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BIFURCATIONS OF WAVEFRONTS ON r-CORNERS: SEMI-LOCAL

CLASSIFICATION∗

TAKAHARU TSUKADA†

Abstract. We introduce the notion of multi-reticular Legendrian unfoldings in order to investi-
gate stabilities and a genericity of bifurcations of wavefronts generated by m points of a hypersurface
with a boundary, a corner, or an r-corner in a smooth n dimensional manifold. We define several
stabilities of multi-reticular Legendrian unfoldings and prove that they and the stabilities of corre-
sponding generating families are all equivalent and give the classification of all generic bifurcations
of their wavefronts in the cases r = 0, n ≤ 5 and r = 1, n ≤ 3 respectively.
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1. Introduction. In [3] K.Jänich explained the wavefront propagation mecha-
nism on a manifold which is completely described by a positive and positively ho-
mogeneous Hamiltonian function on the cotangent bundle and investigated the local
gradient models given by the ray length function. Caustics and Wavefronts generated
by an initial wavefront which is a hypersurface germ without boundary in the mani-
fold were investigated as Lagrangian and Legendrian singularities by V.I.Arnold (cf.,
[1]).

In this paper and its prequel [7], we investigate the stabilities and the generic-
ity of bifurcations of wavefronts generated by a hypersurface germ with an r-corner.
Wavefronts generated by all edges of the hypersurface germ at a time give a contact

regular r-cubic configuration on the 1-jet bundle. All wavefronts around a time give
a one-parameter family of contact regular r-cubic configurations on the 1-jet bundle.
In order to consider such families, we shall introduce the notion of unfolded contact

regular r-cubic configurations on the big 1-jet bundle. A wavefront of an unfolded con-
tact regular r-cubic configuration is the big front of the corresponding one-parameter
family of contact regular r-cubic configurations. We shall consider their generating
families and equivalence relations.

↔ ↔

Fig. 1. The generic bifurcation of wavefronts on a boundary 1B3

We also consider bifurcations of intersections of wavefronts generated by m points
of the hypersurface. We introduce the notion of multi-reticular Legendrian unfoldings

which is a generalized notion of multi-Legendrian unfoldings given by S.Izumiya (cf.,
[2]) for our situation. We shall define several stabilities of multi-reticular Legendrian
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unfoldings and prove that they and the stabilities of their generating families are all
equivalent. We shall also classify generic multi-reticular Legendrian unfoldings and
give all figures of their wavefronts in the case r = 1, n ≤ 3,m = 1 and n ≤ 3,m ≥ 2.

In history, our theory in the case r = 0 is investigated as the theory of (multi-
)Legendrian unfoldings by S.Izumiya (cf., [2]) and the classification list of generic
Legendrian unfoldings is given by using V.M.Zakalyukin’s theory (cf., [10]) in which he
has classified generic quasihomogeneous function germs under the t-P-K-equivalence.
In [7] we have classified not only quasihomogeneous function germs but also all smooth
function germs under the reticular t-P-K-equivalence which is a generalized relation
of the t-P-K-equivalence.

I.G.Scherbak has studied the theory of boundary fronts in [4] and this corresponds
to our theory in the case r = m = 1. She has introduced the notion of Legendrian
pairs which is corresponding to the notion of regular 1-cubic configurations. But they
are not strictly formulated and no proof is given. In this paper, we shall define and
prove our theory strictly. Since the equivalence relation of function germ used in her
paper is slightly different from the one which is used in this paper (see the remark in
Section 2), the figures of wavefronts 0B2 of fig.2 and

1B3 of fig.3(cf., Figure 1), and
0B3

of fig.4 in [4, p.365] do not coincide with our figures respectively. The classification
list of function germs also different from ours (compare [4, p.371 Proposition 3] with
[7, Theorem 4.7]).

For example we consider the below figures in which the initial wavefront with
a boundary in a plane and wavefronts generated by the initial wavefront and the
boundary to normal directions are described respectively. The generated wavefronts

Fig. 2. The initial wavefront V 0 with a boundary and generated wavefronts ( e = ∅, t1 < t2 < t3)

bifurcate and typical shapes of bifurcations occur. The 1B3 front occurs (compare this
to Figure 1). The 1(0A1

0A2),
1(0A1

0A1), and
1(0A1

0B2) fronts are intersections of
fronts generated by different points of the initial wavefront. The purpose of this paper
is the classification of such generic bifurcations of wavefronts and their intersections.

This paper consists of six sections. In Section 2 we give the review of stabilities
under the reticular t-(P-K)(m)-equivalence relation of map germs which play impor-
tant roles as generating families of multi-reticular Legendrian unfoldings (cf., [7]). We
shall also give the review of the theory of contact regular r-cubic configurations. In
Section 3 we shall introduce the notion of multi-reticular Legendrian unfoldings and
consider their generating families. In Section 4 we shall investigate several stabilities
of multi-reticular Legendrian unfoldings. In Section 5 we shall reduce our investigation
to finite dimensional jet spaces and give the classification of generic multi-reticular
Legendrian unfoldings in the cases r = 0 and 1 respectively. In Section 6 we shall
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show that our method do not work well for the cases r ≥ 2 because of modalities of
generating families. All maps considered here are differentiable of class C∞ unless
stated otherwise.

2. Stabilities of unfoldings. In this section we investigate the theory of map
germs with respect to the reticular t-(P-K)(m)-equivalence relation which is proved
by almost parallel methods of [7].

Let H
r = {(x1, . . . , xr) ∈ R

r|x1 ≥ 0, . . . , xr ≥ 0} be an r-corner. We denote
by E(r; k1, r; k2) the set of all germs at 0 of smooth maps H

r × R
k1 → H

r × R
k2

and set M(r; k1, r; k2) = {f ∈ E(r; k1, r; k2)|f(0) = 0}. We denote E(r; k1, k2) for
E(r; k1, 0; k2) and denote M(r; k1, k2) for M(r; k1, 0; k2).

If k2 = 1 we write simply E(r; k) for E(r; k, 1) and M(r; k) for M(r; k, 1). Then
E(r; k) is an R-algebra in the usual way and M(r; k) is its unique maximal ideal. We
also denote by E(k) for E(0; k) and M(k) for M(0; k). We remark that E(r; k, p) is an
E(r; k)-module generated by p-elements.

We denote by J l(r + k, p) the set of l-jets at 0 of germs in E(r; k, p). There are
natural projections:

πl : E(r; k, p) −→ J l(r + k, p), πl1
l2

: J l1(r + k, p) −→ J l2(r + k, p) (l1 > l2).

We write jlf(0) for πl(f) for each f ∈ E(r; k, p).
Let (x, y) = (x1, · · · , xr , y1, · · · , yk) be a fixed coordinate system of (Hr ×R

k, 0).
We denote by B(r; k) the group of diffeomorphism germs (Hr ×R

k, 0) → (Hr ×R
k, 0)

of the form:

φ(x, y) = (x1φ
1
1(x, y), · · · , xrφ

r
1(x, y), φ

1
2(x, y), · · · , φ

k
2(x, y)).

We denote by Bn(r; k + n) the group of diffeomorphism germs (Hr ×R
k+n, 0) →

(Hr × R
k+n, 0) of the form:

φ(x, y, u) = (x1φ
1
1(x, y, u), · · · , xrφ

r
1(x, y, u), φ

1
2(x, y, u), · · · , φ

k
2(x, y, u), φ

1
3(u), . . . , φ

n
3 (u)).

We denote φ(x, y, u) = (xφ1(x, y, u), φ2(x, y, u), φ3(u)),
∂f0
∂y

= ( ∂f0
∂y1

, · · · , ∂f0
∂yk

), and
denote other notations analogously.

Lemma 2.1. (cf., [9, Corollary 1.8]) Let B be a submodule of E(r; k+n+m′,m),
A1 be a finitely generated E(m′)-submodule of E(r; k+n+m′,m) generated d-elements,
and A2 be a finitely generated E(n+m′) submodule of E(r; k + n+m′,m). Suppose

E(r;k+n+m
′
, m) = B+A2+A1+M(m′)E(r;k+n+m

′
,m)+M(n+m

′)d+1E(r;k+n+m
′
,m).

Then

E(r; k + n+m′,m) = B +A2 +A1,

M(n+m′)dE(r; k + n+m′,m) ⊂ B +A2 +M(m′)E(r; k + n+m′,m).

We say that f0 = (f0,1, . . . , f0,m)(x, y), g0 = (g0,1, . . . , g0,m)(x, y) ∈ E(r; k,m) are
reticular K(m)-equivalent if there exist Φi ∈ Bn(r; k+n) and units ai ∈ E(r; k+n) such
that g0,i = ai·f0,i◦Φi for i = 1, . . . ,m. We denote Φ = (Φ1, . . . ,Φm), a = (a1, . . . , am)
and we call (Φ, a) a reticular K(m)-isomorphism from f0 to g0. We remark that f0 and
g0 are reticular K(m)-equivalent if and only if f0,i and g0,i are reticular K-equivalent
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for i = 1, . . . ,m.

Remark. The corresponding equivalence relation of function germs is given by
I.G.Scherbak (see [4, p.366 §2]) as follows: Function germs f0, g0 ∈ E(1 + k) are
equivalent if there exist a diffeomorphism germ φ on (R1+k, 0) of the form φ(x, y) =
(xφ1(x, y), φ

1
2(x, y), . . . , φ

k
2(x, y)) and a unit a ∈ E(r; k) such that g0 = a · f0 ◦ φ.

The variable x is defined on (H, 0) and φ1(0) > 0 in our equivalence relation. On
the other hand x is defined on (R, 0) and the condition φ1(0) > 0 is not required
in I.G.Scherbak’s equivalence relation. These differences appear in the definition of
wavefronts and consequently the figures of wavefronts in [4] and the figures in this
paper are different to each other.

Lemma 2.2. Let f0(x, y) ∈ M(r; k,m) and z = jlf0(0). Let Ol
rK(z) be the

submanifold of J l(r+ k,m) consist of the image by πl of the orbit under the reticular

K(m)-equivalence of f0. Put z = jlf0(0). Then

Tz(O
l
rK(z)) = πl((〈f0,1, x

∂f0,1
∂x

〉E(r;k) +M(r; k)〈
∂f0,1
∂y

〉)

× · · · × (〈f0,m, x
∂f0,m
∂x

〉E(r;k) +M(r; k)〈
∂f0,m
∂y

〉)).

We say that a map germ f0 = (f0,1, . . . , f0,m)(x, y) ∈ M(r; k,m) is reticular K(m)-

l-determined if all map germ in M(r; k,m) which has the same l-jet of f0 is reticular
K(m)-equivalent to f0.

Lemma 2.3. (cf., [7, Lemma 2.3]) Let f0 = (f0,1, . . . , f0,m)(x, y) ∈ M(r; k,m)
and let

M(r; k)l+1 ⊂ M(r; k)(〈f0,i, x
∂f0,i
∂x1

〉+M(r; k)〈
∂f0,i
∂y

〉) +M(r; k)l+2

for i = 1, . . . ,m. Then f0 is reticular K(m)-l-determined. Conversely if f0(x, y) ∈
M(r; k,m) is reticular K(m)-l-determined, then

M(r; k)l+1 ⊂ 〈f0,i, x
∂f0,i
∂x1

〉E(r;k) +M(r; k)〈
∂f0,i
∂y

〉 for i = 1, . . . ,m.

We say that f = (f1, . . . , fm)(x, y, u), g = (g1, . . . , gm)(x, y, u) ∈ E(r; k + n,m)
are reticular (P-K)(m)-equivalent if there exist Φi ∈ Bn(r; k + n) of the form:

Φi(x, y, u) = (xφi
1(x, y, t, u), φ

i
2(x, y, t, u), φ3(u))

and a unit a = (a1, . . . , am)(x, y, u) ∈ E(r; k + n,m) such that gi = ai · fi ◦ Φi for
i = 1, . . . ,m. We write Φ = (Φ1, . . . ,Φm) and call (Φ, a) a reticular (P-K)(m)-
isomorphism from f to g.

We say that a map germ f = (f1, . . . , fm)(x, y, u) ∈ M(r; k + n,m) is reticular

(P-K)(m)-l-determined if all map germ in M(r; k + n,m) which has the same l-jet of
f is reticular (P-K)(m)-equivalent to f .
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For f = (f1, . . . , fm)(x, y, u) ∈ E(r; k + n,m) we set

OrP-K(m)
(f) = (〈f1, x

∂f1
∂x

〉E(r;k+n) +M(r; k + n)〈
∂f1
∂y

〉)× · · · × (〈fm, x
∂fm
∂x

〉E(r;k+n)

+M(r; k + n)〈
∂fm
∂y

〉) +M(n)〈
∂f

∂u
〉.

Lemma 2.4. Let f = (f1, . . . , fm)(x, y, u) ∈ E(r; k + n,m) and z = jlf(0). We

write Ol
rP-K(m)

(z) the submanifold which consists of l-jets of the orbit of f under the

reticular t-(P-K)(m) equivalence relation. Then it holds that

Ol
rP-K(m)

(z) = πl(OrP-K(m)
(f)).

Lemma 2.5. (cf., [7, Lemma 3.10]) Let f = (f1, . . . , fm)(x, y, u) ∈ M(r; k+n,m)
and l be a non-negative integer. If

M(r; k + n,m)l ⊂ OrP-K(m)
(f) +M(n)M(r; k + n,m)l,(1)

then f is reticular (P-K)(m)-l-determined.

In convenience, we denote an unfolding of a function germ f(x, y, u) ∈ M(r; k +
n,m) by F (x, y, t, u) ∈ M(r; k +m′ + n,m).

Let F (x, y, t, u) ∈ M(r; k+m′
1 +n,m) and G(x, y, s, u) ∈ M(r; k+m′

2+n,m) be
unfoldings of f(x, y, u) ∈ M(r; k + n,m).

A reticular t-(P-K)(m)-f -morphism from F to G is a pair (Φ, a), where Φ =
(Φ1, . . . ,Φm) for Φi ∈ M(r; k +m′

2 + n, r; k +m′
1 + n) and a = (a1, . . . , am) is a unit

of E(r; k +m′
2 + n,m) satisfying the following conditions:

(1) Φi can be written in the form:

Φi(x, y, t, u) = (xφi
1(x, y, t, u), φ

i
2(x, y, t, u), φ3(t), φ4(t, u)),

(2) Φi|Hr×Rk+n = idHr×Rk+n , ai|Hr×Rk+n ≡ 1,

(3) Gi(x, y, t, u) = ai(x, y, t, u)·Fi◦Φi(x, y, t, u) for all (x, y, t, u) ∈ (Hr×R
k+m′

2+n, 0).
If there exists a reticular t-(P-K)(m)-f -morphism from F to G, we say that G is

reticular t-(P-K)(m)-f -induced from F . If m1 = m2 and Φ is invertible, we call (Φ, a)
a reticular t-(P-K)(m)-f -isomorphism from F to G and we say that F is reticular
t-(P-K)(m)-f -equivalent to G.

We say that F (x, y, t, u), G(x, y, t, u) ∈ E(r; k + m′ + n,m) are reticular t-(P-

K)(m)-equivalent if there exist diffeomorphism germs

Φi : (H
r × R

k+m′+n, 0) → (Hr × R
k+m′+n, 0) (i = 1, . . . ,m)

of the form

Φi(x, y, t, q, z) = (xφi
1(x, y, t, u), φ

i
2(x, y, t, u), φ3(t), φ4(t, u))

and a unit a = (a1, . . . , am) ∈ E(r; k + m′ + n,m) such that Gi = ai · Fi ◦ Φi for
i = 1, . . . ,m. We call (Φ, a) a reticular t-(P-K)(m)-isomorphism from F to G.
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We say that function germs F1(x1, . . . , xr1 , y1, · · · , yk1 , t, q, z) ∈ M(r1; k1 +m′ +
n + 1) and F2(x1, . . . , xr2 , y1, · · · , yk2 , t, q, z) ∈ M(r2; k2 + m′ + n + 1) are stably

reticular t-P-K-equivalent if F1 and F2 are reticular t-P-K-equivalent after additions
of linear forms of x of which all coefficients are not zero and non-degenerate quadratic
forms in the variables y.

We define the notion of stable reticular t-(P-K)(m)-equivalence in the same method
of the stable reticular t-P-K-equivalence.

Definition 2.6. We define stabilities of unfoldings. Let F = (F1,
. . . , Fm)(x, y, t, u) ∈ M(r; k + m′ + n,m) be an unfolding of f = (f1,
. . . , fm)(x, y, u) ∈ M(r; k + n,m).

We say that F is reticular t-(P-K)(m)-stable if the following condition holds: For

any neighborhood U of 0 in H
r × R

k+m′+n and any representative F̃ ∈ C∞(U,Rm),
there exists a neighborhood NF̃ of F̃ in C∞-topology such that for any G̃ ∈ NF̃

there exist (0, yi, t0, u0) ∈ U for i = 1, . . . ,m such that G = (G1, . . . , Gm) and
F are reticular t-(P-K)(m)-equivalent, where Gi ∈ M(r; k + m′ + n) is defined by

Gi(x, y, t, u) = G̃(x, y + yi, t+ t0, u+ u0)− G̃(0, yi, t0, u0).

We say that F is a reticular t-(P-K)(m)-versal unfolding of f if any unfolding of
f is reticular t-(P-K)(m)-f -induced from F . We say that F is a reticular t-(P-K)(m)-

universal unfolding of f if m is minimal in reticular t-(P-K)(m)-versal unfoldings of
f .

We say that F is reticular t-(P-K)(m)-infinitesimally versal if

E(r; k + n,m) = 〈f1, x
∂f1
∂x

,
∂f1
∂y

〉E(r;k+n) × · · · ×

〈fm, x
∂fm
∂x

,
∂fm
∂y

〉E(r;k+n) + 〈
∂f

∂u
〉E(n) + 〈

∂F

∂t
|t=0〉R

We say that F is reticular t-(P-K)(m)-infinitesimally stable if

E(r; k +m′ + n,m) = 〈F1, x
∂F1

∂x
,
∂F1

∂y
〉E(r;k+m′+n) × · · · ×

〈Fm, x
∂Fm

∂x
,
∂Fm

∂y
〉E(r;k+m′+n) + 〈

∂F

∂u
〉E(m′+n) + 〈

∂F

∂t
〉E(m′)

We say that F is reticular t-(P-K)(m)-homotopically stable if for any smooth path-
germ (R, 0) → E(r; k + m′ + n,m), τ 7→ Fτ = (F1,τ , . . . , Fm,τ ) with F0 = F , there
exists a smooth path-germs (R, 0) → B(r; k+m′+n)×E(r; k+m′+n), τ 7→ (Φi

τ , a
i
τ )

with (Φi
0, a

i
0) = (id, 1) and Φi

τ has the form

Φi
τ (x, y, t, u) = (xφi,1

τ (x, y, t, u), φi,2
τ (x, y, t, u), φ3

τ (t), φ
4
τ (t, u))

such that each (Φi
τ , a

i
τ ) is a reticular t-P-K-isomorphism and Fi,τ = aiτ · Fi,0 ◦ Φi

τ for
τ ∈ (R, 0) and i = 1, . . . ,m.

Let U be a neighborhood of 0 in H
r ×R

k+m′+n, F̃ = (F̃ 1, . . . , F̃m) : U → R
m be

a smooth map, and l be a non-negative integer. We choose a neighborhood U ′ of 0 in
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R
km+m′+n such that (0, yi, t, u) ∈ U for any (y1, . . . , ym, t, u) ∈ U ′ and i. We define

the smooth map germ

jl1F̃ : U ′ −→ J l(r + k + n,m)

as follows: For (y1, . . . , ym, t, u) ∈ U we set jl1F̃ (y1, . . . , ym, t, u) by the l-jet of the
map germ (f1

(y1,t,u), . . . , f
m
(ym,t,u)) ∈ M(r; k + n,m) at 0, where f i

(yi,t,u) is given by

f i
(yi,t,u)(x

′, y′, u′) = F̃ i(x′, yi + y′, t, u+ u′)− F̃ i(0, yi, t, u)

Let F (x, y, t, u) ∈ M(r; k + m′ + n,m) be an unfolding of f(x, y, u) ∈ M(r; k +
n,m). Let l be a non-negative integer and z = jlf(0). We say that F is reticular

t-(P-K)(m)-l-transversal if j
l
1F̃ at 0 is transversal to Ol

rP-K(m)
(z) for a representative

F̃ ∈ C∞(U,Rm) of F .

Lemma 2.7. (cf., [7, Lemma 3.4]) Let F (x, y, t, u) ∈ M(r; k +m′ + n,m) be an

unfolding of f(x, y, u) ∈ M(r; k+n,m). Then F is reticular t-(P-K)(m)-l-transversal
unfolding of f if and only if

E(r; k + n,m) = 〈f1, x
∂f1
∂x

,
∂f1
∂y

〉E(r;k+n) × · · · × 〈fm, x
∂fm
∂x

,
∂fm
∂y

〉E(r;k+n)

+〈
∂f

∂u
〉E(n) + 〈

∂F

∂t
|t=0〉R +M(r; k + n)l+1E(r; k + n,m).

Theorem 2.8. (Uniqueness of universal unfoldings) (cf., [7, Theorem 3.13]) Let
F (x, y, u, t), G(x, y, u, t) ∈ M(r; k + n +m′,m) be unfoldings of f ∈ M(r; k + n,m).
If F and G are reticular t-(P-K)(m)-universal, then F and G are reticular t-P-K-f -
equivalent.

The following theorem is used to prove Theorem 4.6.

Theorem 2.9. (cf., [7, Theorem 3.14]) Let F (x, y, t, u) ∈ M(r; k + m′ + n,m)
be an unfolding of f(x, y, u) ∈ M(r; k + n,m) and let f is an unfolding of f0(x, y) ∈
M(r; k,m). Then following are equivalent.

(1) There exists a non-negative number l such that f0 is reticular K(m)-l-determined

and F is reticular t-(P-K)(m)-l
′-transversal for l′ ≥ lm+ l +m′,

(2) F is reticular t-(P-K)(m)-stable,

(3) F is reticular t-(P-K)(m)-versal,

(4) F is reticular t-(P-K)(m)-infinitesimally versal,

(5) F is reticular t-(P-K)(m)-infinitesimally stable,

(6) F is reticular t-(P-K)(m)-homotopically stable.

3. Reticular Legendrian unfoldings. In order to consider one-parameter fam-
ilies of Legendrian submanifold with an r-corner, we require the notion of reticular
Legendrian unfoldings, their equivalence relation, and generating families.

We consider the big 1-jet bundle J1(R×R
n,R) and the canonical 1-form Θ on that

space. Let (t, q) = (t, q1, . . . , qn) be the canonical coordinate system on R × R
n and

(t, q, z, s, p) = (t, q1, . . . , qn, z, s, p1, . . . , pn) be the corresponding coordinate system
on J1(R× R

n,R). Then the canonical 1-form Θ is given by

Θ = dz −
n
∑

i=1

pidqi − sdt = θ − sdt,
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where θ is the canonical 1-form on J1(Rn,R).
Let {Lσ,t}σ⊂Ir ,t∈(R,0) be a family of contact regular r-cubic configurations on

J1(Rn,R) defined by a family of contact embedding germs Ct : (J1(Rn,R), 0) →
J1(Rn,R) depending smoothly on t ∈ (R, 0) such that π◦C0(0) = 0 and Lσ,t = Ct(L

0
σ)

for all σ ⊂ Ir and t ∈ (R, 0).
Then we consider the following contact diffeomorphism germ C on (J1(R ×
R

n,R), w) (Π(w) = 0):

Lemma 3.1. For any family of contact embedding germs Ct : (J1(Rn,R), 0) →
J1(Rn,R) (π ◦ C0(0) = 0) depending smoothly on t ∈ (R, 0), there exists a unique

function germ h on (J1(R×R
n,R), 0) such that the map germ C : (J1(R×R

n,R), 0) →
(J1(R× R

n,R), 0) defined by

C(t, q, z, s, p) = (t, q ◦ Ct(q, z, p), z ◦ Ct(q, z, p), h(t, q, z, s, p), p ◦Ct(q, z, p))

is a contact diffeomorphism.

Proof. We denote Ct(q, z, p) = (qt(q, z, p), zt(z, q, p), pt(q, z, p)). Since Ct is a con-
tact embedding germ for all t ∈ (R, 0), there exists a function germ α(t, q, z, p) around
zero with α(0) 6= 0 such that dzt(q, z, p)−pt(q, z, p)dqt(q, z, p) = α(t, q, z, p)(dz−pdq)
for all fixed t. By the direct calculation of this equation, we have that

∂zt
∂z

− pt
∂qt
∂z

= α,
∂zt
∂q

− pt
∂qt
∂q

= −pα,
∂zt
∂p

− pt
∂qt
∂p

= 0.

We also calculate C∗(dz − pdq − sdt) by considering the above relations. Then we
have that

C
∗(dz − pdq − sdt)

= dzt(z, q, p)− pt(q, z, p)dqt(q, z, p)− h(t, q, z, s, p)dt

= α(t, z, q, p)dz − α(t, z, q, p)pdq− (
∂zt

∂t
(q, z, p)− pt(q, z, p)

∂qt

∂t
(q, z, p)− h(t, q, z, s, p))dt.

In order to make C a contact embedding, the function h(t, q, z, s, p) is uniquely de-
termined that:

(2) h(t, q, z, s, p) =
∂zt
∂t

(q, z, p)− pt(q, z, p)
∂qt
∂t

(q, z, p) + α(t, q, z, p)s.

Definition 3.2. Let C be a contact embedding germ (J1(R × R
n,R), 0) →

J1(R× R
n,R). We say that C is a P-contact diffeomorphism if C has the form:

(3) C(t, q, z, s, p) = (t, qC(t, q, z, p), zC(t, q, z, p), hC(t, q, z, s, p), pC(t, q, z, p)).

We remark that a P-contact diffeomorphism and the corresponding one-
parameter family of contact embedding germs are uniquely defined by each other.

We define that L̃r,0
σ = {(t, q, z, s, p) ∈ J1(R × R

n,R)|qσ = pIr−σ = qr+1 = · · · =
qn = s = z = 0, qIr−σ ≥ 0} for σ ⊂ Ir and L

r = {(t, q, z, s, p) ∈ J1(R× R
n,R)|q1p1 =

· · · = qrpr = qr+1 = · · · = qn = s = z = 0, qIr ≥ 0} be a representative as a germ of
the union of L̃r,0

σ for all σ ⊂ Ir. We denote that the set L̃r,0
σ is the normalization of the

particles incident from the σ-corner of the initial hypersurface germ with a r-corner
at time t.
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Definition 3.3. We say that a map germ L : (Lr, 0) → (J1(R ×
R

n,R), w) (Π(w) = 0) is a reticular Legendrian unfolding if L is the restriction of
a P-contact diffeomorphism. We call {L(L̃r,0

σ )}σ⊂Ir the unfolded contact regular r-
cubic configuration of L.

We note that: Let {L̃σ}σ⊂Ir be an unfolded contact regular r-cubic configu-
ration associated with a one-parameter family of contact regular r-cubic configura-
tions {Lσ,t}σ⊂Ir ,t∈(R,0). Then there is the following relation between the wavefront

Wσ = Π(L̃σ) and the family of wavefronts Wσ,t = π(Lσ,t):

Wσ =
⋃

t∈(R,0)

{t} ×Wσ,t for all σ ⊂ Ir.

In order to study bifurcations of wavefronts of unfolded contact regular r-cubic
configurations we introduce the following equivalence relation. Let Ψ be a contact
diffeomorphism germ on (J1(R × R

n,R), 0). We say that Ψ is a reticular P(r)-

diffeomorphism if πt ◦Ψ depends only on t and Ψ preserves L̃r,0
σ for all σ ⊂ Ir.

Let {L̃i
σ}σ⊂Ir (i = 1, 2) be unfolded contact regular r-cubic configurations on

(J1(R × R
n,R), wi) (Π(wi) = 0). We say that a contact diffeomorphism germ K :

(J1(R × R
n,R), w1) → (J1(R × R

n,R), w2) is a P-Legendrian equivalence if K has
the form:

(4) K(t, q, z, s, p) = (φ1(t), φ2(t, q, z), φ3(t, q, z), φ4(t, q, z, s, p), φ5(t, q, z, s, p)).

We say that they are P-Legendrian equivalent if there exist a P-Legendrian equi-
valence K such that L̃2

σ = K(L̃1
σ) for all σ ⊂ Ir.

In order to understand the meaning of P-Legendrian equivalence, we observe the
following: Let {L̃i

σ}σ⊂Ir (i = 1, 2) be unfolded contact regular r-cubic configurations
on (J1(R× R

n,R), wi) (Π(wi) = 0) and {Li
σ,t}σ⊂Ir ,t∈(R,0) be the corresponding one-

parameter families of contact regular r-cubic configurations on J1(Rn,R) respectively.
We take the smooth path germs wi : (R, 0) → (J1(Rn,R), 0) such that {Li

σ,t}σ⊂Ir are
defined at wi(t) for i = 1, 2. Suppose that there exists a P-Legendrian equivalence
K from {L̃1

σ}σ⊂Ir to {L̃2
σ}σ⊂Ir of the form (4). We set W i

σ,t be the wavefront of

Li
σ,t for σ ⊂ Ir, t ∈ (R, 0) and i = 1, 2. We define the family of diffeomorphism

gt : (Rn × R, π(w1(t))) → (Rn × R, π(w2(t))) by gt(q, z) = (φ2(t, q, z), φ3(t, q, z)).
Then we have that gt(W

1
σ,t) = W 1

σ,φ1(t)
for all σ ⊂ Ir , t ∈ (R, 0).

We also define the equivalence relation among reticular Legendrian unfoldings.
Let Li : (L

r, 0) → (J1(R × R
n,R), wi), (i = 1, 2) be reticular Legendrian unfoldings.

We say that L1 and L2 are P-Legendrian equivalent if there exist a P-Legendrian
equivalence K and a reticular r-diffeomorphism Ψ such that K ◦ L1 = L2 ◦Ψ.

We remark that two reticular Legendrian unfoldings are P-Legendrian equivalent
if and only if the corresponding unfolded contact regular r-cubic configurations are
P-Legendrian equivalent.

By the same proof of Lemma 5.3 in [6], we have the following:

Lemma 3.4. Let {L̃σ}σ⊂Ir be an unfolded contact regular r-cubic configuration on

(J1(R × R
n,R), w) (Π(w) = 0). Then there exists a P-contact diffeomorphism germ

C on (J1(R × R
n,R), 0) such that C defines {L̃σ}σ⊂Ir and preserves the canonical

1-form.



312 T. TSUKADA

By this lemma we may assume that all reticular Legendrian unfoldings (and all
unfolded contact regular r-cubic configurations) are defined by P-contact diffeomor-
phism germs which preserve the canonical 1-form.

We can construct generating families of reticular Legendrian unfoldings. A
function germ F (x, y, t, q, z) ∈ M(r; k + 1 + n+ 1) is said to be P-C-non-degenerate

if ∂F
∂x

(0) = ∂F
∂y

(0) = 0 and x, t, F, ∂F
∂x

, ∂F
∂y

are independent on (Hk × R
k+1+n+1, 0).

A P-C-non-degenerate function germ F (x, y, t, q, z) ∈ M(r; k+1+n+1) is called
a generating family of a reticular Legendrian unfoldings L if

L(L̃r,0
σ ) = {(t, q, z,

∂F

∂t
/(−

∂F

∂z
),
∂F

∂q
/(−

∂F

∂z
)) ∈ (J1(R× R

n,R), w)|

xσ = F =
∂F

∂xIr−σ

=
∂F

∂y
= 0, xIr−σ ≥ 0} for all σ ⊂ Ir.

We remark that for a P-C-non-degenerate function germ F (x, y, t, q, z), the function
germ F (·, ·, t, ·, ·) is C-non-degenerate (see [6, p.111]).

Lemma 3.5. Let C be a P-contact diffeomorphism germ (J1(R × R
n,R), 0) →

(J1(R×R
n,R), w) (Π(w) = 0) which preserves the canonical 1-form. If the map germ

(T,Q,Z, S, P ) → (T,Q,Z, sC(T,Q,Z, S, P ), pC(T,Q,Z, S, P ))

is diffeomorphism, then there exists a function germ H(T,Q, p) ∈ M(1+n+n)2 such

that the canonical relation PC associated with C has the form:

PC = {(T,Q,Z,−
∂H

∂T
(T,Q, p) + s,−

∂H

∂Q
,

T,−
∂H

∂p
,H − 〈

∂H

∂p
, p+ p0〉+ s0T + Z, s+ s0, p+ p0)},(5)

and the function germ F ∈ M(r;n + 1 + n + 1) defined by F (x, y, t, q, z) = −z +
H(t, x, 0, y) + 〈y + p0, q〉 + s0t is a generating family of the reticular Legendrian un-

folding C|L.

Proof. We have that dz − (s+ s0)dt − (p + p0)dq = dZ − SdT − PdQ on PC . It
follows that d(z − Z) = (s + s0)dt + (p + p0)dq − SdT − PdQ and d(z − Z − (s +
s0)t − (p + p0)q) = −tds − qdp − SdT − PdQ. Then there exists a function germ
H ′(T,Q, s, p) ∈ M(1 + n+ 1 + 1 + n)2 such that

z −Z − (s+ s
0)t− (p+ p

0)q = H
′(T,Q, s, p), t = −

∂H ′

∂s
, q = −

∂H ′

∂p
, S = −

∂H ′

∂T
, P = −

∂H ′

∂Q

on PC . Since t = T = −∂H′

∂s
on PC , we have that H

′(T,Q, s, p) = H(T,Q, p)−Ts for
some H(T,Q, p) ∈ M(1 + n+ n)2. Then we have that

z − Z − T (s+ s0)− 〈−
∂H

∂p
, p+ p0〉 = H(T,Q, p)− Ts.

It follows that

z = H(T,Q, p)− 〈
∂H

∂p
, p+ p0〉+ s0T + Z.
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Then we have the required form of PC . By the direct calculation with the form PC ,
we have that F is a generating family of C|Lr .

We have the following theorem which gives the relations between reticular Leg-
endrian unfoldings and their generating families.

Theorem 3.6. (1) For any reticular Legendrian unfolding L : (Lr , 0) → (J1(R×
R

n,R), w) (Π(w) = 0), there exists a function germ F (x, y, t, q, z) ∈ M(r; k+1+n+1)
which is a generating family of L.
(2) For any P-C-non-degenerate function germ F (x, y, t, q, z) ∈ M(r; k + 1 + n + 1)
with ∂F

∂t
(0) = ∂F

∂q
(0) = 0, there exists a reticular Legendrian unfolding L : (Lr, 0) →

(J1(R× R
n,R), w) (Π(w) = 0) of which F is a generating family.

(3) Two reticular Legendrian unfolding are P-Legendrian equivalent if and only if

their generating families are stably reticular t-P-K-equivalent.

This theorem is proved by analogous methods of [5], [6]. We give the sketch of
the proof. We may assume that w = 0.
(1) Let C be a P-contact diffeomorphism germ on (J1(R×R

n,R), 0) such that C|L =
L. We may assume that C∗Θ = Θ. By taking a P-Legendrian equivalence of L,
we may assume that the canonical relation PC associated with C has the form (5)
for the function germ H ∈ M(1 + n + n)2. Then the function germ F (x, y, t, q, z) ∈
M(r;n+ 1 + n+ 1) defined by

F (x, y, t, q, z) = −z +H(t, x1, . . . , xr, 0, y) + 〈y, q〉

is a generating family of L.
(2) Let a P-C-non-degenerate function germ F (x, y, t, q, z) ∈ M(r; k+1+n+1) with
∂F
∂t

(0) = ∂F
∂q

(0) = 0 be given. By [6, Lemma 2.1], we may assume that F has the

form F (x, y, t, q, z) = −z + F0(x, y, t, q) for some F0 ∈ M(r; k + 1 + n). Choose an
(n− r)× k-matrix A and an (n− r)× n-matrix B such that the matrix

(6)

















∂2F0

∂x∂y

∂2F0

∂x∂q

∂2F0

∂x∂t
∂2F0

∂y∂y

∂2F0

∂y∂q

∂2F0

∂y∂t
A B 0
0 0 1

















0

is invertible.

Let F ′ ∈ M(r + k + 1+ n+ 1) be a function germ which is obtained by an extension
the source space of F to (Rr+k+1+n+1, 0). Define the function G(S,Q, y, t, q, z) ∈
M(n+ 1 + 1 + k + 1 + n+ 1) by that

G(Q,Z, S, y, t, q, z) = −z + F ′(Q1, . . . , Qr, y, t, q)+

(Qr+1, . . . , Qn)A







y1
...
yk






+ (Qr+1, . . . , Qn)B







q1
...
qn






+ St.

Then G is a generating family of the canonical relation PC associated with some P-
contact diffeomorphism germ C. The function germ F is a generating family of the
reticular Legendrian unfolding C|L.
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(3) We need only to prove that: If F1, F2 ∈ M(r; k+1+n) are generating families of

the same reticular Legendrian unfolding, then they are reticular t-P-K-equivalent.

We may reduce that Fi has the form Fi(x, y, t, q, z) = −z + F 0
i (x, y, t, q) for F 0

i ∈
M(r; k + 1 + n), i = 1, 2. Then F 0

1 and F 0
2 are generating families of the same

reticular Lagrangian map in the sense of [5]. By [5, p.587 the assertion (3)], there
exists a reticular R-equivalence from F 0

2 to F 0
1 of the form:

F 0
1 (x, y, t, q) = F 0

2 (xφ1(x, y, t, q), φ2(x, y, t, q), t, q).

This means that F1 and F2 are reticular t-P-K-equivalent.

4. Multi-reticular Legendrian unfoldings. Let Li : (Lri , 0) → (J1(R ×
R

n,R), wi)(i = 1, . . . ,m) be reticular Legendrian unfoldings with Π(wi) = 0 where
w1, . . . , wm are distinct. Then we call L = (L1, . . . ,Lm) a multi-reticular Legendrian

unfolding.
Let (L1, . . . ,Lm) and (L′

1, . . . ,L
′
m) be multi-reticular Legendrian unfoldings. We

say that they are P(m)-Legendrian equivalent if there exist contact diffeomorphism
germs

Ki : (J
1(R× R

n,R), wi) → (J1(R× R
n,R), w′

i) (i = 1, . . . ,m)

of the forms

(7) Ki(t, q, z, s, p) = (φ1(t), φ2(t, q, z), φ3(t, q, z), φ
i
4(t, q, z, s, p), φ

i
5(t, q, z, s, p))

and reticular ri-diffeomorphisms Ψi on (Lri , 0) such that Ki ◦ Li = L′
i ◦ Ψi for i =

1, . . . ,m.
Let (L1, . . . ,Lm) be a multi-reticular Legendrian unfolding and Fi ∈ M(ri; ki +

1 + n+ 1) be generating families of Li for i = 1, . . . ,m. We call F = (F1, . . . , Fm) a
generating family of (L1, . . . ,Lm).

By the consideration of stable reticular t-(P-K)(m)-equivalences of gener-
ating families of multi-reticular Legendrian unfoldings, we may assume that
r = r1 = · · · = rm, k = k1 = · · · = km by taking stable reticular t-(P-K)(m)-
equivalences of them.

We say that a map germ (F1, . . . , Fm) ∈ M(r; k + 1 + n +
1,m) is P(m)-C-non-degenerate if all Fi are P-C-non-degenerate and

(∂F1

∂t
/(−∂F1

∂z
), ∂F1

∂q
/(−∂F1

∂z
)), . . . , (∂Fm

∂t
/(−∂Fm

∂z
), ∂Fm

∂q
/(−∂Fm

∂z
)) are distinct.

By Theorem 3.6, we have the following:

Theorem 4.1. (1) For any multi-reticular Legendrian unfolding L, there exists

a multi-generating family of L,
(2) For any P(m)-C-non-degenerate map germ F = (F1, . . . , Fm) ∈ M(r; k + 1 +
n + 1,m), there exists a multi-reticular Legendrian unfolding of which F is a multi-

generating family,

(3) Let F = (F1, . . . , Fm) and F ′ = (F ′
1, . . . , F

′
m) be multi-generating families of multi-

reticular Legendrian unfoldings (L1, . . . ,Lm) and (L′
1, . . . ,L′

m) respectively. Then

(L1, . . . ,Lm) and (L′
1, . . . ,L

′
m) are P(m)-Legendrian equivalent if and only if F and

F ′ are stably reticular t-(P-K)(m)-equivalent.

Let U be an open set in J1(R × R
n,R). We consider contact embedding germs

(J1(R×R
n,R), 0) → J1(R×R

n,R) and contact embeddings U → J1(R×R
n,R). Let
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(T,Q, S, Z, P ) and (t, q, z, s, p) be canonical coordinates of the source space and the
target space respectively. We define the following notations:
ı : (J1(R × R

n,R) ∩ {Z = 0}, 0) → (J1(R × R
n,R), 0) be the inclusion map on the

source space,

CT (J
1(R× R

n,R), 0) = {C|C is a P-contact embedding germ

(J1(R× R
n,R), 0) → J1(R× R

n,R)},

CΘ
T (J1(R× R

n,R), 0) = {C ∈ CT (J
1(R× R

n,R), 0)| C∗Θ = Θ},

CZ
T (J1(R× R

n,R), 0) = {C ◦ ı |C ∈ CT (J
1(R× R

n,R), 0)},

CΘ,Z
T (J1(R× R

n,R), 0) = {C ◦ ı |C ∈ CΘ
T (J1(R× R

n,R), 0)}.

Let V = U ∩ {Z = 0} and ı̃ : V → U be the inclusion map.

CT (U, J
1(R× R

n,R)) = {C̃ : U → J1(R× R
n,R)|

C̃ is a contact embedding of the form (3)},

CΘ
T (U, J1(R× R

n,R)) = {C̃ ∈ CT (U, J
1(R× R

n,R)) |C̃∗Θ = Θ},

CZ
T (V, J1(R× R

n,R)) = {C̃ ◦ ı̃ |C̃ ∈ CT (U, J
1(R× R

n,R))},

CΘ,Z
T (V, J1(R× R

n,R)) = {C̃ ◦ ı̃ |C̃ ∈ CΘ
T (U, J1(R× R

n,R))}.

Definition 4.2. We define stabilities of multi-reticular Legendrian unfoldings.
Let L = (L1, . . . ,Lm) be a multi-reticular Legendrian unfolding.

Stability. We say that L is stable if the following condition holds: Let C0,i ∈
CT (J

1(R × R
n,R), 0) be P-contact embedding germs such that C0,i|Lri = Li and

C̃0,i ∈ CT (Ui, J
1(R× R

n,R)) be representatives of C0,i for i = 1, . . . ,m. Then there
exist open neighborhoods NC̃0,i of C̃0,i in C∞-topology for i = 1, . . . ,m such that

for any C̃i ∈ NC̃0,i , there exist points xi = (T i, 0, . . . , 0, P i
r+1, . . . , P

i
n) ∈ Ui such that

the multi-reticular Legendrian unfolding (L1
x1
, . . . ,Lm

xm
) and L are P(m)-Legendrian

equivalent, where the reticular Legendrian unfolding Li
xi

is defined by

x = (T,Q,Z, S, P ) 7→ C̃i(x0 + x) − C̃i(x0) + (0, 0, P i
r+1Qr+1 + · · ·+ P i

nQn, 0, 0).

Homotopical stability. A one-parameter family of P-contact embedding germs
C̄ : (J1(R×R

n,R)×R, (0, 0)) → J1(R×R
n,R) ((T,Q,Z, S, P, τ) 7→ Cτ (T,Q,Z, S, P ))

is called a P-contact deformation of L if C0|L = L. A map germ Ψ̄ : (J1(R×R
n,R)×

R, (0, 0)) → (J1(R× R
n,R), 0)((T,Q,Z, S, P, τ) 7→ Ψτ (T,Q,Z, S, P )) is called a one-

parameter deformation of reticular r-diffeomorphisms if Ψ0 = idJ1(R×Rn,R) and Ψt

is a reticular r-diffeomorphism for all t around 0. We say that L is homotopically

stable if for any reticular P-contact deformations C̄i = {Ci
τ} of Li, there exist one-

parameter families of P-Legendrian equivalences K̄i = {Ki
τ} on (J1(R × R

n,R), wi)
with Ki

0 = id of the form

(8) Ki
τ (t, q, z, s, p) = (φ1

τ (t), φ
2
τ (t, q, z), φ

3
τ (t, q, z), φ

4,i
τ (t, q, z, s, p), φ5,i

τ (t, q, z, s, p))

and one-parameter deformations of reticular ri-diffeomorphisms Ψ̄i = {Ψi
τ} such that

Ci
τ = Ki

τ ◦ C
i
0 ◦Ψ

i
τ for t around 0 and i = 1, . . . ,m.
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Infinitesimal stability. Let C ∈ CT (J
1(R×R

n,R), 0) be a P-contact diffeomor-
phism germ. We say that a vector field v on (J1(R×R

n,R), w) (Π(w) = 0) along C is
an infinitesimal P-contact transformation of C if there exists a P-contact deformation
C̄ = {Cτ} on (J1(R×R

n,R), 0) such that C0 = C and dCτ

dτ
|τ=0 = v. We say that a vec-

tor field ξ on (J1(R×R
n,R), 0) is an infinitesimal reticular r-diffeomorphism if there

exists a one-parameter deformation of reticular r-diffeomorphisms Ψ̄ = {Ψτ} such
that dΨτ

dτ
|τ=0 = ξ. We say that a vector field η on (J1(R×R

n,R), w) is an infinitesi-

mal P-Legendrian equivalence if there exists a one-parameter family of P-Legendrian
equivalences K̄ = {Kτ} such that K0 = idJ1(R×Rn,R) and

dKτ

dτ
|τ=0 = η. We say that

L is infinitesimally stable if for any extension Ci of Li and any infinitesimal P-contact
transformation vi of C

i, there exist infinitesimal reticular ri-diffeomorphisms ξi and
infinitesimal P-Legendrian equivalences ηi at wi of the form

ηi(t, q, z, s, p) = a1(t)
∂

∂t
+ a2(t, q, z)

∂

∂q
+ a3(t, q, z)

∂

∂z

+ai4(t, q, z, s, p)
∂

∂s
+ ai5(t, q, z, s, p)

∂

∂p
(9)

such that vi = Ci
∗ξi + ηi ◦ Ci for i = 1, . . . ,m.

We denote CT (U, J
1(R×R

n,R))(m) = CT (U, J
1(R×R

n,R))×· · ·×CT (U, J
1(R×

R
n,R)) (m-products) and denote other notations analogously. We call an element

C = (C1, . . . , Cm) ∈ CT (J
1(R× R

n,R), 0)(m) a P(m)-contact diffeomorphism germ if
Π ◦ C(0) = 0 and C1(0), . . . , Cm(0) are distinct.

We may take an extension of a reticular Legendrian unfolding L by an element
of CΘ

T (J1(R × R
n,R), 0) by Lemma 3.4. Then as the remark after the definition

of the stability of reticular Legendrian maps in [6, p.121], we may consider the
following other definitions of stabilities of multi-reticular Legendrian unfoldings: (1)
The definition given by replacing CT (J

1(R×R
n,R), 0) and CT (Ui, J

1(R×R
n,R)) to

CΘ
T (J1(R×R

n,R), 0) and CΘ
T (Ui, J

1(R×R
n,R)) of original definition respectively. (2)

The definition given by replacing to CZ
T (J1(R×R

n,R), 0) and CZ
T (Vi, J

1(R×R
n,R))

respectively. (3) The definition given by replacing to CΘ,Z
T (J1(R × R

n,R), 0) and

CΘ,Z
T (Vi, J

1(R× R
n,R)) respectively, where Vi = Ui ∩ {Z = 0}.

Then we have the following lemma which is proved by the same method of the
proof of [6, Lemma 7.2]

Lemma 4.3. The original definition and other three definitions of stabilities of

multi-reticular Legendrian unfoldings are all equivalent.

By this lemma, we may choose an extension of a multi-reticular Legendrian
unfolding from among all of CT (J

1(R × R
n,R), 0))(m), CΘ

T (J1(R × R
n,R), 0))(m),

CZ
T (J1(R× R

n,R), 0))(m), and CΘ,Z
T (J1(R× R

n,R), 0))(m).

We say that a function germ H on (J1(R × R
n,R), 0) is P-fiber preserving if H

has the form H(t, q, z, s, p) =
∑n

j=1 hj(t, q, z)pj + h0(t, q, z) + a(t)s.

Lemma 4.4. Let C ∈ CT (J
1(R×R

n,R), 0). Then the following hold: (1) A vector

field germ v on (J1(R×R
n,R), 0) along C is an infinitesimal P-contact transformation

of C if and only if there exists a function germ f on (J1(R × R
n,R), 0) such that f
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does not depend on s and v = Xf ◦C.

(2) A vector field germ η on (J1(R × R
n,R), 0) is an infinitesimal P-Legendrian

equivalence if and only if there exists a P-fiber preserving function germ H on (J1(R×
R

n,R), 0) such that η = XH .

(3) A vector field ξ on (J1(R×R
n,R), 0) is an infinitesimal reticular r-diffeomorphism

if and only if there exists a function germ gi ∈ Br such that ξ = Xg, where Br =
〈q1p1, . . . , qrpr, qr+1, . . . , qn, z〉Et,q,z,p

+ 〈s〉Et
.

Let U be a neighborhood of 0 in J1(R× R
n,R). We define:

J l
CΘ

T

(U, J1(R× R
n,R)) = {jlC(w0) ∈ J l(U, J1(R× R

n,R))|

C : (U,w0) → J1(R× R
n,R) is a P-contact embedding germ which preserves Θ}.

Theorem 4.5. Let Qi, i = 1, 2, . . . are submanifolds of J l
CΘ

T

(U, J1(R×R
n,R))(m).

Then the set

T = {C = (C1, . . . , Cm) ∈ C
Θ
T (U,J1(R× R

n
,R))(m)| jlC is transversal to Qi for all i ∈ N}

is a residual set in CΘ
T (U, J1(R× R

n,R))(m).

This is proved by an analogous method of [8, p.345 Theorem 6.4].

We denote the ring E(1 + n + n,m) on the coordinates (t, q, p) by Et,q,p(m) and
denote other notations analogously.

Theorem 4.6. Let L = (L1, . . . ,Lm) be a multi-reticular Legendrian unfolding

with a multi-generating family F = (F1, . . . , Fm). Let C = (C1, . . . , Cm) ∈ CΘ
T (J1(R×

R
n,R), 0)(m) be an extension of L. Then the following are equivalent.

(u) F is a reticular t-(P-K)(m)-stable unfolding of F |t=0.

(hs) L is homotopically stable.

(is) L is infinitesimally stable.

(a) Et,q,p(m) = Br1
0 ×· · ·×Brm

0 + 〈1, p1 ◦C
′, . . . , pn ◦C

′〉(Π◦C′)∗Et,q,z
+ 〈s◦C′〉Et

, where

C′ = C|z=s=0, B
ri
0 = 〈q1p1, . . . , qripri , qri+1, . . . , qn〉Et,q,p

, and (Π ◦ C′)∗Et,q,z be the

Et,q,z-submodule of Et,q,z(m) such that (Π ◦ C′)∗a = (a(Π ◦ C′
1), . . . , a(Π ◦ C′

m)) for

a ∈ Et,q,z.

We remark that sufficiently near multi-reticular Legendrian unfoldings of stable
one are also stable by the condition (a).
Proof. (u)⇒(hs): Let P-contact deformations {Ci

τ} of Li be given for i = 1, . . . ,m.
The homotopically stability of multi-reticular Legendrian unfoldings is invariant under
P(m)-Legendrian equivalences, we may assume that the map germs

(T,Q,Z, S, P ) → (T,Q,Z, s ◦ Ci
τ (T,Q,Z, S, P ), p ◦ Ci

τ (T,Q,Z, S, P ))

are diffeomorphisms for all τ and i. By Lemma 3.5, there exists a one-parameter
families Hi

τ (T,Q, p) ∈ M(1 + n + n)2 depending smoothly on τ ∈ (R, 0) such that
the canonical relations PCi

τ
associated with Ci

τ have the forms (5) for function germs

Hi
τ (T,Q, p) ∈ M(1 + n + n)2. We set (0, 0, 0, si, pi) = Li(0). Then the map germs

Fτ = (F 1
τ , . . . , F

m
τ ) ∈ M(r;n + 1 + n+ 1,m) defined by

F i
τ (x, y, t, q, z) = −z +Hi

τ (t, x, 0, y) + 〈y + pi, q〉+ sit
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are generating families of multi-reticular Legendrian unfoldings Lτ :=
(C1

τ |Lr1 , . . . , Cm
τ |Lrm ) for τ ∈ (R, 0). Since F0 is a reticular t-(P-K)(m)-stable

unfolding of F |t=0, it follows that F0 is a reticular t-(P-K)(m)-homotopically stable
unfolding of F |t=0 by Theorem 2.9. Therefore there exists a one-parameter family
of reticular t-(P-K)(m)-isomorphism from Fτ to F0 depending smoothly on τ . This
means that there exists a one-parameter families of P-Legendrian equivalences Ki

τ

depending smoothly on τ such that Ki
τ have the forms (7) and

Ci
τ (L

ri,0
σ ) = Ki

τ ◦ L(Lri,0
σ ) for all σ ⊂ Ir, τ ∈ (R, 0), i ∈ {1, . . . ,m}.

Then the map germs Ψi
τ := (Ci

0)
−1 ◦ (Ki

τ )
−1 ◦Ci

τ give one-parameter deformations of
reticular ri-diffeomorphisms on (J1(R×R

n,R), 0) and we have that Ci
τ = Ki

τ ◦C
i
0◦Ψ

i
τ .

This means that L is homotopically stable.
(hs)⇒(is): Let v = (v1, . . . , vm) be an infinitesimal P-contact transformation of L.

Then there exist P-contact deformations {Ci
τ} of Li such that vi =

dCi
τ

dτ
|τ=0 for

i = 1, . . . ,m. Then there exist one-parameters of P-Legendrian equivalences {Ki
τ} of

the form (7) and one-parameter deformations of reticular P(ri)-diffeomorphisms {Ψi
τ}

such that Ci
τ = Ki

τ ◦ C
i
0 ◦Ψ

i
τ for τ ∈ (R, 0) and i ∈ {1, . . . ,m}. Then we have that

vi =
dCi

τ

dτ
|τ=0 =

dKi
τ

dτ
|τ=0 ◦ C0 + (C0)∗(

dΨi
τ

dτ
|τ=0).

Since vi has the form (9) for each i, it follows that L is infinitesimally stable.
(is)⇒(a): Let a map germ f = (f1, . . . , fm) ∈ Et,q,p(m) be given. We define
the function germs f ′

i on (J1(R × R
n,R), w′

i) by f ′
i(t, q, z, s, p) = fi ◦ πT,Q,P ◦

C−1
i (t, q, z, ai(t, q, z, p), p), where w′

i = (0, . . . , 0, pi) and the function germs ai are
defined by πS ◦ C−1

i (t, q, z, ai(t, q, z, p), p) ≡ 0. This equation can be solved by (2).
Since f ′

i does not depend on s, it follows that Xf ′

i
◦ Ci is an infinitesimal P-contact

transformation of Ci. Therefore there exist an infinitesimal P-Legendrian equiv-
alence ηi of the form (9) and an infinitesimal reticular ri-diffeomorphism ξi such
that Xf ′

i
◦ Ci = (Ci)∗ξi + ηi ◦ Ci. By Lemma 4.4, there exist a P-fiber preserv-

ing function germ H on (J1(R × R
n,R), 0) and gi ∈ Bri such that ξi = Xgi and

ηi = XH . Then we have that f ′
i ◦ Ci = gi + H ◦ Ci. Since f ′

i ◦ C(T,Q,Z, S, P ) =
fi◦πT,Q,P ◦(Ci)

−1(t, q, z, ai(T,Q,Z, 0, P ), p) = fi ◦πT,Q,P (T,Q,Z, 0, P ) = fi(T,Q, P )
and H has the form H(t, q, z, s, p) =

∑n
j=1 hj(t, q, z)pi + h0(t, q, z) + h′(t)s, We have

that

fi ≡
n
∑

j=1

(hj(Π ◦ C′
i))(pi ◦ C

′
i) + h0(Π ◦ C′

i) + (h′(t ◦ C′
i))(s ◦ C

′
i) mod Bri

0 .

Since t ◦ Ci = t, we have the required form.
(a)⇒(u): By Lemma 3.5, there exists function germs Hi(T,Q, p) ∈ M(1 + n + n)2

such that the function germ Hi(T,Q, p) − Ts is a generating function of PCi
for

each i. Then the map germ F = (F1, . . . , Fm) ∈ M(r;n + 1 + n + 1,m) given by
Fi(x, y, t, q, z) = −z+Hi(t, x, 0, y)+ sit+ 〈y+pi, q〉 is a generating family of L. Then
P ′
Ci

:= PCi
|Z=S=0 has the form

P ′
Ci

= {(T,Q,−
∂Hi

∂Q
, T,−

∂Hi

∂p
,Hi − 〈

∂Hi

∂p
, p+ pi〉+ siT,

∂Hi

∂T
+ si, p+ pi)}.

Then the map germ P ′
Ci

→ (R1+n+n, 0), w 7→ πT,Q,P (w) is a diffeomorphism. We set

D(Fi) = {(x, y, t, q, z) ∈ (Hr × R
n+1+n+1, 0)|Fi = x∂Fi

∂x
= ∂Fi

∂y
= 0}. We also define
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the map germ D(Fi) → P ′
Ci

by

(x, y, t, q, z) 7→ (t, x, 0,−
∂Fi

∂x
,−

∂Hi

∂Qr+1
(t, x, 0, y), . . . ,−

∂Hi

∂Qn

, t, q, z,
∂Fi

∂t
, y + pi).

Then the composition of the above two map germs induces the map germ
ET,Q,P /B

ri
0 → ED(Fi). We denote T,Q, P for the variables on the source space of

this map germ. Then the correspondence is given that:

T 7→ t,Q1 7→ x1, . . . , Qr 7→ xr, P1 7→ −
∂Fi

∂x1
, . . . , Pr 7→ −

∂F i

∂xr

,

t ◦ C′
i(T,Q, P ) 7→ t, q ◦ C′

i(T,Q, P ) 7→ q, z ◦ C′
i(T,Q, P ) 7→ z,

s ◦C′
i(T,Q, P ) 7→

∂Fi

∂t
, p ◦C′

i(T,Q, P ) 7→ y+ p
i
, ((Π ◦C′

i)
∗Et,q,z) 7→ Et,q,z, ((t ◦C

′
i)

∗Et) 7→ Et.

Then (a) is transferred that

E(r;n + 1 + n+ 1) = 〈F, x
∂F

∂x
,
∂F

∂y
〉E(r;n+1+n+1)

+〈1(m)(= −
∂F

∂z
), (y1 + p1)

(m)(=
∂F

∂q1
), . . . , (yn + pn)

(m)(=
∂F

∂qn
)〉Et,q,z

+ 〈
∂F

∂t
〉Et

,

where a(m) = (a, . . . , a) for each function germ a and (yi + pi)
(m) = (yi + p1i , . . . , yi +

pni ). It follows that F is a reticular t-P-K-infinitesimal stable unfolding of F |t=0. We
have that F is a reticular t-P-K-stable unfolding of F |t=0 by Theorem 2.9.

5. Genericity. In order to give a generic classification of multi-reticular Leg-
endrian unfoldings, we reduce our investigation to finite dimensional jet spaces of
P-contact diffeomorphism germs.

Definition 5.1. Let L = (L1, . . . ,Lm) be a multi-reticular Legendrian un-
folding. We say that L is l-determined if the following condition holds: For any
extension Ci ∈ CT (J

1(R × R
n,R), 0) of Li, the multi-reticular Legendrian un-

folding (C′
1|Lr1 , . . . , C ′

m|Lrm ) and L are P(m)-Legendrian equivalent for all C′
i ∈

CT (J
1(R× R

n,R), 0) satisfying that jlCi(0) = jlC′
i(0) for i = 1, . . . ,m.

As Lemma 4.3, we may consider the following other definition of finitely determi-
nacy of reticular Legendrian maps:
(1) The definition given by replacing CT (J

1(R× R
n,R), 0) to CΘ

T (J1(R ×R
n,R), 0).

(2) The definition given by replacing CT (J
1(R× R

n,R), 0) to CZ
T (J1(R× R

n,R), 0).

(3) The definition given by replacing CT (J
1(R×R

n,R), 0) to CΘ,Z
T (J1(R ×R

n,R), 0).
Then the following holds by [8, p.341 Proposition 5.6]:

Proposition 5.2. Let L be a multi-reticular Legendrian unfolding. Then

(A) If L is l-determined of the original definition, then L is l-determined of the defi-

nition (1).
(B) If L is l-determined of the definition (1), then L is l-determined of the definition

(3).
(C) If L is (l+ 1)-determined of the definition (3), then L is l-determined of the def-

inition (2).
(D) If L is l-determined of the definition (2), then L is l-determined of the original

definition.
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Theorem 5.3. Let L = (L1, . . . ,Lm) be a multi reticular Legendrian unfolding.

If L is infinitesimally stable then L is (n+ 5)-determined.

Proof. It is enough to prove L is (n + 4)-determined of Definition 5.1 (3). Let

Ci ∈ CΘ,Z
T (J1(R×R

n,R), 0) be extensions of Li for i = 1, . . . ,m. Since the finite deter-
minacy of multi-reticular Legendrian unfoldings is invariant under P(m)-Legendrian
equivalences, we may assume that PCi

have the form (5) for some function germs
Hi(T,Q, p) ∈ M(2n + 1)2. Then Fi(x, y, t, q, z) = −z + H0,i(x, y, t) + 〈y + pi, q〉 ∈
M(r;n + 1 + n + 1) is a generating family of Li, where (0, 0, 0, si, pi) = Li(0) and
H0,i(x, y, t) = Hi(t, x, 0, y) + sit ∈ M(r;n+ 1).

By Theorem 4.6, we have that F = (F1, . . . , Fm) is a reticular t-(P-K)(m)-
infinitesimally versal unfolding of f := F |t=0. It follows that

E(r;n + 1 + n+ 1,m) = 〈F1, x
∂F1

∂x
,
∂F1

∂y
〉E(r;n+1+n+1) × · · · ×

〈Fm, x
∂Fm

∂x
,
∂Fm

∂y
〉E(r;n+1+n+1) + 〈

∂F

∂q
,
∂F

∂z
〉E(1+n+1) + 〈

∂F

∂t
〉E(1)

By the restriction of the both side to q = z = 0, we have that

E(r;n + 1,m) =

〈H0,1, x
∂H0,1

∂x
,
∂H0,1

∂y
〉E(r;n+1) × · · · × 〈H0,m, x

∂H0,m

∂x
,
∂H0,m

∂y
〉E(r;n+1)

+〈1(m), (y1 + p1)
(m), . . . , (yn + pn)

(m),
∂H0

∂t
〉E(1),(10)

where H0 = (H0,1, . . . , H0,m). It follows that

M(r;n + 1,m)n+2 ⊂

〈H0,1, x
∂H0,1

∂x
,
∂H0,1

∂y
〉E(r;n+1) × · · · × 〈H0,m, x

∂H0,m

∂x
,
∂H0,m

∂y
〉E(r;n+1)

+M(1)E(r;n + 1,m).(11)

By (10) and (11) we have that

M(r;n+ 1,m)n+3 ⊂ (〈H0,1, x
∂H0,1

∂x
〉E(r;n+1) +M(r;n+ 1)〈

∂H0,1

∂y
〉)× · · · ×

(〈H0,m, x
∂H0,m

∂x
〉E(r;n+1) +M(r;n+ 1)〈

∂H0,m

∂y
〉)

+M(1)〈1(m), (y1 + p1)
(m), . . . , (yn + pn)

(m),
∂H0

∂t
〉.

Let C′
i ∈ CΘ,Z

T (J1(R × R
n,R), 0) satisfying jn+4Ci(0) = jn+4C′

i(0) be given for i =
1, . . . ,m. There exist function germs H ′

i(T,Q, p) ∈ M(2n+ 1)2 such that

PC′

i
= {(T,Q,−

∂H ′
i

∂T
(T,Q, p) + s,−

∂H ′
i

∂Q
, T,−

∂H ′
i

∂p
,

H ′
i − 〈

∂H ′
i

∂p
, p+ pi〉+ siT, s+ si, p+ pi)}.

Since Hi = z − qp on PCi
and H ′

i = z − qp on PC′

i
, we have that jn+4H0,i(0) =

jn+4H ′
0,i(0), where H ′

0,i(x, y, t) = H ′
i(t, x, 0, y) + sit ∈ M(r;n + 1). By (11) we have
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that

M(r;n,m)n+2 ⊂ 〈H0,1(x, y, 0), x
∂H0,1

∂x
(x, y, 0),

∂H0,1

∂y
(x, y, 0)〉E(r;n)

× · · · × 〈H0,m(x, y, 0), x
∂H0,m

∂x
(x, y, 0),

∂H0,m

∂y
(x, y, 0)〉E(r;n)

and this means that H0,i(x, y, 0) is reticular K-(n+3)-determined by Lemma 2.3 and
hence H0(x, y, 0) is also reticular K(m)-(n + 3)-determined. So we may assume that
H0 −H ′

0 ∈ M(1)M(r;n + 1,m)n+3. Then the function germs

Gi(x, y, t, q, z) = −z +H ′
0,i(x, y, t) + 〈y + pi, q〉 ∈ M(r;n + 1 + n+ 1)

are generating families of C′
i|Lri for i = 1, . . . ,m.

We define the function germs Eτ0,i(x, y, t, τ) ∈ E(r;n+1+1) by Eτ0,i(x, y, t, τ) =
(1− τ − τ0)H0,i(x, y, t) + (τ + τ0)H

′
0,i(x, y, t) for τ0 ∈ [0, 1] and define Eτ0(x, y, t, τ) ∈

E(r;n + 1 + 1,m) by Eτ0 = (Eτ0,1, . . . , Eτ0,m) By an analogous method of the proof
of [7, Lemma 5.10], we have that

∂Eτ0

∂τ
∈ Mt(〈Eτ0,1, x

∂Eτ0,1

∂x
〉E(r;n+2) +M(r;n+ 2)〈

∂Eτ0,1

∂y
〉)× · · · ×

(〈Eτ0,m, x
∂Eτ0,m

∂x
〉E(r;n+2) +M(r;n+ 2)〈

∂Eτ0,m

∂y
〉)

+M
2
t 〈1

(m), (y1 + p1)
(m), . . . , (yn + pn)

(m),
∂Eτ0

∂t
〉,

for τ0 ∈ [0, 1]. This means that there exist Φi(x, y, t) ∈ B1(r;n + 1) and units ai ∈
E(r;n+ 1) and b1(t), . . . , bn(t), c(t) ∈ M(1)2 such that
(1) Φi has the form

Φi(x, y, t) = (xφi
1(x, y, t, q, z), φ

i
2(x, y, t, q, z), φ3(t)),

(2) H ′
0,i(x, y, t) = ai(x, y, t) · H0,i ◦ Φi(x, y, t) +

∑n
j=1(yj + pij)bj(t) + c(t) for

(x, y, t) ∈ H
r × R

n+1 and i = 1, . . . ,m,
(3) φ(x, y, 0) = (x, y), a(x, y) = 1 for (x, y) ∈ H

r × R
n.

This means that F and G = (G1, . . . , Gm) are reticular t-(P-K)(m)-infinitesimal
versal unfoldings of f . It follows that F and G are reticular t-(P-K)(m)-equivalent.
Therefore L and (C′

1|Lr1 , . . . , C ′
m|Lrm ) are P(m)-Legendrian equivalent.

Let J l(2n + 3, 2n + 3)(m) be the set of multi-l-jets of map germs from (J1(R ×
R

n,R), 0) to J1(R×R
n,R) and tCl(n,m) be the immersed manifold in J l(2n+3, 2n+

3)(m) which consists of multi-l-jets of P-contact embedding germs. Let Ll(2n+3)(m)

be the Lie group which consists of multi-l-jets of diffeomorphism germs on (J1(R ×
R

n,R), 0).
We consider the Lie subgroup rtLel(n,m) of Ll(2n + 3)(m) × Ll(2n + 3) which

consists of multi-l-jets of reticular ri-diffeomorphisms on the source space and l-jets
of P-Legendrian equivalences of Π at 0:

rtLel(n,m) = {(jlΨ1(0), . . . , j
lΨm(0), jlK(0)) ∈ Ll(2n+ 3)(m) × Ll(2n+ 3) |

Ψi is a reticular ri-diffeomorphism on (J1(R× R
n,R), 0),

K is a P-Legendrian equivalence of Π}.
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The group rtLel(n,m) acts on J l(2n + 3, 2n + 3) and tCl(n,m) is invariant
under this action. Let C = (C1, . . . , Cm) be a P(m)-contact diffeomorphism germ

from (J1(R × R
n,R), 0) to J1(R × R

n,R) and set zi = jlCi(0), Li = Ci|Lri ,
L = (L1, . . . ,Lm), z = (z1, . . . , zm, ). We denote the orbit rtLel(n,m) · z by [z].
Then

[z] = {jlC′(0) ∈ tC
l(n,m) | L and (C′

1|Lr1 , . . . , C
′
m|Lrm ) are P(m)-Legendrian equivalent}.

We denote by V IC the vector space consisting of infinitesimal P(m)-contact trans-
formation germs of C and denote by V I0C the subspace of V IC consist of germs which
vanish on 0. We denote by V LJ1(R×Rn,R) by the vector space consisting of infinitesi-
mal P-Legendrian equivalences on Π and denote by V L0

J1(R×Rn,R) by the subspace of
V LJ1(R×Rn,R) consists of germs which vanish at 0.

We denote by V 0
Lr the vector space consisting of infinitesimal reticular r-

diffeomorphisms on (J1(R×R
n,R), 0) which vanishes at 0 and set V 0

L
= V 0

Lr1 ×V 0
Lrm .

We have that by Lemma 4.4:

V I0C = {(v1, . . . , vm)|vi : (J
1(R× R

n,R), 0) → T (J1(R× R
n,R)),

vi = Xfi ◦ Ci for some f ∈ M
2
t,q,z,p},

V L0
J1(R×Rn,R) = {η ∈ X(J1(R× R

n,R), 0) | η = XH for some

P-fiver preserving function germ H ∈ M
2
J1(R×Rn,R)},

V
0
L = {(ξ1, . . . , ξm)|ξi ∈ X(J1(R× R

n
,R), 0), ξi = Xgi for some gi ∈ B

ri ∩M
2
J1(R×Rn,R)}.

We define the homomorphism tC : MJ1(R×Rn,R)V IL → V I0C by tC(v) = (C1∗v1,
. . . , Cm∗vm) and define the homomorphism wC : V L0

J1(R×Rn,R) → V I0C by wC(η) =

(η ◦ C1, . . . , η ◦ Cm).

We denote V I lC the subspace of V IC consisting of infinitesimal P-contact trans-
formation germs of C whose l-jets are 0:

V I lC = {(v1, . . . , vm) ∈ V IC | jlvi(0) = 0}.

For C̃ = (C̃1, . . . , C̃m) ∈ CT (U, J
1(R× R

n,R))(m), we define the continuous map
jl0C̃ : U → tCl(n,m) by x to the l-jet of (C̃1x, . . . , C̃mx).

Theorem 5.4. Let L = (L1, . . . ,Lm) be a reticular Legendrian unfolding. Let

Ci be an extension of Li and l ≥ (n + 2)2. We set C = (C1, . . . , Cm). Then the

followings are equivalent:

(s) L is stable.

(t) jl0C is transversal to [jl0C(0)].
(a’) Et,q,p(m) = Br1

0 × · · · × Brm
0 + 〈1, p1 ◦ C′, . . . , pn ◦ C′〉(Π◦C′)∗Et,q,z

+ 〈s ◦ C′〉Et
+

M
l
t,q,p(m), where C′ = C|z=s=0 and Bri

0 = 〈q1p1, . . . , qripri , qri+1, . . . , qn〉Et,q,p
,

(a) Et,q,p(m) = Br1
0 × · · · ×Brm

0 + 〈1, p1 ◦ C′, . . . , pn ◦ C′〉(Π◦C′)∗Et,q,z
+ 〈s ◦ C′〉Et

,

(is) L is infinitesimally stable,

(hs) L is homotopically stable,

(u) A multi-generating family F of L is reticular t-(P-K)(m)-stable unfolding of F |t=0.

Proof. (s)⇒(t): By theorem 4.5 and (s), there exists a multi-P-contact em-
bedding C̃′ = (C̃′

1, . . . , C̃′
m) around C̃ such that jl0C̃

′ is transversal to [jl0C(0)],
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and ((C̃′
1)x1 |Lr1 , . . . , (C̃′

m)xm
|Lrm ) and L are P(m)-Legendrian equivalent for xi =

(ti, 0, . . . , 0, pir+1, . . . , p
i
n) ∈ U . This means that [jl0C̃

′
x(0)] = [jl0C(0)] and hence jl0C

is transversal to [jl0C(0)] at 0 for x = (x1, . . . , xm).
(t)⇔(a): This is proved by an analogous method of Theorem 4.6.
(a)⇔(a’): We need only to prove (a’)⇒(a). By the restriction of (a’) to t = 0 we have
that:

Eq,p(m) = Br1
1 ×· · ·×Brm

1 + 〈1, p1 ◦C
′′, . . . , pn ◦C

′′〉(Π◦C′′)∗Et,q,z
+ 〈s◦C′′〉R+M

l
q,p(m),

where C′′ = C′|t=0 and Bri
1 = Bri

0 |t=0. Then we have that

Eq,p(m) = B
r1
1 ×· · ·×B

rm
1 +(Π◦C′′)∗Mt,q,pEq,p(m)+〈1, p1◦C

′′
, . . . , pn◦C

′′
, s◦C′′〉R+M

l
q,p(m).

It follows that

M
n+2
q,p(m) ⊂ Br1

1 × · · · ×Brm
1 + (Π ◦ C′′)∗Mt,q,pEq,p(m).

Therefore

M
n+2
t,q,p(m) ⊂ Br1

0 × · · · ×Brm
0 + (Π ◦ C′)∗Mt,q,pEq,p(m) +MtEt,q,p(m),

and we have that

M
l
t,q,p(m) = (Mn+2

t,q,p(m))
n+2 ⊂ Br1

0 ×· · ·×Brm
0 +(Π◦C′)∗Mn+2

t,q,pEt,q,p(m)+MtEt,q,p(m).

It follows that

Et,q,p(m) = Br1
0 × · · · ×Brm

0 + 〈1, p1 ◦ C
′, . . . , pn ◦ C′〉(Π◦C′)∗Et,q,z

+〈s ◦ C′〉Et
+ (Π ◦ C′)∗Mn+2

t,q,pEt,q,p(m) +MtEt,q,p(m).

This means (a) by Lemma 2.1.
(a)⇔(is)⇔(hs)⇔(u): This is proved in Theorem 4.6.
(t)&(is)⇒(s): Since jl0C is transversal to [jl0C(0)], it follows that there exists a
neighborhood WC̃ of C̃ in CΘ

T (U, J1(R × R
n,R))(m) such that for any C̃′ ∈ WC̃

there exists x ∈ U (m) such that jl0C̃
′ is transversal to [jl0C(0)] at x. Since

jl0C̃
′
x ∈ [jl0C(0)], it follows that there exists a multi-P-contact embedding germ

C′′ = (C′′
1 , . . . , C

′′
m) : (J1(R × R

n,R)(m), 0) → J1(R × R
n,R)(m) such that L and

L′′ := (C′′
1 |L̃r1 , . . . , C

′′
m|

L̃rm ) are P(m)-Legendrian equivalent and jl0C
′′
i (0) = jl0C̃

′
ix(0).

Since L is infinitesimally stable, it follows that L is (n + 3)-determined by The-
orem 5.3. Therefore we have that L′′ is also (n + 3)-determined. Then L′′ and
((C̃′

1)x1 |Lr1 , . . . , (C̃′
m)xm

|Lrm ) are P-Legendrian equivalent. This means that L is
stable.

Let L = (L1, . . . ,Lm) be a stable multi-reticular Legendrian unfolding. We say
that L is simple if there exists a representative C̃ ∈ CT (U, J

1(R × R
n,R))(m) of a

extension of L such that {C̃x|x ∈ U} is covered by finite orbits [C1], . . . , [Cl] for some
multi-P-contact embedding germs C1, . . . , Cl ∈ CT (U, J

1(R× R
n,R))(m).

Proposition 5.5. Let L = (L1, . . . ,Lm) be a stable multi-reticular Legendrian

unfolding. Then L is simple if and only if all reticular Legendrian unfoldings Li are

simple for i = 1, . . . ,m.
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In order to classify generic multi-reticular Legendrian unfoldings, we classify
stable unfoldings F = (F1, . . . , Fm) (n ≤ 2,m ≥ 2) of f = (f1, . . . , fm) and
f0 = (f0,1, . . . , f0,m) satisfying the condition: the reticular (P-K)(m−1)-codimension

of (f1, . . . , f̌i, . . . , , fm) = 0 for any i.

Let a stable unfoldings F = (F1, . . . , Fm) (n ≤ 2,m ≥ 2) of f = (f1, . . . , fm) and
f0 = (f0,1, . . . , f0,m) satisfying the condition be given. Then each Fi is a reticular
t-P-K-stable unfolding of fi, there exist monomials ϕi,1, . . . , ϕi,µi

∈ M(ri; ki) such

that they consist a basis of Qf0,i = 〈f0,i, x
∂f0,i
∂x

,
∂f0,i
∂y

〉E(ri;ki) and ϕi,1 has the
maximal degree, and ϕi,µi

= 1. Then we have that µ1 + · · ·µm ≤ n + 2. Since
∑m

i=1 µi ≤ n + 2 ≤ 4, we have that all f0,i are simple singularities. Therefore f0 is
stably reticular K(m)-equivalent to one of the multi-germs in the following list:
n = 1;
m = 1; y2, y3, y4, x2, x3, ±xy + y3,
m = 2; (y2, y2), (y2, y3), (y2, x2),
m = 3; (y2, y2, y2),
n = 2;
m = 1; y2, y3, y4, y5, y21 ± y22 , x2, x3, x4, ±xy + y3, xy + y4, x2 + y3,
m = 2; (y2, y2), (y2, y3), (y2, y4), (y3, y3), (y2, x2), (y2, x3), (y2,±xy+y3), (x2, x2),
m = 3; (y2, y2, y2), (y2, y2, y3), (y2, y2, x2),
m = 4; (y2, y2, y2, y2).

We construct a reticular (P-K)(m)-versal unfolding for each germ by the usual
method. Then the corresponding list is as follows:
n = 1;
(1) (y2 + u1,1, y

2 + u2,1)
(2) (y2 + u1,1, y

3 + u2,1y + u2,2)
(3) (y2 + u1,1, x

2 + u2,1x+ u2,2)
(4) (y2 + u1,1, y

2 + u2,1, y
2 + u3,1)

n = 2;
(6) (y2 + u1,1, y

2 + u2,1)
(7) (y2 + u1,1, y

3 + u2,1y + u2,2)
(8) (y2 + u1,1, y

4 + u2,1y
2 + u2,2y + u2,3)

(9) (y3 + u1,1y + u1,2, y
3 + u2,1y + u2,2)

(10) (y2 + u1,1, x
2 + u2,1x+ u2,2)

(11) (y2 + u1,1, x
3 + u2,1x

2 + u2,2x+ u2,3)
(12) (y2 + u1,1,±xy + y3 + u2,1y

2 + u2,2y + u2,3)
(13) (x2 + u1,1x+ u1,2, x

2 + u2,1x+ u2,2)
(14) (y2 + u1,1, y

2 + u2,1, y
2 + u3,1)

(15) (y2 + u1,1, y
2 + u2,1, y

3 + u3,1y + u3,2)
(16) (y2 + u1,1, y

2 + u2,1, x
2 + u3,1x+ u3,2)

(17) (y2 + u1,1, y
2 + u2,1, y

2 + u3,1, y
2 + u4,1).

In the case that the reticular (P-K)(m)-codimension of f = 0, the map germ F is
stably reticular t-(P-K)(m)-equivalent to G = (G1, . . . , Gm), where Gi(x, y, t, q, z) =
f0,i(x, y)+ui,1ϕ1(x, y)+· · ·+ui,µi

ϕi,µi
(x, y)−z for i = 1, . . . ,m−1, Gm(x, y, t, q, z) =

f0,i(x, y) + um,1ϕ1(x, y) + · · · + um,µm−1ϕm,µm−1(x, y) − z, and (q1, . . . , qn, z) =
(u1,1, . . . , u1,µ1 , . . . , um,1, . . . , um,µm−1 , u1, . . . , uµ, z).

In the case that the reticular (P-K)(m)-codimension of f = 1, F is stably reticular
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t-(P-K)(m)-equivalent to (F ′
1, . . . , F

′
m), where

(1) F ′
1 = f0,1(x, y) + (t+ a(q, z))ϕ1(x, y) + u1,1ϕ2(x, y) · · ·+ u1,µ1−1ϕ1,µ1(x, y)− z,

(2) F ′
i = f0,i(x, y) + ui,1ϕ1(x, y) + · · ·+ ui,µi

ϕi,µi
(x, y)− z for 1 < i < m,

(3) F ′
m = f0,m(x, y) + um,1ϕm,1(x, y) + · · ·+ um,µm−1ϕm,µm−1(x, y)− z,

(4) (q1, . . . , qn, z) = (u1,1, . . . , u1,µ1−1, u2,1, . . . , u2,µ2 , . . . , um,1, . . . , um,µm−1 ,
u1, . . . , uµ, z),

(5) ∂a
∂u1,j

(0) = 0 for j = 1, . . . , µ1 − 1, ∂a
∂z

(0) = 0, and ( ∂2a
∂ui∂uj

(0))i,j=1,...,µ is

non-degenerate.

We denote the linear part of a by v = v2 + · · · + vm, where vi depends only on
ui,1, . . . , ui,µi

. Then we may reduce a to

a = t± u2,1 ± · · · ± um,1 ± u2
1 ± · · ·u2

µ.

Then F is stably reticular t-(P-K)(m)-equivalent to one of the following list:
n = 1;

m = 2;
0(0A1

0A1) : (y2 + q − z, y2 − z);
1(0A1

0A1) : (y2 + t± q2 − z, y2 − z);
1(0A1

0A2) : (y2 + t± q − z, y3 + qy − z);
1(0A1

0B2) : (y2 + t± q − z, x2 + qx− z).

m = 3;
1(0A1

0A1
0A1) : (y2 + t− z, y2 + q − z, y2 − q − z).

n = 2;

m = 2;
1(0A1

0A1) : (y2 + t± q21 ± q22 − z, y2 − z);
0(0A1

0A2) : (y2 + t± q1 − z, y3 + q1y − q2 − z);
1(0A1

0A2) : (y2 + t± q1 ± q22 − z, y3 + q1y − z);
0(0A1

0B2) : (y2 + q1 − z, x2 + q2x− z);
1(0A1

0A3) : (y2 + t± q1 − z, y4 + q1y
2 + q2y − z);

1(0A2
0A2) : (y3 + (t± q1)y + q2 − z, y3 + q1y − z);

1(0A1
0B2) : (y2 + t± q1 ± q22 − z, x2 + q1x− z);

1(0A1B3) : (y2 + t± q1 − z, x3 + q1x
2 + q2x− z);

1(0A1
0C±

3 ) : (y2 + t+ q1 − z,±xy + y3 + q1y
2 + q2y − z);

1(0B2
0B2) : (x2 + (t± q1)x+ q2 − z, x2 + q1x− z).

m = 3;
0(0A1

0A1
0A1) : (y2 + q1 − z, y2 + q2 − z, y2 − z);

1(0A1
0A1

0A1) : (y2 + t± q1 ± q22 − z, y2 + q1 − z, y2 − z);
1(0A1

0A1
0A2) : (y2 + t± q1 − z, y2 − z, y3 + q1y + q2 − z);

1(0A1
0A1

0B2) : (y2 + t± q1 − z, y2 − z, x2 + q1x+ q2 − z).

m = 4;
1(0A1

0A1
0A1

0A1) : (y2 + t± q1 ± q2 − z, y2 + q1 − z, y2 + q2 − z, y2 − z).

Theorem 5.6. Let ri = 0 or 1 for i = 1, . . . ,m and n ≤ 2. Let U be a

neighborhood of 0 in J1(R×R
n,R). Then there exists a residual set O ⊂ CΘ

T (U, J1(R×
R

n,R))(m) such that for any C̃ = (C̃1, . . . , C̃m) ∈ O and x = (x1, . . . , xm) ∈ U (m), the

multi-reticular Legendrian unfolding ((C̃1)x1 |Lr1 , . . . , (C̃m)xm
|Lrm ) is stable and have
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a generating family which is stably reticular t-(P-K)(m)-equivalent for one of the types

in the above list.

Proof. Let Xi = (Xi,1, · · · , Xi,m) (i = 1, . . . , s) be all simple singularities with
∑m

j=1 r-K-codim Xi,j ≤ n+2, that is each Xi,j is one of simple singularities A,B,C.
Let FXi

be P(m)-C-non-degenerate map germ which is unfolding of Xi for i = 1, . . . , s.
We choose an extension C(0Xi) and C(1Xi) of multi-reticular Legendrian unfoldings
with multi-generating families F(0Xi) and F(1Xi) respectively. Let l > 16. We define
that

O′ = {C̃ ∈ CΘ
T (U, J1(R× R

n,R))(m) |jl0C̃ is transversal to

[(jlC(jXi)(0)] for all i = 1, . . . , s and j = 0, 1}.

Let X ′
i = (Xi,1, . . . , Xi,m−1) (i = 1, . . . , s′) be all simple singularities with

∑m−1
j=1 r-K-

codim Xi,j ≤ n+1. We choose C(0X′

i
) ∈ CΘ

T (U, J1(R×R
n,R))(m−1) by an analogous

way. Then we define that

O′′ = {C̃ ∈ CΘ
T (U, J1(R× R

n,R))(m) |(jl0C̃1, . . . ,
ˇjl0C̃j , . . . , j

l
0C̃m) is

transversal to [(jlC(0X′

i
)(0)] for all i = 1 · · · , s′}.

Then O′ and O′′ are residual sets. We set

Y = {jlC(0) ∈ tCl(n,m) | the codimension of [jlC(0)] > 2n+ 4}.

Then Y is an algebraic set in tCl(n,m). Therefore we can define that

O′′′ = {C̃ ∈ CΘ
T (U, J1(R× R

n,R))(m) | jl0C̃ is transversal to Y }.

Then Y has codimension > 2n + 4 because all P(m)-contact embedding germ with

jlC(0) ∈ Y adjoin to the above list which are simple. Therefore

O′′′ = {C̃ ∈ CΘ
T (U, J1(R× R

n,R))(m) | jl0C̃(U (m)) ∩ Y = ∅}.

Then the set O = O′ ∩O′′ ∩O′′′ has the required condition. .

6. Classification for the cases r ≥ 2. In order to classify generic bifurcations
of wavefronts in the case r ≥ 2, our methods do not work well. Since the most simple
singularity f(x1, x2) = x2

1 + ax1x2 ± x2
2(B

±,a
2,2 ) have the reticular P-K-codimension 4

and one modality. By the classification list in [6, p.127], we have that all singularities
for r ≥ 2 are adjacent to B±,a

2,2 (cf., [5, p.593]). This means that all of them have
modalities and hence Theorem 5.6 does not work well. We need other equivalence
relations among reticular Legendrian unfoldings for the cases r ≥ 2.
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