , N}

with norm ‖u‖X3,p = maxj∈ZN |u(j)|. Let

(2.4) X+
i,p = {u ∈ Xi,p |u(x) ≥ 0 ∀x ∈ Hi}

and

(2.5) X++
i,p = {u ∈ Xi,p |u(x) > 0 ∀x ∈ Hi}

for i = 1, 2, 3. We define Xi (i = 1, 2, 3) by

(2.6) X1 = {u ∈ C(RN ,R) |u is uniformly continuous and bounded}

with norm ‖u‖X1 = supx∈RN |u(x)|,

(2.7) X2 = X1

(again the introduction of X2 is for the convenience in notation), and

(2.8) X3 = {u ∈ C(ZN ,R) |u is bounded}

with norm ‖u‖X3 = supj∈ZN |u(j)|. Let

(2.9) X+
i = {u ∈ Xi |u(x) ≥ 0 ∀x ∈ Hi}

and

(2.10) X++
i = {u ∈ X+

i | inf
x∈Hi

u(x) > 0}

for i = 1, 2, 3.
If no confusion occurs, we may write ‖ · ‖Xi,p

and ‖ · ‖Xi
as ‖ · ‖ (i = 1, 2, 3).

Assume (H1). By general semigroup theory (see [32], [57]), for any u0 ∈ X1 (resp.
u0 ∈ X2, u0 ∈ X3), (1.1) (resp. (1.2), (1.3)) has a unique local solution u1(t, ·;u0)
(resp. u2(t, ·;u0), u3(t, ·;u0)) with u1(0, ·;u0) = u0(·) (resp. u2(0, ·;u0) = u0(·),
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u3(0, ·;u0) = u0(·)). Moreover, if u0 ∈ X+
i , then ui(t, ·;u0) exist and ui(t, ·;u0) ∈ X+

i

for all t ≥ 0 (i = 1, 2, 3) (see Proposition 3.2).
Let

(2.11) SN−1 = {ξ ∈ R
N | ‖ξ‖ = 1}.

For given ξ ∈ SN−1 and u ∈ X+
i , we define

lim inf
x·ξ→−∞

u(x) = lim inf
r→−∞

inf
x∈Hi,x·ξ≤r

u(x).

For given u : [0,∞)×Hi → R (1 ≤ i ≤ 3) and c > 0, we define

lim inf
x·ξ≤ct,t→∞

u(t, x) = lim inf
t→∞

inf
x∈Hi,x·ξ≤ct

u(t, x),

lim sup
x·ξ≥ct,t→∞

u(t, x) = lim sup
t→∞

sup
x∈Hi,x·ξ≥ct

u(t, x).

The notions lim sup
|x·ξ|≤ct,t→∞

u(t, x), lim sup
|x·ξ|≥ct,t→∞

u(t, x), lim sup
‖x‖≤ct,t→∞

u(t, x), and

lim sup
‖x‖≥ct,t→∞

u(t, x) are defined similarly. We define X+
i (ξ) (i = 1, 2, 3) by

(2.12) X+
i (ξ) = {u ∈ X+

i | lim inf
x·ξ→−∞

u(x) > 0, u(x) = 0 for x · ξ ≫ 1}.

Definition 2.1 (Spatial spreading speed). For given ξ ∈ SN−1 and given i ∈ N

(1 ≤ i ≤ 3), a real number c∗i (ξ) is called the spatial spreading speed of (1.i) in the
direction of ξ if for any u0 ∈ X+

i (ξ),

lim inf
x·ξ≤ct,t→∞

ui(t, x;u0) > 0 ∀c < c∗i (ξ)

and

lim sup
x·ξ≥ct,t→∞

ui(t, x;u0) = 0 ∀c > c∗i (ξ).

The main results of this paper are stated in the following three theorems.

Theorem 2.1 (Positive stationary solutions). Assume (H1) and (H2).

(1) (Existence) Equation (1.1) (resp. (1.2), (1.3)) has a unique stationary so-
lution u = u∗

1(·) ∈ X++
1 (resp. u = u∗

2(·) ∈ X++
2 , u = u∗

3(·) ∈ X++
3 ).

Moreover,

lim
r→∞

sup
x∈Hi,‖x‖≥r

|u∗
i (x)− u0

i | = 0,

where u0
i > 0 is such that f0

i (u
0
i ) = 0 and i = 1, 2, 3.

(2) (Stability) For any u0 ∈ X++
i , limt→∞ ‖ui(t, ·;u0)− u∗

i (·)‖Xi
= 0.

(3) (Stability) For any u0 ∈ X+
i \ {0}, limt→∞ ui(t, x;u0) = u∗

i (x) uniformly in
x on bounded sets.
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Theorem 2.2 (Existence and characterization of spreading speeds). Assume
(H1) and (H2). Then for any given ξ ∈ SN−1, (1.1) (resp. (1.2), (1.3)) has a positive
spreading speed c∗1(ξ) (resp. c∗2(ξ), c∗3(ξ)) in the direction of ξ. Moreover, for any
u0 ∈ X+

i (ξ),

(2.13) lim inf
x·ξ≤ct,t→∞

|ui(t, x;u0)− u∗
i (x)| = 0 ∀c < c∗i (ξ),

and

c∗i (ξ) = c0i (ξ) for i = 1, 2, 3,

where

(2.14) c01(ξ) = inf
µ>0

f0
1 (0) + µ2

µ
= 2

√

f0
1 (0),

(2.15) c02(ξ) = inf
µ>0

∫

RN e−µz·ξκ(z)dz − 1 + f0
2 (0)

µ
,

and

(2.16) c03(ξ) = inf
µ>0

∑

k∈K ak(e
−µk·ξ − 1) + f0

3 (0)

µ

are the spatial spreading speeds of (1.7), (1.8), and (1.9) in the direction of ξ, respec-
tively.

Theorem 2.3 (Spreading features of spreading speeds). Assume (H1) and (H2)
and 1 ≤ i ≤ 3. Then for any given ξ ∈ SN−1, the following hold.

(1) For each u0 ∈ X+
i satisfying that u0(x) = 0 for x ∈ Hi with |x · ξ| ≫ 1,

lim sup
|x·ξ|≥ct,t→∞

ui(t, x;u0) = 0 ∀c > max{c∗i (ξ), c
∗
i (−ξ)}.

(2) For each σ > 0, r > 0, and u0 ∈ X+
i satisfying that u0(x) ≥ σ for x ∈ Hi

with |x · ξ| ≤ r,

lim sup
|x·ξ|≤ct,t→∞

|ui(t, x;u0)− u∗
i (x)| = 0 ∀0 < c < min{c∗i (ξ), c

∗
i (−ξ)}.

(3) For each u0 ∈ X+
i satisfying that u0(x) = 0 for x ∈ Hi with ‖x‖ ≫ 1,

lim sup
‖x‖≥ct,t→∞

ui(t, x;u0) = 0 ∀c > sup
ξ∈SN−1

c∗i (ξ).

(4) For each σ > 0, r > 0, and u0 ∈ X+
i satisfying that u0(x) ≥ σ for ‖x‖ ≤ r,

lim sup
‖x‖≤ct,t→∞

|ui(t, x;u0)− u∗
i (x)| = 0 ∀0 < c < inf

ξ∈SN−1
c∗i (ξ).

To indicate the dependence of u∗
i (·) and c∗i (ξ) on fi, we may sometime write u∗

i (·)
and c∗i (ξ) as u

∗
i (·; fi(·, ·)) and c∗i (ξ; fi(·, ·)), respectively.

We remark that most parts of Theorem 2.1 for (1.1) can de deduced from [8]. In
the current paper, we develop a unified approach to deal with the existence, unique-
ness, and stability of positive stationary solutions and the existence and character-
ization of spatial spreading speeds for KPP equations with three different types of
dispersal strategies in locally spatially inhomogeneous media.
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3. Preliminary. In this section, we present some preliminary materials to be
used in later sections, including some basic properties of solutions of (1.1)-(1.3); prin-
cipal eigenvalue theories for spatially periodic dispersal operators with random, non-
local, and discrete dispersals; and spatial spreading dynamics of KPP equations in
spatially periodic media.

3.1. Basic properties of KPP equations. In this subsection, we present some
basic properties of solutions of (1.1)-(1.3), including comparison principle, global ex-
istence, convergence in open compact topology, and decreasing of the so called part
metric along the solutions. Throughout this subsection, we assume (H1).

LetX1, X2, andX3 be as in (2.6), (2.7), and (2.8), respectively. For given u0 ∈ X1

(resp. u0 ∈ X2, u0 ∈ X3), let u1(t, ·;u0) (resp. u2(t, ·;u0), u3(t, ·;u0)) be the (local)
solution of (1.1) (resp. (1.2), (1.3)) with u1(0, ·;u0) = u0(·) (resp. u2(0, ·;u0) = u0(·),
u3(0, ·;u0) = u0(·)).

Let X+
i and X++

i (i = 1, 2, 3) be as in (2.9) and (2.10). For given 1 ≤ i ≤ 3 and
u, v ∈ Xi, we define

(3.1) u ≤ v (u ≥ v) if v − u ∈ X+
i (u − v ∈ X+

i )

and

(3.2) u ≪ v (u ≫ v) if v − u ∈ X++
i (u − v ∈ X++

i ).

For given continuous and bounded function u : [0, T ) × R
N → R, it is called a

super-solution (sub-solution) of (1.1) on [0, T ) if

ut(t, x) ≥ (≤)∆u(t, x) + u(t, x)f1(x, u(t, x)) ∀(t, x) ∈ (0, T )× R
N .

Super-solutions (sub-solutions) of (1.2) and (1.3) are defined similarly.

Proposition 3.1 (Comparison principle). Assume (H1).
(1) Suppose that u1(t, x) and u2(t, x) are sub- and super-solutions of (1.1) (resp.

(1.2), (1.3)) on [0, T ) with u1(0, ·) ≤ u2(0, ·). Then u1(t, ·) ≤ u2(t, ·) for
t ∈ (0, T ). Moreover, if u1(0, ·) 6= u2(0, ·), then u1(t, x) < u2(t, x) for x ∈ H1

(resp. x ∈ H2, x ∈ H3) and t ∈ (0, T ).
(2) If u01, u02 ∈ Xi and u01 ≤ u02 (1 ≤ i ≤ 3), then ui(t, ·;u01) ≤ ui(t, ·;u02) for

t > 0 at which both ui(t, ·;u01) and ui(t, ·;u02) exist.
(3) If u01, u02 ∈ Xi and u01 ≤ u02, u01 6= u02 (1 ≤ i ≤ 3), then ui(t, x;u01) <

ui(t, x;u02) for all x ∈ Hi and t > 0 at which both ui(t, ·;u01) and ui(t, ·;u02)
exist.

(4) If u01, u02 ∈ Xi and u01 ≪ u02 (1 ≤ i ≤ 3), then ui(t, ·;u01) ≪ ui(t, ·;u02)
for t > 0 at which both ui(t, ·;u01) and ui(t, ·;u02) exist.

Proof. (1) The case i = 1 follows from comparison principle for parabolic equa-
tions. The case i = 2 follows from [64, Propositions 2.1 and 2.2]. The case i = 3
follows from comparison principle for lattice differential equations (see the arguments
in [14, Lemma 1]).

(2) and (3) follow from (1).
(4) We provide a proof for the case i = 2. Other cases can be proved similarly.

Take any T > 0 such that both u2(t, ·;u01) and u2(t, ·;u02) exist on [0, T ]. It suffices
to prove that u2(t, ·;u02) ≫ u2(t, ·;u01) for t ∈ [0, T ]. To this end, let w(t, x) =
u2(t, x;u02)− u2(t, x;u01). Then w(t, x) satisfies the following equation,

wt(t, x) =

∫

RN

κ(y − x)w(t, y)dy − w(t, x) + a(t, x)w(t, x),
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where

a(t, x) =f2(x, u2(t, x;u02))

+ u2(t, x;u01)

∫ 1

0

∂uf2(x, su2(t, x;u02) + (1− s)u2(t, x;u01))ds.

Let M > 0 be such that M ≥ supx∈RN ,t∈[0,T ](1 − a(t, x)) and w̃(t, x) = eMtw(t, x).
Then w̃(t, x) satisfies

w̃t(t, x) =

∫

RN

κ(y − x)w̃(t, y)dy + [M − 1 + a(t, x)]w̃(t, x).

Let K : X2 → X2 be defined by

(3.3) (Ku)(x) =

∫

RN

κ(y − x)u(y)dy for u ∈ X2.

Then K generates an analytic semigroup on X2 and

w̃(t, ·) = eKt(u02 − u01) +

∫ t

0

eK(t−τ)(M − 1 + a(τ, ·))w̃(τ, ·)dτ.

Observe that eKtu0 ≥ 0 for any u0 ∈ X+
2 and t ≥ 0 and eKtu0 ≫ 0 for any u0 ∈ X++

2

and t ≥ 0. Observe also that u02 − u01 ∈ X++
2 . By (2), w̃(τ, ·) ≥ 0 and hence

(M − 1 + a(τ, ·))w̃(τ, ·) ≥ 0 for τ ∈ [0, T ]. It then follows that w̃(t, ·) ≫ 0 and then
w(t, ·) ≫ 0 (i.e. u2(t, ·;u02) ≫ u2(t, ·;u01)) for t ∈ [0, T ].

Proposition 3.2 (Global existence). Assume (H1). For any given 1 ≤ i ≤ 3
and u0 ∈ X+

i , ui(t, ·;u0) exists for all t ≥ 0.

Proof. Let 1 ≤ i ≤ 3 and u0 ∈ X+
i be given. There is M ≫ 1 such that

0 ≤ u0(x) ≤ M and fi(x,M) < 0 for all x ∈ Hi. Then by Proposition 3.1,

0 ≤ ui(t, ·;u0) ≤ M

for any t > 0 at which ui(t, ·;u0) exists. It is then not difficult to prove that for
any T > 0 such that ui(t, ·;u0) exists on (0, T ), limt→T ui(t, ·;u0) exists in Xi. This
implies that ui(t, ·;u0) exists and ui(t, ·;u0) ≥ 0 for all t ≥ 0.

For given u, v ∈ X++
i , define

ρi(u, v) = inf{lnα |
1

α
u ≤ v ≤ αu, α ≥ 1}.

Observe that ρi(u, v) is well defined and there is α ≥ 1 such that ρi(u, v) = lnα.
Moreover, ρi(u, v) = ρi(v, u) and ρi(u, v) = 0 iff u ≡ v. In literature, ρi(u, v) is called
the part metric between u and v.

Proposition 3.3 (Decreasing of part metric). For given 1 ≤ i ≤ 3 and u0, v0 ∈
X++

i with u0 6= v0, ρi(ui(t, ·;u0), ui(t, ·; v0)) is non-increasing in t ∈ (0,∞).

Proof. We give a proof for the case i = 1. Other cases can be proved similarly.
First, note that there is α∗ > 1 such that ρ1(u0, v0) = lnα∗ and 1

α∗ u0 ≤ v0 ≤
α∗u0. By Proposition 3.1,

u1(t, ·; v0) ≤ u1(t, ·;α
∗u0) for t > 0.
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Let v(t, x) = α∗u1(t, x;u0). Then

vt(t, x) = ∆v(t, x) + v(t, x)f1(x, u1(t, x;u0))

= ∆v(t, x) + v(t, x)f1(x, v(t, x)) + v(t, x)f1(x, u1(t, x;u0))− v(t, x)f1(x, v(t, x))

> ∆v(t, x) + v(t, x)f1(x, v(t, x)).

This together with Proposition 3.1 implies that

u1(t, ·;α
∗u0) ≤ α∗u1(t, ·;u0) for t > 0

and then

u1(t, ·; v0) ≤ α∗u1(t, ·;u0) for t > 0.

Similarly, it can be proved that

1

α∗
u1(t, ·;u0) ≤ u1(t, ·; v0) for t > 0.

It then follows that

ρ1(u1(t, ·;u0), u1(t, ·; v0)) ≤ ρ1(u0, v0) ∀t > 0

and hence

ρ1(u1(t2, ·;u0), u1(t2, ·; v0)) ≤ ρ1(u1(t1, ·;u0), u1(t1, ·; v0)) ∀0 ≤ t1 < t2.

To indicate the dependence of solutions of (1.1)-(1.3) on the nonlinearity, we
may write ui(t, ·;u0) as ui(t, ·;u0, fi(·, ·)). Observe that for any zn ∈ Hi, if {zn} is
a bounded sequence, then there are z∗ ∈ Hi and {znk

} ⊂ {zn} such that znk
→ z∗

and fi(x + znk
, u) → fi(x + z∗, u) uniformly in (x, u) on bounded sets. If {zn} is an

unbounded sequence, then there is znk
such that fi(x+ znk

, u) → f0
i (u) uniformly in

(x, u) on bounded sets.

Proposition 3.4 (Convergence on compact subsets). Given 1 ≤ i ≤ 3, suppose
that u0n, u0 ∈ X+

i (n = 1, 2, · · · ), {‖u0n‖} is bounded, and u0n(x) → u0(x) as n → ∞
uniformly in x on bounded sets.

(1) If zn, z
∗ ∈ Hi (n = 1, 2, · · · ) are such that fi(x+zn, u) → fi(x+z∗, u) as n →

∞ uniformly in (x, u) on bounded sets, then for each t > 0, ui(t, x;u0n, fi(·+
zn, ·)) → ui(t, x;u0, fi(·+ z∗, ·)) as n → ∞ uniformly in x on bounded sets.

(2) If zn ∈ Hi (n = 1, 2, · · · ) are such that fi(x + zn, u) → f0
i (u) as n → ∞

uniformly in (x, u) on bounded sets, then for each t > 0, ui(t, x;u0n, fi(· +
zn, ·)) → ui(t, x;u0, f

0
i (·)) as n → ∞ uniformly in x on bounded sets.

Proof. We prove (1) with i = 2. All other cases can be proved similarly.
Let vn(t, x) = u2(t, x;u0n, f2(· + zn, ·)) − u2(t, x;u0, f2(· + z∗, ·)). Then vn(t, x)

satisfies

vnt (t, x) =

∫

RN

κ(y − x)vn(t, y)dy − vn(t, x) + an(t, x)v
n(t, x) + bn(t, x),

where

an(t, x) =f2(x+ zn, u2(t, x;u0n, f2(·+ zn, ·))) + u2(t, x;u0, f2(·+ z∗, ·))

·

∫ 1

0

∂uf2(x+ zn, su2(t, x;u0n, f2(·+ zn, ·)) + (1 − s)u2(t, x;u0, f2(·+ z∗, ·)))ds
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and

bn(t, x) =u2(t, x;u0, f2(·+ z∗, ·))

·
(

f2(x+ zn, u2(t, x;u0, f2(·+ z∗, ·))) − f2(x + z∗, u2(t, x;u0, f2(·+ z∗, ·)))
)

.

Observe that {an(t, x)} is uniformly bounded and continuous in t and x and bn(t, x) →
0 as n → ∞ uniformly in t ∈ [0,∞) and x on bounded sets.

Take a ρ > 0. Let

X2(ρ) = {u ∈ C(RN ,R) |u(·)e−ρ‖·‖ ∈ X2}

with norm ‖u‖ρ = ‖u(·)e−ρ‖·‖‖. Note that K : X2(ρ) → X2(ρ) also generates an
analytic semigroup, where K is as in (3.3), and there are M > 0 and ω > 0 such that

‖e(K−I)t‖X2(ρ) ≤ Meωt ∀t ≥ 0,

where I is the identity map on X2(ρ). Hence

vn(t, ·) =e(K−I)tvn(0, ·) +

∫ t

0

e(K−I)(t−τ)an(τ, ·)v
n(τ, ·)dτ

+

∫ t

0

e(K−I)(t−τ)bn(τ, ·)dτ

and then

‖vn(t, ·)‖X2(ρ) ≤ Me
ωt‖vn(0, ·)‖X2(ρ) +M sup

τ∈[0,t],x∈RN

|an(τ, x)|

∫ t

0

e
ω(t−τ)‖vn(τ, ·)‖X2(ρ)dτ

+M

∫ t

0

e
ω(t−τ)‖bn(τ, ·)‖X2(ρ)dτ

≤ Me
ωt‖vn(0, ·)‖X2(ρ) +M sup

τ∈[0,t],x∈RN

|an(τ, x)|

∫ t

0

e
ω(t−τ)‖vn(τ, ·)‖X2(ρ)dτ

+
M

ω
sup

τ∈[0,t]

‖bn(τ, ·)‖X2(ρ)e
ωt
.

By Gronwall’s inequality,

‖vn(t, ·)‖X2(ρ) ≤ e
(ω+M sup

τ∈[0,t],x∈RN
|an(τ,x)|)t

(

M‖vn(0, ·)‖X2(ρ)+
M

ω
sup

τ∈[0,t]

‖bn(τ, ·)‖X2(ρ)

)

.

Note that ‖vn(0, ·)‖X2(ρ) → 0 and supτ∈[0,t] ‖bn(τ, ·)‖X2(ρ) → 0 as n → ∞. It then
follows that

‖vn(t, ·)‖X2(ρ) → 0 as n → ∞

and then

u2(t, x;u0n, f2(·+ zn, ·)) → u2(t, x;u0, f2(·+ z∗, ·)) as n → ∞

uniformly in x on bounded sets.
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3.2. Principal eigenvalues of spatially periodic dispersal operators. In
this subsection, we present some principal eigenvalue theories for spatially periodic
dispersal operators with random, nonlocal, and discrete dispersals.

Let p = (p1, p2, . . . , pN) with pi > 0 for i = 1, 2, · · · , N and Xi,p be as in (2.1)-
(2.3). When X3,p is considered, it is assumed that pi ∈ N. We will denote I as an
identity map on the Banach space under consideration. For given ξ ∈ SN−1, µ ∈ R,
ai ∈ Xi,p (i = 1, 2, 3), consider the following eigenvalue problems,

(3.4)

{

∆u(x)− 2µξ · ∇u(x) + (a1(x) + µ2)u(x) = λu(x), x ∈ R
N

u(x+ piei) = u(x), x ∈ R
N ,

(3.5)

{

∫

RN e−µ(y−x)·ξκ(y − x)u(y)dy − u(x) + a2(x)u(x) = λu(x), x ∈ R
N

u(x+ piei) = u(x), x ∈ R
N

and

(3.6)

{

∑

k∈K ak(e
−µk·ξu(j + k)− u(j)) + a3(j)u(j) = λu(j), j ∈ Z

N

u(j + piei) = u(j), j ∈ Z
N .

Observe that when µ = 0, (3.4), (3.5), and (3.6) are independent of ξ. Observe also

that if u(t, x) = e−µ(x·ξ−λ
µ
t)φ(x) is a solution of

(3.7) ut(t, x) = ∆u(t, x) + a1(x)u(t, x), x ∈ R
N

with φ(·) ∈ X1,p \ {0}, or a solution of

(3.8) ut(t, x) =

∫

RN

k(y − x)u(t, y)dy − u(t, x) + a2(x)u(t, x), x ∈ R
N

with φ(·) ∈ X2,p \ {0}, or a solution of

(3.9) ut(t, j) =
∑

k∈K

ak(u(t, k + j)− u(t, j)) + a3(j)u(t, j), j ∈ Z
N

with φ(·) ∈ X3,p \ {0}, then λ is an eigenvalue of (3.4) or (3.5) or (3.6) with φ(·)
being a corresponding eigenfunction. If a1(x) = f1(x, 0) (resp. a2(x) = f2(x, 0),
a3(j) = f3(j, 0)), then (3.7) (resp. (3.8), (3.9)) is the linearized equation of (1.1)
(resp. (1.2), (1.3)) at u = 0.

Define Oi,µ,ξ : D(Oi,µ,ξ) ⊂ Xi,p → Xi,p (i = 1, 2, 3) by
(3.10)
(O1,µ,ξu)(x) = ∆u(x)− 2µξ · ∇u(x) + (a1(x) + µ2)u(x) ∀u ∈ D(O1,µ,ξ) ⊂ X1,p,

(3.11)

(O2,µ,ξu)(x) =

∫

RN

e−µ(y−x)·ξκ(y−x)u(y)dy−u(x)+a2(x)u(x) ∀u ∈ D(O2,µ,ξ) = X2,p

and
(3.12)

(O3,µ,ξu)(j) =
∑

k∈K

ak(e
−µk·ξu(j + k)− u(j)) + a3(j)u(j) ∀u ∈ D(O3,µ,ξ) = X3,p.
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Let σ(Oi,µ,ξ) be the spectrum of Oi,µ,ξ (i = 1, 2, 3).

Definition 3.1. Let 1 ≤ i ≤ 3, µ ∈ R, and ξ ∈ SN−1 be given. A real
number λi(µ, ξ, ai) ∈ R is called the principal eigenvalue of Oi,µ,ξ if it is an isolated
algebraic simple eigenvalue of Oi,µ,ξ with a positive eigenfunction and for any λ ∈
σ(Oi,µ,ξ) \ {λi(µ, ξ, ai)}, Reλ < λi(µ, ξ, ai).

For given 1 ≤ i ≤ 3, µ ∈ R, and ξ ∈ SN−1, let

(3.13) λ0
i (µ, ξ, ai) = sup{Reµ |µ ∈ σ(Oi,µ,ξ)}.

Observe that for any µ ∈ R and ξ ∈ SN−1, Oi,µ,ξ generates an analytic semigroup
{Ti(t)}t≥0 in Xi,p and moreover, Ti(t) is strongly positive (that is, Ti(t)u0 ≥ 0 for
any t ≥ 0 and u0 ∈ X+

i,p and Ti(t)u0 ≫ 0 for any t > 0 and u0 ∈ X+
i,p \ {0}). Then

by [53, Proposition 4.1.1], r(Ti(t)) ∈ σ(Ti(t)) for any t > 0, where r(Ti(t)) is the
spectral radius of Ti(t). Hence by the spectral mapping theorem (see [15, Theorem
2.7]), λ0

i (µ, ξ, ai) ∈ σ(Oi,µ,ξ) for i = 1, 2, 3. Observe also that λ0
i (0, ξ, ai) (i = 1, 2, 3)

are independent of ξ ∈ SN−1. We may then put

λ0
i (ai) = λ0

i (0, ξ, ai), i = 1, 2, 3.

It is well known that the principal eigenvalue λ1(µ, ξ, a1) and λ3(µ, ξ, a3) of O1,µ,ξ

and O3,µ,ξ exist for all µ ∈ R and ξ ∈ SN−1 and

λi(µ, ξ, ai) = λ0
i (µ, ξ, ai), i = 1, 3.

The principal eigenvalue of O2,µ,ξ may not exist (see [19] and [64] for examples). If
the principal eigenvalue λ2(µ, ξ, a2) exists, then

λ2(µ, ξ, a2) = λ0
2(µ, ξ, a2).

Regarding the existence of principal eigenvalue of O2,µ,ξ, the following proposition is
proved in [64], [65].

Proposition 3.5 (Existence of principal eigenvalue).
(1) If a2 ∈ CN (RN ,R) ∩ X2,p and the partial derivatives of a2(x) up to order

N − 1 are zero at some x0 satisfying that a2(x0) = maxx∈RN a2(x), then the
principal eigenvalue λ2(µ, ξ, a2) of O2,µ,ξ exists for all µ ∈ R and ξ ∈ SN−1.

(2) If a2(x) satisfies that maxx∈RN a2(x) − minx∈RN a2(x) <
infξ∈SN−1

∫

z·ξ≤0
k(z)dz, then the principal eigenvalue λ2(µ, ξ, a2) of O2,µ,ξ

exists for all µ ∈ R and ξ ∈ SN−1.

Proof. (1) It follows from [64, Theorem B].
(2) It follows from [65, Theorem B

′

].

Let âi be the average of ai(·) (i = 1, 2, 3), that is,

(3.14)

{

âi =
1

|Di|

∫

Di
ai(x)dx for i = 1, 2

â3 = 1
#D3

∑

j∈D3
a3(j),

where

(3.15) Di = [0, p1]× [0, p2]× · · · × [0, pN ] ∩Hi, i = 1, 2, 3
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and

(3.16)

{

|Di| = p1 × p2 × · · · × pN for i = 1, 2

#D3 = the cardinality of D3.

By Proposition 3.5 (2), λ2(µ, ξ, â2) exists for all µ ∈ R and ξ ∈ SN−1. The following
proposition shows a relation between λ0

i (µ, ξ, ai) and λ0
i (µ, ξ, âi).

Proposition 3.6 (Influence of spatial variation). For given 1 ≤ i ≤ 3, µ ∈ R,
and ξ ∈ SN−1, there holds

λ0
i (µ, ξ, ai) ≥ λ0

i (µ, ξ, âi).

Proof. The case i = 1 is well known. The cases i = 2 and 3 follow from [33,
Theorem 2.1].

We remark that λi(µ, ξ, âi)(= λ0
i (µ, ξ, âi)) (i = 1, 2, 3) have the following explicit

expressions,

(3.17)











λ1(µ, ξ, â1) = â1 + µ2

λ2(µ, ξ, â2) =
∫

RN e−µz·ξκ(z)dz − 1 + â2

λ3(µ, ξ, â3) =
∑

k∈K ak(e
−µk·ξ − 1) + â3.

3.3. KPP equations in spatially periodic media. In this subsection, we
recall some spatial spreading dynamics of KPP equations in spatially periodic media.

Consider

(3.18) ut(t, x) = ∆u(t, x) + u(t, x)g1(x, u(t, x)), x ∈ R
N ,

(3.19) ut(t, x) =

∫

RN

κ(y − x)u(t, y)dy − u(t, x) + u(t, x)g2(x, u(t, x)), x ∈ R
N ,

and

(3.20) ut(t, j) =
∑

k∈K

ak(u(t, j + k)− u(t, j)) + u(t, j)g3(j, u(t, j)), j ∈ Z
N ,

where gi(·, ·) (i = 1, 2, 3) are periodic in the first variable and monostable in the
second variable. More precisely, we assume

(P1) 1 ≤ i ≤ 3 and gi : Hi × R → R is a C2 function, gi(x + plel, u) = gi(x, u),
where pl > 0 and pl ∈ N in the case i = 3 (l = 1, 2, · · · , N), and gi(x, u) < 0
for all (x, u) ∈ Hi × R

+ with u ≥ α0 for some α0 > 0 and ∂ugi(x, u) < 0 for all
(x, u) ∈ Hi × R

+.

(P2) λ0
i (gi(·, 0)) > 0, where i = 1, 2, 3.

Assume (P1). Similarly, by general semigroup theory, for any u0 ∈ X1 (resp.
u0 ∈ X2, u0 ∈ X3), (3.18) (resp. (3.19), (3.20)) has a unique (local) solution
u1(t, ·;u0, g1(·, ·))(∈ X1) (resp. u2(t, ·;u0, g2(·, ·))(∈ X2), u3(t, ·;u0, g3(·, ·))(∈ X3))
with initial data u0(·). Moreover, if u0 ∈ Xi,p, then ui(t, ·;u0, gi(·, ·)) ∈ Xi,p for any
t > 0 at which ui(t, ·;u0, gi(·, ·)) exists (i = 1, 2, 3). By Proposition 3.1, if u0 ∈ X+

i ,
then ui(t, ·;u0, gi(·, ·)) exists and ui(t, ·;u0, gi(·, ·)) ∈ X+

i for all t > 0 (i = 1, 2, 3).
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Proposition 3.7 (Spatially periodic positive stationary solution). Assume (P1)
and (P2). Then (3.18) (resp. (3.19), (3.20)) has a unique spatially periodic stationary
solution u∗

1(·; g1(·, ·)) ∈ X++
1,p (resp. u∗

2(·; g2(·, ·)) ∈ X++
2,p , u

∗
3(·; g3(·, ·)) ∈ X++

3,p ) which

is globally asymptotically stable with respect to perturbations in X+
1,p\{0} (resp. X+

2,p\

{0}, X+
3,p \ {0}).

Proof. The cases that i = 1 and 3 follow from [75, Theorem 2.3]. The case that
i = 2 follows from [65, Theorem C].

Proposition 3.8 (Spreading speeds). Assume (P1) and (P2). Then for any
ξ ∈ SN−1, (3.18) (resp. (3.19), (3.20)) has a positive spreading speed c∗1(ξ; g1(·, ·))
(resp. c∗2(ξ; g2(·, ·)), c

∗
3(ξ; g3(·, ·))) in the direction of ξ. Moreover,

c∗i (ξ; gi(·, ·)) = inf
µ>0

λ0
i (µ, ξ, gi(·, 0))

µ
(i = 1, 2, 3)

and the following hold for i = 1, 2, 3.
(1) For each u0 ∈ X+

i satisfying that u0(x) = 0 for x ∈ Hi with |x · ξ| ≫ 1,

lim sup
|x·ξ|≥ct,t→∞

ui(t, x;u0, gi(·, ·)) = 0 ∀c > max{c∗i (ξ; gi(·, ·)), c
∗
i (−ξ; gi(·, ·))}.

(2) For each σ > 0, r > 0, and u0 ∈ X+
i satisfying that u0(x) ≥ σ for x ∈ Hi

with |x · ξ| ≤ r,

lim sup
|x·ξ|≤ct,t→∞

|ui(t, x;u0, gi(·, ·))− u∗
i (x; gi(·, ·))| = 0

for all 0 < c < min{c∗i (ξ; gi(·, ·)), c
∗
i (−ξ; gi(·, ·))}.

(3) For each u0 ∈ X+
i satisfying that u0(x) = 0 for x ∈ Hi with ‖x‖ ≫ 1,

lim sup
‖x‖≥ct,t→∞

ui(t, x;u0, gi(·, ·)) = 0 ∀c > sup
ξ∈SN−1

c∗i (ξ; gi(·, ·)).

(4) For each σ > 0, r > 0, and u0 ∈ X+
i satisfying that u0(x) ≥ σ for x ∈ Hi

with ‖x‖ ≤ r,

lim sup
‖x‖≤ct,t→∞

|ui(t, x;u0, gi(·, ·))− u
∗
i (x; gi(·, ·))| = 0 ∀0 < c < inf

ξ∈SN−1
c
∗
i (ξ; gi(·, ·)).

Proof. The cases i = 1 and i = 3 follow from [45, Theorems 3.1-3.4 and Corollary
3.1] (see also [72, Theorems 2.1-2.3]) and the case i = 2 follows from [65, Theorems
D and E].

Let ĝ1(u) (resp. ĝ2(u), ĝ3(u)) be the spatial average of g1(x, u) (resp. g2(x, u),
g3(x, u)), respectively, that is,

(3.21)

{

ĝi(u) =
1

|Di|

∫

Di
gi(x, u)dx for i = 1, 2

ĝ3(u) =
1

#D3

∑

j∈D3
g3(j, u),

where Di (i = 1, 2, 3), |Di| (i = 1, 2) and #D3 are as in (3.15) and (3.16).
Assume

(P3) ĝi(0) > 0 (i = 1, 2, 3).
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Observe that λi(ĝi(0)) = ĝi(0). Then by Proposition 3.6, (P3) implies (P2).
Assume (P3). By Proposition 3.8, for any ξ ∈ SN−1, (3.18) (resp. (3.19), (3.20))
with g1(x, u) (resp. g2(x, u), g3(j, u)) being replaced by ĝ1(u) (resp. ĝ2(u), ĝ3(u))
has a spreading speed c∗1(ξ; ĝ1(·)) (resp. c∗2(ξ; ĝ2(·)), c

∗
3(ξ; ĝ3(·))) in the direction of

ξ ∈ SN−1.

Proposition 3.9 (Influence of spatial variation). Assume (P1) and (P3). Then
for any ξ ∈ SN−1,

c∗i (ξ; gi(·, ·)) ≥ c∗i (ξ; ĝi(·)), i = 1, 2, 3.

Proof. Let ai(·) = gi(·, 0). By Proposition 3.8,

c∗i (ξ; gi(·, ·)) = inf
µ>0

λ0
i (µ, ξ, ai)

µ
and c∗i (ξ; ĝi(·)) = inf

µ>0

λ0
i (µ, ξ, âi)

µ

for i = 1, 2, 3. By Proposition 3.6,

λ0
i (µ, ξ, ai) ≥ λ0

i (µ, ξ, âi) i = 1, 2, 3.

The proposition then follows.

4. Positive stationary solutions and the proof of Theorem 2.1. In this
section, we investigate the existence of positive stationary solutions of (1.1), (1.2),
and (1.3), and prove Theorem 2.1.

Throughout this section, we assume (H1) and (H2). We first prove some lemmas.

Lemma 4.1. For any 1 ≤ i ≤ 3 and ǫ > 0, there are p = (p1, p2, · · · , pN ) ∈ N
N

and hi ∈ Xi,p ∩ CN (Hi,R) such that

fi(x, 0) ≥ hi(x) for x ∈ Hi,

ĥi ≥ f0
i (0)− ǫ (hence λ0

i (hi(·)) ≥ f0
i (0)− ǫ),

and for the cases that i = 1 and 2, the partial derivatives of hi(x) up to order N − 1

are zero at some x0 ∈ Hi with hi(x0) = maxx∈Hi
hi(x), where ĥi is the average of

hi(·) (see (3.14) for the definition).

Proof. Fix 1 ≤ i ≤ 3. By (H2), there is L0 > 0 such that fi(x, 0) = f0
i (0) for

x ∈ Hi with ‖x‖ ≥ L0. Let M0 = infx∈Hi,1≤i≤3 fi(x, 0). Let h0 : R → [0, 1] be a
smooth function such that h0(s) = 1 for |s| ≤ 1 and h0(s) = 0 for |s| ≥ 2. For any
p = (p1, p2, · · · , pN ) ∈ N

N with pj > 4L0, let hi ∈ Xi,p ∩ CN (Hi,R) (i = 1, 2, 3) be
such that

hi(x) = f0
i (0)− h0

(‖x‖2

L2
0

)

(f0
i (0)−M0)

for x ∈
(

[−
p1
2
,
p1
2
]× [−

p2
2
,
p2
2
]× · · · × [−

pN
2

,
pN
2
]
)

∩Hi.

Then

fi(x, 0) ≥ hi(x) ∀x ∈ Hi, 1 ≤ i ≤ 3.
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It is clear that for i = 1 or 2, the partial derivatives of hi(x) up to order N−1 are zero
at some x0 ∈ Hi with hi(x0) = maxx∈Hi

hi(x)(= f0
i (0)). For given ǫ > 0, choosing

pj ≫ 1, we have

ĥi > f0
i (0)− ǫ.

By Proposition 3.6, λ0
i (hi(·)) ≥ λ0

i (ĥi) = ĥi and hence

λ0
i (hi(·)) ≥ f0

i (0)− ǫ.

The lemma is thus proved.

Lemma 4.2. Suppose that ũ∗
2 : RN → [σ0,M0] is Lebesgue measurable, where σ0

and M0 are two positive constants. If

∫

RN

κ(y − x)ũ∗
2(y)dy − ũ∗

2(x) + ũ∗
2(x)f̃2(x, ũ

∗
2(x)) = 0 ∀x ∈ R

N ,

where f̃2(x, u) = f2(x, u) or f0
2 (u) for all x ∈ R

N and u ∈ R, then ũ∗
2(·) ∈ X++

2 .

Proof. We prove the case that f̃2(x, u) = f2(x, u). The case that f̃2(x, u) = f0
2 (u)

can be proved similarly.
Let h∗(x) =

∫

RN κ(y − x)ũ∗
2(y)dy for x ∈ R

N . Then h∗(·) is C1 and has bounded
first order partial derivatives. Let

F (x, α) = h∗(x)− α+ αf2(x, α) ∀x ∈ R
N , α ∈ R.

Then F : RN × R → R is C1 and F (x, ũ∗
2(x)) = 0 for each x ∈ R

N . If α∗ > 0 is such
that F (x, α∗) = 0, then

−1 + f2(x, α
∗) = −

h∗(x)

α∗
< 0

and hence

∂αF (x, α∗) = −1 + f2(x, α
∗) + α∗∂uf2(x, α

∗) < 0.

By Implicit Function Theorem, ũ∗
2(x) is C

1 in x. Moreover,

∂ũ∗
2(x)

∂xj

=

∂h∗(x)
∂xj

−1 + f2(x, ũ∗
2(x)) + ∂uf2(x, ũ∗

2(x))ũ
∗
2(x)

∀x ∈ R
N , 1 ≤ j ≤ N.

Therefore, ũ∗
2 has bounded first order partial derivatives. It then follows that ũ∗

2(x)
is uniformly continuous in x ∈ R

N and then ũ∗
2 ∈ X++

2 .

Lemma 4.3. Suppose that u∗
i (·) ∈ X++

i and u = u∗
i (·) is a stationary solution of

(1.i) (1 ≤ i ≤ 3). Then

u∗
i (x) → u0

i as ‖x‖ → ∞.

Proof. We first prove that

u∗
1(x) → u0

1 as ‖x‖ → ∞.
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Assume that u∗
1(x) 6→ u0

1 as ‖x‖ → ∞. Then there are ǫ0 > 0 and xn ∈ R
N such that

‖xn‖ → ∞ and

|u∗
1(xn)− u0

1| ≥ ǫ0 for n = 1, 2, · · · .

By the uniform continuity of u∗
1(x) in x ∈ R

N , without loss of generality, we may
assume that there is a continuous function ũ∗

1 : RN → [σ0,M0] for some σ0,M0 > 0
such that

u1(x + xn) → ũ∗
1(x)

as n → ∞ uniformly in x on bounded sets. Moreover, by a priori estimates for
parabolic equations, ũ∗

1 is C2+α for some α > 0 and we may also assume that

∆u1(x + xn) → ∆ũ∗
1(x)

as n → ∞ uniformly in x on bounded sets. This together with f1(x+ xn, u) → f0
1 (u)

as n → ∞ uniformly in x on bounded sets and in u ∈ R implies that

∆ũ∗
1 + ũ∗

1f
0
1 (ũ

∗
1) = 0, x ∈ R

N .

By Proposition 3.7, we must have ũ∗
1(x) ≡ u∗

1(x; f
0
1 (·)) ≡ u0

1 and hence u∗
1(xn) → u0

1

as n → ∞. This is a contradiction. Therefore u∗
1(x) → u0

1 as ‖x‖ → ∞.
Next, we prove that

u∗
2(x) → u0

2 as ‖x‖ → ∞.

Similarly, assume that u∗
2(x) 6→ u0

2 as ‖x‖ → ∞. Then there are ǫ0 > 0 and xn ∈ R
N

such that ‖xn‖ → ∞ and

|u∗
2(xn)− u0

2| ≥ ǫ0 for n = 1, 2, · · · .

By the uniform continuity of u∗
2(x) in x ∈ R

N , without loss of generality, we may
assume that there is a continuous function ũ∗

2 : RN → [σ0,M0] for some σ0,M0 > 0
such that

u2(x + xn) → ũ∗
2(x)

as n → ∞ uniformly in x on bounded sets. By the Lebesgue Dominated Convergence
Theorem, we have

∫

RN

κ(y − x)ũ∗
2(y)dy − ũ∗

2(x) + ũ∗
2(x)f

0
2 (ũ

∗
2(x)) = 0 ∀x ∈ R

N .

By Lemma 4.2, ũ∗
2 ∈ X++

2 . By Proposition 3.7 again, we have ũ∗
2(x) ≡ u0

2 and then
u∗
2(xn) → u0

2 as n → ∞. This is a contradiction. Therefore u∗
2(x) → u0

2 as ‖x‖ → ∞.
Finally, it can be proved by the similar arguments as in the case i = 2 that

u∗
3(j) → u0

3 as ‖j‖ → ∞.

Lemma 4.4. There is u−
i ∈ X++

i such that for any δ > 0 sufficiently

small, ui(t, x; δu
−
i ) is increasing in t > 0 and u−,∗,δ

i ∈ X++
i , where u−,∗,δ

i (x) =
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limt→∞ ui(t, x; δu
−
i ), and hence u = u−,∗,δ

i (·) is a stationary solution of (1.i) in X++
i

(i = 1, 2, 3).

Proof. Fix 1 ≤ i ≤ 3. Let M∗ > 0 be such that fi(x,M
∗) < 0. Let ǫ > 0 be such

that

f0
i (0)− ǫ > 0.

By Lemma 4.1, there are p ∈ N
N and hi(·) ∈ Xi,p ∩ CN (Hi,R) such that

fi(x, 0) ≥ hi(x), and ĥi ≥ f0
i (0)− ǫ(> 0).

Moreover, for i = 1 or 2, the partial derivatives of hi(x) up to order N − 1 are zero
at some x0 ∈ Hi with hi(x0) = maxx∈Hi

hi(x). Let u−
i be the positive principal

eigenfunction of Oi,0,0 with ai(·) = hi(·) and ‖u−
i ‖ = 1 (the existence of u−

i is well
known in the case that i = 1 or 3 and follows from Proposition 3.5 in the case that
i = 2). It is not difficult to verify that u = δu−

i is a sub-solution of (1.i) for any δ > 0
sufficiently small. It then follows that for any δ > 0 sufficiently small,

δu−
i (·) ≤ ui(t1, ·; δu

−
i ) ≤ ui(t2, ·; δu

−
i ) ∀0 < t1 < t2.

This implies that there is a Lebesgue measurable function u−,∗,δ
i : Hi → [σ0,M0] for

some σ0,M0 > 0 such that

lim
t→∞

ui(t, x; δu
−
i ) = u−,∗,δ

i (x) ∀x ∈ Hi.

Moreover, by regularity and a priori estimates for parabolic equations, u−,∗,δ
1 ∈ X++

1 .

It is clear that u−,∗,δ
3 ∈ X++

3 . By Lemma 4.2, u−,∗,δ
2 ∈ X++

2 . Therefore for 1 ≤ i ≤ 3,

u−,∗,δ
i ∈ X++

i and u = u−,∗,δ
i (·) is a stationary solution of (1.i) in X++

i (i = 1, 2, 3).

Lemma 4.5. Let M ≫ 1 be such that fi(x,M) < 0 for x ∈ Hi (i = 1, 2, 3). Then

limt→∞ ui(t, x;u0) exists for every x ∈ Hi, where u0(x) ≡ M . Moreover, u+,∗,M
i (·) ∈

X++
i , where u+,∗,M

i (x) := limt→∞ ui(t, x;u0), and hence u = u+,∗,M
i (·) is a stationary

solution of (1.i) in X++
i (i = 1, 2, 3).

Proof. Fix 1 ≤ i ≤ 3. For any M > 1 with fi(x,M) < 0 for all x ∈ Hi, u = M is
a super-solution of (1.i). Hence

ui(t2, ·;M) ≤ ui(t1, ·;M) ≤ M ∀0 ≤ t1 < t2.

It then follows that limt→∞ ui(t, x;M) exists for all x ∈ R
N . Let u+,∗,M

i (x) =

limt→∞ ui(t, x;M). We have u+,∗,M
i (x) ≥ u−,∗,δ

i (x) for 0 < δ ≪ 1. By the simi-

lar arguments as in Lemma 4.4, u+,∗,M
i ∈ X++

i and u = u+,∗,M
i (·) is a stationary

solution of (1.i) in X++
i (i = 1, 2, 3).

Proof of Theorem 2.1. (1) Let 1 ≤ i ≤ 3 be given. First, by Lemmas 4.4
and 4.5, (1.i) has stationary solutions in X++

i . We claim that stationary solution

of (1.i) in X++
i is unique. In fact, suppose that u1,∗

i and u2,∗
i are two stationary

solutions of (1.i) in X++
i . Assume that u1,∗

i 6= u2,∗
i . Then there is α∗ > 1 such that

ρi(u
1,∗
i , u2,∗

i ) = lnα∗ > 0. Note that

1

α∗
u1,∗
i ≤ u2,∗

i ≤ α∗u1,∗
i .
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By Lemma 4.3, lim‖x‖→∞ u1,∗
i (x) = u0

i and lim‖x‖→∞ u2,∗
i (x) = u0

i . This implies that
there is ǫ > 0 such that

1

α∗ − ǫ
u1,∗
i (x) ≤ u2,∗

i (x) ≤ (α∗ − ǫ)u1,∗
i (x) for ‖x‖ ≫ 1.

By Proposition 3.1 and the arguments in Proposition 3.3,

1

α∗
u1,∗
i (x) < u2,∗

i (x) < α∗u1,∗
i (x) ∀x ∈ R

N .

It then follows that for 0 < ǫ ≪ 1,

1

α∗ − ǫ
u1,∗
i (x) ≤ u2,∗

i (x) ≤ (α∗ − ǫ)u1,∗
i (x) ∀x ∈ R

N

and then ρi(u
1,∗
i , u2,∗

i ) ≤ ln(α∗ − ǫ), this is a contradiction. Therefore u1,∗
i = u2,∗

i and
(1.i) has a unique stationary solution u∗

i in X++
i .

(2) Fix 1 ≤ i ≤ 3. For any u0 ∈ X++
i , there is δ > 0 sufficiently small and M > 0

sufficiently large such that δu−
i ≤ u0 ≤ M and u = δu−

i is a sub-solution of (1.i) (u−
i

is as in Lemma 4.4) and u = M is a super-solution of (1.i). Then

δu−
i ≤ ui(t, ·; δu

−
i ) ≤ ui(t, ·;u0) ≤ ui(t, ·;M) ≤ M ∀t ≥ 0.

By (1), Lemmas 4.4 and 4.5, and Dini’s Theorem,

ui(t, x; δu
−
i ) < u∗

i (x) < ui(t, x;M) ∀t > 0, x ∈ Hi

and

lim
t→∞

ui(t, x; δu
−
i ) = lim

t→∞
ui(t, x;M) = u∗

i (x)

uniformly in x on bounded sets. It then follows that

lim
t→∞

ui(t, x;u0) = u∗
i (x)

uniformly in x on bounded sets.
We claim that ‖ui(t, ·;u0)− u∗

i (·)‖ → 0 as t → ∞. Assume the claim is not true.
Then there are ǫ0 > 0, tn → ∞, and xn with ‖xn‖ → ∞ such that

|ui(tn, xn;u0)− u∗
i (xn)| ≥ ǫ0 ∀n ∈ N.

Then by Lemma 4.3,

|ui(tn, xn;u0)− u0
i | ≥

ǫ0
2

∀n ≫ 1.

Let δ̃ > 0 and M̃ > 0 be such that

δ̃ ≤ ui(t, ·;u0) ≤ M̃ ∀t ≥ 0.

For any ǫ > 0, let T > 0 be such that

(4.1) |ui(T, ·; δ̃, f
0
i (·))− u0

i | < ǫ, |ui(T, ·; M̃, f0
i (·)) − u0

i | < ǫ.
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Observe that

δ̃ ≤ ui(tn − T, xn + x;u0) ≤ M̃

and

ui(tn, xn+·;u0) = ui(T, xn+·;ui(tn−T, ·;u0)) = ui(T, ·;ui(tn−T, ·+xn;u0), fi(·+xn, ·))

for n ≫ 1. Then

(4.2) ui(T, ·; δ̃, fi(·+ xn)) ≤ ui(tn, xn + ·;u0) ≤ ui(T, ·; M̃, fi(·+ xn, ·)).

Observe also that fi(x + xn, u) → f0
i (u) as n → ∞ uniformly in (x, u) on bounded

sets. Then by Proposition 3.4,

ui(T, x; δ̃, fi(·+ xn, ·)) → ui(T, x; δ̃, f
0
i (·))

and

ui(T, x; M̃, fi(·+ xn, ·)) → ui(T, x; M̃, f0
i (·))

as n → ∞ uniformly in x on bounded sets. This together with (4.1) implies that

|ui(T, 0; δ̃, fi(·+ xn, ·))− u0
i | < 2ǫ, |ui(T, 0; M̃, fi(·+ xn, ·))− u0

i | < 2ǫ for n ≫ 1

and then by (4.2),

|ui(tn, xn;u0)− u0
i | < 2ǫ for n ≫ 1.

Hence limn→∞ ui(tn, xn;u0) = u0
i , which is a contradiction. Therefore ‖ui(t, ·;u0) −

u∗
i (·)‖ → 0 as t → ∞.

(3) By Proposition 3.1, for any u0 ∈ X+
i \ {0}, ui(t, x;u0) > 0 for all t > 0 and

x ∈ Hi. Hence for any given u0 ∈ X+
i \ {0}, there are σ > 0 and r > 0 such that

ui(1, x;u0) ≥ σ for x ∈ Hi with ‖x‖ ≤ r. Note that ui(t, ·;u0) = ui(t−1, ·;ui(1, ·;u0))
for t ≥ 1. (3) then follows from Theorem 2.3 (4) (see next section for the proof of
Theorem 2.3 (4)).

5. Spatial spreading speeds and proofs of Theorems 2.2 and 2.3. In this
section, we explore the spreading speeds of (1.1), (1.2), and (1.3), and prove Theorems
2.2 and 2.3. Throughout this section, we assume (H1) and (H2).

We first prove two lemmas.

Lemma 5.1. Let ξ ∈ SN−1, c > 0, 1 ≤ i ≤ 3, and u0 ∈ X+
i be given.

(1) If lim infx·ξ≤ct,t→∞ ui(t, x;u0) > 0, then for any 0 < c
′

< c,

lim sup
x·ξ≤c

′
t,t→∞

|ui(t, x;u0)− u∗
i (x)| = 0.

(2) If lim inf |x·ξ|≤ct,t→∞ ui(t, x;u0) > 0, then for any 0 < c
′

< c,

lim sup
|x·ξ|≤c

′
t,t→∞

|ui(t, x;u0)− u∗
i (x)| = 0.

(3) If lim inf‖x‖≤ct,t→∞ ui(t, x;u0) > 0, then for any 0 < c
′

< c,

lim sup
‖x‖≤c

′
t,t→∞

|ui(t, x;u0)− u∗
i (x)| = 0.
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Proof. (1) Suppose that lim infx·ξ≤ct,t→∞ ui(t, x;u0) > 0. Then there are δ and
T > 0 such that

ui(t, x;u0) ≥ δ ∀(t, x) ∈ R
+ ×Hi, x · ξ ≤ ct, t ≥ T.

Assume that the conclusion of (1) is not true. Then there are 0 < c
′

< c, ǫ0 > 0,
xn ∈ Hi, and tn ∈ R

+ with xn · ξ ≤ c
′

tn and tn → ∞ such that

(5.1) |ui(tn, xn;u0)− u∗
i (xn)| ≥ ǫ0 ∀n ≥ 1.

Without loss of generality, we may assume that xn → x∗ as n → ∞ in the case that
{‖xn‖} is bounded (this implies that fi(x+ xn, u) → fi(x+ x∗, u) uniformly in (x, u)
in bounded sets) and fi(x+xn, u) → f0

i (u) as n → ∞ uniformly in (x, u) on bounded
sets in the case that {‖xn‖} is unbounded.

Let ũ0 ∈ X+
i ,

ũ0(x) = δ ∀x ∈ Hi.

By Theorem 2.1, there is T̃ > 0 such that

(5.2) |ui(T̃ , x; ũ0)− u∗
i (x)| < ǫ0 ∀x ∈ Hi,

(5.3) |ui(T̃ , x; ũ0, fi(·+ x∗, ·))− u∗
i (x+ x∗)| <

ǫ0
2
,

and

(5.4) |ui(T̃ , x; ũ0, f
0
i )− u0

i | <
ǫ0
2
.

Without loss of generality, we may assume that tn − T̃ ≥ T for n ≥ 1. Let

ũ0n ∈ X+
i be such that ũ0n(x) = δ for x · ξ ≤ c

′

+c
2 (tn − T̃ ), 0 ≤ ũ0n(x) ≤ δ for

c
′

+c
2 (tn − T̃ ) ≤ x · ξ ≤ c(tn − T̃ ), and ũ0n(x) = 0 for x · ξ ≥ c(tn − T̃ ). Then

ui(tn − T̃ , ·;u0) ≥ ũ0n(·)

and hence

ui(tn, xn;u0) = ui(T̃ , xn;ui(tn − T̃ , ·;u0))

= ui(T̃ , 0;ui(tn − T̃ , ·+ xn;u0), fi(·+ xn, ·))

≥ ui(T̃ , 0; ũ0n(·+ xn), fi(·+ xn, ·)).(5.5)

Observe that ũ0n(x + xn) → ũ0 as n → ∞ uniformly in x on bounded sets. In
the case that fi(x+ xn, u) → f0

i (u), by Proposition 3.4,

ui(T̃ , 0; ũ0n(·+ xn), fi(·+ xn, ·)) → ui(T̃ , 0; ũ0, f
0
i (·))

as n → ∞. By (5.4) and (5.5),

(5.6) ui(tn, xn;u0) > u0
i − ǫ0/2 for n ≫ 1.

By Lemma 4.3,

(5.7) u0
i > u∗

i (xn)− ǫ0/2 for n ≫ 1.
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By (5.2), (5.6), and (5.7),

|ui(tn, xn;u0)− u∗
i (xn)| < ǫ0 for n ≫ 1.

This contradicts to (5.1).
In the case that xn → x∗, by Proposition 3.4 again,

ui(T̃ , 0; ũ0n(·+ xn), fi(·+ xn, ·)) → ui(T̃ , 0; ũ0, fi(·+ x∗, ·))

as n → ∞. By (5.3) and (5.5),

(5.8) ui(tn, xn;u0) > u∗
i (x

∗)− ǫ0/2 for n ≫ 1.

By the continuity of u∗
i (·),

(5.9) u∗
i (x

∗) > u∗
i (xn)− ǫ0/2 for n ≫ 1.

By (5.2), (5.8), and (5.9),

|ui(tn, xn;u0)− u∗
i (xn)| < ǫ0 for n ≫ 1.

This contradicts to (5.1) again.
Hence

lim
x·ξ≤c

′
t,t→∞

|ui(t, x;u0)− u∗
i (x)| = 0

for all 0 < c
′

< c.
(2) It can be proved by the similar arguments as in (1).
(3) It can also be proved by the similar arguments as in (1).

Lemma 5.2. Let M > 0 be such that fi(x, u) < 0 for x ∈ Hi, u ≥ M , and
i = 1, 2, 3. Then for any ǫ > 0, there are p ∈ N

N and gi : Hi × R → R such that for
any u ∈ R, gi(·, u) ∈ Xi,p, gi(·, ·) satisfies (P1) and (P3), and

fi(x, u) ≥ gi(x, u) ∀x ∈ Hi, u ∈ [0,M ],

ĝi(0) ≥ f0
i (0)− ǫ,

where ĝi(·) is as in (3.21) (i = 1, 2, 3).

Proof. By Lemma 4.1, for any ǫ > 0, there are p ∈ N
N and hi(·) ∈ Xi,p ∩

CN (Hi,R) such that

fi(x, 0) ≥ hi(x) ∀x ∈ Hi and ĥi ≥ f0
i (0)− ǫ

for i = 1, 2, 3. Fix 1 ≤ i ≤ 3 and choose M > 0 such that

fi(x, u) ≥ hi(x) −Mu for x ∈ Hi, 0 ≤ u ≤ M.

Let

gi(x, u) = hi(x)−M ∀x ∈ Hi, u ∈ R.

It is not difficult to see that gi(·, ·) (1 ≤ i ≤ 3) satisfy the lemma.
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In the following, c01(ξ), c
0
2(ξ), and c03(ξ) are as in (2.14), (2.15), and (2.16), re-

spectively (ξ ∈ SN−1). Observe that λi(µ, ξ, f
0
i (0)) (i = 1, 2, 3) exist and











λ1(µ, ξ, f
0
1 (0)) = f0

1 (0) + µ2

λ2(µ, ξ, f
0
2 (0)) =

∫

RN e−µz·ξκ(z)dz − 1 + f0
2 (0)

λ3(µ, ξ, f
0
3 (0)) =

∑

k∈K ak(e
−µk·ξ − 1) + f0

3 (0).

If no confusion occurs, we may denote λi(µ, ξ, f
0
i (0)) by λi(µ, ξ) (i = 1, 2, 3). Ob-

serve also that v1(t, x) = e−µ(x·ξ−
λ1(µ,ξ)

µ
t), v2(t, x) = e−µ(x·ξ−

λ2(µ,ξ)
µ

t), and v3(t, j) =

e−µ(j·ξ−
λ3(µ,ξ)

µ
t) are solutions of

(5.10) vt(t, x) = ∆v(t, x) + f0
1 (0)v(t, x), x ∈ R

N ,

(5.11) vt(t, x) =

∫

RN

κ(y − x)v(t, y)dy − v(t, x) + f0
2 (0)v(t, x), x ∈ R

N ,

and

(5.12) vt(t, j) =
∑

k∈K

ak(v(t, j + k)− v(t, j)) + f0
3 (0)v(t, j), j ∈ Z

N ,

respectively.

Proof of Theorem 2.2. Fix ξ ∈ SN−1 and 1 ≤ i ≤ 3. We first prove that for any
c
′

> c0i (ξ) and u0 ∈ X+
i (ξ),

(5.13) lim sup
x·ξ≥c

′
t,t→∞

ui(t, x;u0) = 0.

To this end, take a c such that c
′

> c > c∗i (ξ). Note that there is µ∗
i > 0 such that

c0i (ξ) =
λi(ξ, µ

∗
i )

µ∗
i

and there is µ ∈ (0, µ∗
i ) such that

c =
λi(µ, ξ)

µ
.

Take d > M > 0 such that

u0(x) ≤ M and u0(x) ≤ de−µx·ξ ∀x ∈ Hi,

(5.14) fi(x,M) < 0 ∀x ∈ Hi,

and

(5.15) fi(x, u) = f0
i (u) for x · ξ ≥ −

1

µ
ln

M

d
(> 0).

Observe that by (5.14) and (H1), for (t, x) ∈ (0,∞)×Hi with de−µ(x·ξ−ct) ≥ M , i.e.,
x · ξ ≤ − 1

µ
ln M

d
+ ct,

fi(x, de
−µ(x·ξ−ct)) < 0 < f0

i (0).
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By (5.15), for (t, x) ∈ (0,∞)×Hi with de−µ(x·ξ−ct) ≤ M , i.e, x · ξ ≥ − 1
µ
ln M

d
+ ct,

fi(x, de
−µ(x·ξ−ct)) = f0

i (de
−µ(x·ξ−ct)) ≤ f0

i (0).

It then follows that u = de−µ(x·ξ−ct), which is a solution of (5.10) or (5.11) or (5.12)
if i = 1 or 2 or 3, is a super-solution of (1.i) and hence by Proposition 3.1,

(5.16) ui(t, x;u0) ≤ de−µ(x·ξ−ct) ∀t > 0 x ∈ Hi.

This implies that (5.13) holds.
Next, we prove that for any c

′

< c0i (ξ) and any u0 ∈ X+
i (ξ),

(5.17) lim sup
x·ξ≤c

′
t,t→∞

|ui(t, x;u0)− u∗
i (x)| = 0.

To this end, take a c ∈ R such that c
′

< c < c0i (ξ). Let M > 0 be such that u0(x) ≤ M
and fi(x,M) < 0 for all x ∈ Hi. Then u ≡ M is a super-solution of (1.i) and

ui(t, x;u0) ≤ M ∀t ≥ 0, x ∈ Hi.

For any ǫ > 0, let gi(·, ·) be as in Lemma 5.2. By Proposition 3.9, for ǫ > 0 sufficiently
small,

c∗i (ξ, gi(·, ·)) ≥ c∗i (ξ, ĝi(·)) > c.

By Propositions 3.1 and 3.8,

lim inf
x·ξ≤ct,t→∞

ui(t, x;u0) ≥ lim inf
x·ξ≤ct,t→∞

ui(t, x;u0, gi) > 0.

(5.17) then follows from Lemma 5.1.
By (5.13) and (5.17), c∗i (ξ) exists and c∗i (ξ) = c0i (ξ) for i = 1, 2, 3. Moreover,

(2.13) holds.

Proof of Theorem 2.3. (1) It can be proved by similar arguments in [64, Theorem
D(1)]. For completeness, we provide a proof in the following.

Fix ξ ∈ SN−1 and 1 ≤ i ≤ 3. Let u0 ∈ X+
i satisfy that u0(x) = 0 for x ∈ Hi with

|x · ξ| ≫ 1. Then there are u+
0 ∈ X+

i (ξ) and u−
0 ∈ X+

i (−ξ) such that

u0(x) ≤ u±
0 (x) ∀x ∈ Hi.

By Proposition 3.1 and Theorem 2.2,

lim sup
x·ξ≥c

′
t,t→∞

ui(t, x;u0) ≤ lim sup
x·ξ≥c

′
t,t→∞

ui(t, x;u
+
i ) = 0 ∀c

′

> c∗i (ξ)

and

lim sup
x·(−ξ)≥c

′
t,t→∞

ui(t, x;u0) ≤ lim sup
x·(−ξ)≥c

′
t,t→∞

ui(t, x;u
−
i ) = 0 ∀c

′

> c∗i (−ξ)

It then follows that

lim sup
|x·ξ|≥c

′
t,t→∞

ui(t, x;u0) = 0 ∀c
′

> max{c∗i (ξ), c
∗
i (−ξ)}.
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(2) Fix ξ ∈ SN−1 and 1 ≤ i ≤ 3. For given 0 < c
′

< min{c∗i (ξ), c
∗
i (−ξ)}, take

a c > 0 such that c
′

< c < min{c∗i (ξ), c
∗
i (−ξ)}. For given u0 ∈ X+

i satisfying the
condition in Theorem 2.3 (2), let M > 0 be such that u0(x) ≤ M and fi(x,M) < 0
for all x ∈ Hi. Then u ≡ M is a super-solution of (1.i) and

ui(t, x;u0) ≤ M ∀t ≥ 0, x ∈ Hi.

For any ǫ > 0, let gi(·, ·) be as in Lemma 5.2. By Proposition 3.9, for ǫ > 0 sufficiently
small,

c∗i (ξ, gi(·, ·)) ≥ c∗i (ξ, ĝi(·)) > c.

By Propositions 3.1 and 3.8,

lim inf
|x·ξ|≤ct,t→∞

ui(t, x;u0) ≥ lim inf
|x·ξ|≤ct,t→∞

ui(t, x;u0, gi) > 0.

It then follows from Lemma 5.1 that

lim sup
|x·ξ|≤c

′
t,t→∞

|ui(t, x;u0)− u∗
i (x)| = 0.

(3) It can be proved by similar arguments as in [64, Theorem E (1)]. For com-
pleteness again, we provide a proof in the following.

Fix ξ ∈ SN−1 and 1 ≤ i ≤ 3. Let c > supξ∈SN−1 c∗i (ξ). Let u0 ∈ X+
i be such that

u0(x) = 0 for ‖x‖ ≫ 1. Note that for every given ξ ∈ SN−1, there is ũ0(·; ξ) ∈ X+
i (ξ)

such that u0(·) ≤ ũ0(·; ξ). By Proposition 3.1,

0 ≤ ui(t, x;u0) ≤ ui(t, x; ũ0(·; ξ))

for t > 0 and x ∈ Hi. It then follows from Theorem 2.2 that

0 ≤ lim sup
x·ξ≥ct,t→∞

ui(t, x;u0) ≤ lim sup
x·ξ≥ct,t→∞

ui(t, x; ũ0(·; ξ)) = 0.

Take any c
′

> c. Consider all x ∈ Hi with ‖x‖ = c
′

. By the compactness of
∂B(0, c

′

) = {x ∈ Hi| ‖x‖ = c
′

}, there are ξ1, ξ2, · · · , ξL ∈ SN−1 such that for every
x ∈ ∂B(0, c

′

), there is l (1 ≤ l ≤ L) such that x · ξl ≥ c. Hence for every x ∈ Hi with

‖x‖ ≥ c
′

t, there is 1 ≤ l ≤ L such that x · ξl =
‖x‖

c
′

(

c
′

‖x‖x
)

· ξl ≥
‖x‖

c
′ c ≥ ct. By the

above arguments,

0 ≤ lim sup
x·ξl≥ct,t→∞

ui(t, x;u0) ≤ lim sup
x·ξl≥ct,t→∞

ui(t, x; ũ0(·; ξl)) = 0

for l = 1, 2, · · ·L. This implies that

lim sup
‖x‖≥c

′
t,t→∞

ui(t, x;u0) = 0.

Since c
′

> c and c > supξ∈SN−1 c∗i (ξ) are arbitrary, we have that for c >
supξ∈SN−1 c∗i (ξ),

lim sup
‖x‖≥ct,t→∞

ui(t, x;u0) = 0.
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(4) It can be proved by similar arguments as in (2). To be more precise, for
given 0 < c

′

< min{c∗i (ξ) | ξ ∈ SN−1}, take a c > 0 such that c
′

< c < min{c∗i (ξ) | ξ ∈
SN−1}. For given u0 ∈ satisfying the condition in Theorem 2.3 (4), let M > 0 be such
that u0(x) ≤ M and fi(x,M) < 0 for all x ∈ Hi. Then u ≡ M is a super-solution of
(1.i) and

ui(t, x;u0) ≤ M ∀t ≥ 0, x ∈ Hi.

For any ǫ > 0, let gi(·, ·) be as in Lemma 5.2. By Proposition 3.9, for ǫ > 0 sufficiently
small,

c∗i (ξ, gi(·, ·)) ≥ c∗i (ξ, ĝi(·)) > c.

By Propositions 3.1 and 3.8,

lim inf
‖x‖≤ct,t→∞

ui(t, x;u0) ≥ lim inf
‖x‖≤ct,t→∞

ui(t, x;u0, gi) > 0.

It then follows from Lemma 5.1 that

lim sup
‖x‖≤c

′
t,t→∞

|ui(t, x;u0)− u∗
i (x)| = 0.
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[26] M. Freidlin and J. Gärtner,On the propagation of concentration waves in periodic and

ramdom media, Soviet Math. Dokl., 20 (1979), pp. 1282–1286.
[27] M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow, and G. T. Vickers, Non-local dispersal,

Differential Integral Equations, 18 (2005), pp. 1299–1320.
[28] J.-S. Guo and F. Hamel, Front propagation for discrete periodic monostable equations, Math.

Ann., 335 (2006), pp. 489–525.
[29] J.-S. Guo and C.-H. Wu, Front propagation for a two-dimensional periodic monostable lattice

dynamical system, Discrete Contin. Dyn. Syst., 26 (2010), pp. 197–223.
[30] J.-S. Guo and C.-C. Wu, Uniqueness and stability of traveling waves for periodic monostable

lattice dynamical system, J. Differential Equations, 246 (2009), pp. 3818–3833.
[31] F. Hamel, Qualitative properties of monostable pulsating fronts : exponential decay and mono-

tonicity, J. Math. Pures Appl., 89 (2008), pp. 355–399.
[32] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840,

Springer-Verlag, Berlin, 1981.
[33] G. Hetzer, W. Shen, and A. Zhang, Effects of spatial variations and dispersal strategies on

principal eigenvalues of dispersal operators and spreading speeds of monostable equations,
Rocky Mountain Journal of Mathematics, to appear.

[34] J. Huang and W. Shen, Speeds of spread and propagation for KPP models in time almost and

space periodic media, SIAM Journal on Applied Dynamical System, 8 (2009), pp. 790–821.
[35] W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of

Fisher type in periodic media, Boundary value problems for functional-differential equa-
tions, pp. 187–199, World Sci. Publ., River Edge, NJ, 1995.

[36] W. Hudson and B. Zinner, Existence of traveling waves for a generalized discrete Fisher’s

equation, Comm. Appl. Nonlinear Anal., 1 (1994), pp. 23–46.
[37] V. Hutson, S. Martinez, K. Mischaikow, and G. T. Vickers, The evolution of dispersal,

J. Math. Biol., 47 (2003), pp. 483–517.
[38] Y. Kametaka, On the nonlinear diffusion equation of Kolmogorov-Petrovskii- Piskunov type,

Osaka J. Math., 13 (1976), pp. 11–66.
[39] C.-Y. Kao, Y. Lou, and W. Shen, Random dispersal vs non-Local dispersal, Discrete and

Continuous Dynamical Systems, 26 (2010), pp. 551–596
[40] A. Kolmogorov, I. Petrowsky, and N. Piscunov, A study of the equation of diffusion

with increase in the quantity of matter, and its application to a biological problem, Bjul.
Moskovskogo Gos. Univ., 1 (1937), pp. 1–26.

[41] C. T. Lee, M. F. Hoopes, J. Diehl, W. Gilliland, G. Huxel, E. V. Leaver, K. McCain,
J. Umbanhowar and A. Mogilner, Non-local concepts and models in biology, J. theor.
Biol., 210 (2001), pp. 201–219.

[42] S. A. Levin, H. C. Muller-Landau, R. Nathan and J. Chave, The ecology and evolution of

seed dispersal: a theoretical perspective, Annu. Rev. Eco. Evol. Syst., 34 (2003), pp. 575–
604.



KPP EQUATIONS IN LOCALLY SPATIALLY INHOMOGENEOUS MEDIA 455

[43] W.-T. Li, Y.-J. Sun, and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with

nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), pp. 2302–2313.
[44] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone

semiflows with applications, Comm. Pure Appl. Math., 60 (2007), pp. 1–40.
[45] X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable

evolution systems, Journal of Functional Analysis, 259 (2010), pp. 857–903.
[46] X. Liang, Y. Yi, and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution

systems, J. Diff. Eq., 231 (2006), pp. 57–77.
[47] R. Lui, Biological growth and spread modeled by systems of recursions, Math. Biosciences, 93

(1989), pp. 269–312.
[48] N. Madras, J. Wu and X. Zou, Local-nonlocal interaction and spatial-temporal patterns in

single species population over a patchy environment, Canad. Appl. Math. Quart., 4 (1996),
pp. 109–134.

[49] A. Mellet, J. Nolen, J.-M. Roquejoffre, and L. Ryzhik, Stability of generalized transition

fronts, Comm. Partial Differential Equations, 34 (2009), pp. 521–552.
[50] A. Mellet, J.-M. Roquejoffre and Y. Sire, Generalized fronts for one-dimensional reac-

tiondiffusion equations, Discrete Contin. Dyn. Syst., 26 (2010), pp. 303–312.
[51] J. D. Murray, Mathematical Biology, Springer-Verlag, New York, 1989.
[52] G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., (9) 92 (2009),

pp. 232–262.
[53] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, 1991.
[54] J. Nolen, M. Rudd, and J. Xin, Existence of KPP fronts in spatially-temporally periodic

adevction and variational principle for propagation speeds, Dynamics of PDE, 2 (2005),
pp. 1–24.

[55] J. Nolen and J. Xin, Existence of KPP type fronts in space-time periodic shear flows and a

study of minimal speeds based on variational principle, Discrete and Continuous Dynamical
Systems, 13 (2005), pp. 1217–1234.

[56] J. Nolen, J.-M. Roquejoffre, L. Ryzhik, and A. Zlato, Existence and non-existence of

Fisher-KPP transition fronts, Arch. Ration. Mech. Anal., 203 (2012), pp. 217–246.
[57] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,

Springer-Verlag New York Berlin Heidelberg Tokyo, 1983.
[58] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Math.,

22 (1976), pp. 312–355.
[59] W. Shen, Traveling waves in diffusive random media, J. Dynam. Diff. Equations, 16 (2004),

pp. 1011–1060.
[60] W. Shen, Variational principle for spatial spreading speeds and generalized propagating speeds

in time almost periodic and space periodic KPP models, Transactions of the American
Mathematical Society, 362 (2010), pp. 5125–5168.

[61] W. Shen, Spreading and generalized propagating speeds of discrete KPP models in time varying

environments, Frontiers of Mathematics in China, 4:3 (2009), pp. 523–562.
[62] W. Shen, Existence, uniqueness, and stability of generalized traveling waves in time dependent

monostable equations, Journal of Dynamics and Differential Equations, 23 (2011), pp.1–44.
[63] W. Shen, Existence of generalized traveling waves in time recurrent and space periodic monos-

table equations, Journal of Applied Analysis and Computation, 1 (2011), pp. 69–94.
[64] W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in

space periodic habitats, Journal of Differential Equations, 249 (2010), pp. 749–795.
[65] W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable

equations in space periodic habitats, Proceedings of the American Mathematical Society,
140 (2012), pp. 1681–1696.

[66] W. Shen and A. Zhang, Traveling wave solutions of spatially periodic nonlocal monostable

equations, Communications on Applied Nonlinear Analysis, to appear.
[67] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University

Press, 1997.
[68] B. Shorrocks and I. R. Swingland, Living in a Patch Environment, Oxford University Press,

New York, 1990.
[69] J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), pp. 196–

218.
[70] K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time,

J. Math. Kyoto Univ., 18:3 (1978), pp. 453–508.
[71] H. F. Weinberger, Long-time behavior of a class of biology models, SIAM J. Math. Anal., 13

(1982), pp. 353–396.
[72] H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models



456 L. KONG AND W. SHEN

in a periodic habitat, J. Math. Biol., 45 (2002), pp. 511–548.
[73] J. Wu and X. Zou, Asymptotic and periodic boundary value problems of mixed FDEs and wave

solutions of lattice differential equations, J. Differential Equations, 135 (1997), pp. 315–357.
[74] B. Zinner, G. Harris, and W. Hudson, Traveling wavefronts for the discrete Fisher’s equa-

tion, J. Diff. Eq., 105 (1993), pp. 46–62.
[75] X.-Q. Zhao, Global attractivity and stability in some monotone discrete dynamical systems ,

Bull. Austral. Math. Soc., 53 (1996), pp. 305–324.
[76] X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics, 16,

Springer-Verlag, New York, 2003.


