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DECAY PROPERTY OF REGULARITY-LOSS TYPE FOR THE
EULER-MAXWELL SYSTEM∗

YOSHIHIRO UEDA† AND SHUICHI KAWASHIMA‡

Abstract. We study the decay property for the Euler-Maxwell system in R3 and observe that it
is of the regularity-loss type. We show that the solution decays at the rate t−3/4 as t → ∞, provided
that the initial data are in Hs ∩ L1 with enough regularity s ≥ 6. The proof is based on the time
weighted energy method combined with the semigroup approach.
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1. Introduction. We consider the Euler–Maxwell system in R3 which appears
in plasma physics (see, for example, [2, 3, 19]):

(1.1)



















nt + div(nu) = 0,

(nu)t + div(nu⊗ u) +∇p(n) = −n(E + u×B)− nu,

Et − rotB = nu,

Bt + rotE = 0,

(1.2) divE = n∞ − n,

(1.3) divB = 0.

Here n > 0 and u ∈ R3 are the density and the velocity of the electron, respectively,
while E ∈ R3 is the electric field and B ∈ R3 is the magnetic induction; these are
unknown functions of t > 0 and x ∈ R3. On the other hand, the pressure p(n) is a
given smooth function of n satisfying p′(n) > 0 for n > 0, and n∞ > 0 is a constant
denoting the ion density.

We note that the system (1.1) is regarded as a symmetric hyperbolic system.
Also, the system (1.1) with (1.2) and (1.3) admits a constant equilibrium state given
by

(1.4) (n, u,E,B) = (n∞, 0, 0, B∞),

where B∞ ∈ R3 is an arbitrarily fixed constant vector. In this paper we study (1.1),
(1.2), (1.3) with the initial condition

(1.5) (n, u,E,B)(0, x) = (n0, u0, E0, B0)(x).

We see that (1.2) and (1.3), which are regarded as the constraints, hold true for any
t > 0 if they hold initially. In fact, if the initial data verify

(1.6) divE0 = n∞ − n0, divB0 = 0,
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then the solutions to the problem (1.1), (1.5) always satisfy (1.2) and (1.3) for all
t > 0.

The initial value problem (1.1), (1.5) was first studied by Peng, Wang and Gu
[19]. They considered the problem with periodic boundary conditions and proved
the global existence of solutions (n, u,E,B)(t, x) in a small H4 neighborhood of the
constant equilibrium state (n∞, 0, 0, B∞). Also, they verified the L∞ convergence
of (n, u)(t, x) toward (n∞, 0) as t → ∞. On the other hand, the pure initial value
problem (1.1), (1.5) was discussed in our previous paper [23]. It was proved in [23] that
a unique global solution (n, u,E,B)(t, x) exists in a small Hs (s ≥ 3) neighborhood
of the equilibrium state (n∞, 0, 0, B∞) and converges to (n∞, 0, 0, B∞) in L∞ norm
as t → ∞. This is a refinement of the result in [19].

The main purpose of this paper is to show the quantitative decay estimates of
solutions toward the equilibrium state (n∞, 0, 0, B∞). First, under the smallness
condition on I0 = ‖(n0 − n∞, u0, E0, B0 −B∞)‖Hs , where s ≥ 6, we show that

(1.7) ‖∂k
x(n− n∞, u, E,B −B∞)(t)‖Hs−2k ≤ CI0(1 + t)−k/2

for each k with 0 ≤ k ≤ [s/2] (see Theorem 2.2). Moreover, when I1 = ‖(n0 −
n∞, u0, E0, B0 −B∞)‖Hs∩L1 with s ≥ 6 is small, we have the faster decay estimate

(1.8) ‖∂k
x(n− n∞, u, E,B −B∞)(t)‖Hs−2k−3 ≤ CI1(1 + t)−3/4−k/2

for each k with 0 ≤ k ≤ [(s − 1)/2] − 1 (see Theorem 2.3). The decay estimate
(1.7) is obtained for initial perturbation in Hs and is based on the time weighted
energy method. On the other hand, the faster decay estimate (1.8) is shown for
initial perturbation in Hs∩L1 and is obtained by a combination of the time weighted
energy method and the semigroup argument which makes use of the decay estimate
for the linearized problem (see Corollary 5.2).

As observed in [23], the dissipative structure of our system (1.1), (1.2), (1.3) is
weaker than the standard one characterized in [20, 22, 10] and is of the regularity-
loss type. In fact, we have the regularity-loss not only in the dissipation part of the
energy estimate but also in the decay estimate for the linearized system. This weaker
dissipation causes additional difficulties in establishing a global existence result and
especially in obtaining the time asymptotic decay of solutions. A similar dissipative
structure of the regularity-loss type was also found for various systems of partial
differential equations. See [16, 8, 9] for the dissipative Timoshenko system, [7, 13] for
hyperbolic-elliptic systems related to the radiation hydrodynamics, and [4, 21, 14, 15]
for a dissipative plate equation.

There are many works on the global existence and asymptotic stability of solutions
to the initial value problem for symmetric hyperbolic systems with dissipation. We
refer the reader to [6, 24, 1, 12]. All these works were, however, based on the standard
dissipative structure formulated in [20, 22, 10] and hence are different from the present
paper. Also, there are some interesting results on global existence and asymptotic
limit for small parameters for the Euler-Maxwell system (1.1), (1.2), (1.3). We refer
the reader to [3, 17, 18] and references therein.

The contents of this paper are as follows. In Section 2, we summarize some basic
properties of our system and give the statement of our main theorems. In Section
3, we review the energy method employed in [23]. Then, in Section 4, we develop
the time weighted energy method and give the proof of Theorem 2.2 on the global
existence and asymptotic decay of solutions for initial perturbation in Hs. In Section
5, we study the decay property of the linearized system and prove the decay estimate
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for the semigroup associated with the linearized problem. This decay estimate is based
on the pointwise estimate in the Fourier space. Finally, in Section 6, by applying the
semigroup argument, we prove Theorem 2.3 on the faster decay estimate (1.8) for
initial perturbation in Hs ∩ L1.

Added in proof. Through the private communication with Professor R. Duan, we
have learned that he obtained the decay estimate (1.8) under the regularity assump-
tion s ≥ 13 on the initial perturbation. See [5] for the details. We remark that our
time weighted energy method enables us to prove the same decay estimate under the
less-regularity assumption s ≥ 6.

Notations. We use the standard notations ∇ = (∂x1 , ∂x2 , ∂x3) and ∆ =
∑3

j=1 ∂
2
xj

for the gradient and Laplacian with respect to x = (x1, x2, x3), respec-

tively. Also, we use the divergence and rotation: div u =
∑3

j=1 ∂xj
uj and rotu =

(

∂x2u3 − ∂x3u2, ∂x3u1 − ∂x1u3, ∂x1u2 − ∂x1u2

)

for a vector function u = (u1, u2, u3).
For a nonnegative integer k, we denote by ∂k

x the totality of all the k-th order deriva-
tives with respect to x = (x1, x2, x3).

Let 1 ≤ p ≤ ∞. Then Lp = Lp(R3) denotes the usual Lebesgue space over R3 with
the norm ‖·‖Lp . For a nonnegative integer s, W s,p = W s,p(R3) denotes the s-th order
Sobolev space over R3 in the Lp sense, equipped with the norm ‖·‖W s,p . When p = 2,
we use the abbreviation Hs = W s,2. We note that Lp = W 0,p and L2 = H0. Let I
be an interval in [0,∞) and X be a Banach space over R3. Then, for a nonnegative
integer k, Ck(I;X) denotes the space of k-times continuously differential functions
on I with values in X .

Finally, in this paper, we use C or c to denote various positive constants without
confusion.

2. Main results. Before stating our main results, we briefly summarize the
basic properties of the Euler-Maxwell system (1.1). First, we observe that the system
(1.1) is written as

(2.1)



















nt + u · ∇n+ n div u = 0,

ut + (n · ∇)u+ a(n)∇n+ E + u×B + u = 0,

Et − rotB − nu = 0,

Bt + rotE = 0,

where a(n) = p′(n)/n. We put w = (n, u,E,B)T ; w is a column vector in R10 and
the superscript ”T ” denotes the transposed. Then the system (2.1) is rewritten in the
vector form as

(2.2) A0(w)wt +

3
∑

j=1

Aj(w)wxj
+ L(w)w = 0,
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where the coefficient matrices are given explicitly as

A0(w) =











a(n)

nI

I

I











, L(w) =











0

n(I − ΩB) nI

−nI O

O











,

3
∑

j=1

Aj(w)ξj =











a(n)(u · ξ) p′(n)ξ

p′(n)ξT n(u · ξ)I

O −Ωξ

Ωξ O











.

(2.3)

Here I and O denotes the 3 × 3 identity matrix and the zero matrix, respectively,
ξ = (ξ1, ξ2, ξ3) ∈ R

3, and Ωξ is the skew-symmetric matrix defined by

Ωξ =







0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0







for ξ = (ξ1, ξ2, ξ3) ∈ R3, so that we have ΩξE
T = (ξ × E)T (as a column vector

in R3) for E = (E1, E2, E3) ∈ R3. It should be noted that (2.2) is a symmetric
hyperbolic system because A0(w) is real symmetric and positive definite and Aj(w),
j = 1, 2, 3, are real symmetric. Also, the matrix L(w) is nonnegative definite, so
that it is regarded as a dissipation matrix. However, the matrix L(w) or L(w∞) has
skew-symmetric part and is not real symmetric, where w∞ = (n∞, 0, 0, B∞)T is the
constant state in (1.4); notice that we have L(w)w∞ = 0 for each w so that the
constant state w∞ lies in the kernel of L(w). Consequently, our system (2.2) is not
included in a class of systems considered in [1, 6, 10, 11, 12, 20, 22, 24].

Next, we discuss the dissipative structure of the system (1.1) together with (1.3);
the equation (1.2) is not considered here. The linearization of (1.1), (1.3) around the
constant state w∞ is given by

(2.4) A0zt +
3
∑

j=1

Ajzxj
+ Lz = 0,

(2.5)
3
∑

j=1

Rjzxj
= 0,

where z = w − w∞. Here we simply wrote as A0 = A0(w∞), Aj = Aj(w∞) and

L = L(w∞), while Rj are 1× 10 matrices given by R(ξ) =
∑3

j=1 R
jξj = (0, 0, 0, ξ) for

ξ = (ξ1, ξ2, ξ3) ∈ R
3. We apply the Fourier transform to (2.4) and (2.5) and obtain

A0ẑt + i|ξ|A(ω)ẑ + Lẑ = 0,

i|ξ|R(ω)ẑ = 0,

where A(ω) =
∑3

j=1 A
jωj and ω = ξ/|ξ| ∈ S2. The stability condition for the system

(2.4) with (2.5) is then formulated as follows (see [20, 10, 22]).
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Stability condition [SC]: Let ω ∈ S2 and µ ∈ R. Suppose that ϕ ∈ C10

satisfies Lϕ = 0, µA0ϕ+A(ω)ϕ = 0, and R(ω)ϕ = 0. Then we have ϕ = 0.

Here we impose the restriction R(ω)ϕ = 0 to treat the equation (2.5) and this is
motivated by the work [22]. We can check that our system verifies the stability
condition formulated above; for the details, we refer the reader to [23]. However, the
dissipation matrix L is not real symmetric and therefore we can not apply the general
theory on the dissipative structure developed in [20, 22, 10, 6, 24, 11, 1, 12] to our
system. This situation is quite similar to that for the dissipative Timoshenko system.
We refer the reader to [8, 9].

In what follows we use the vector notations:

w = (n, u,E,B)T , w∞ = (n∞, 0, 0, B∞)T , w0 = (n0, u0, E0, B0)
T ,

were the superscript ”T ” denotes the transposed. These functions are regarded as
column vectors in R10. Then we state our main theorems concerning the decay rate
of solutions to the initial value problem (1.1), (1.5). First, we summarize the main
result in [23] on the time global existence and asymptotic decay of solutions. We use
the following energy norm N0(t) and the corresponding dissipation norm D0(t):

N0(t) := sup
0≤τ≤t

‖(w − w∞)(τ)‖Hs ,

D0(t)
2 :=

∫ t

0

(

‖(n− n∞, u)(τ)‖2Hs + ‖E(τ)‖2Hs−1 + ‖∂xB(τ)‖2Hs−2

)

dτ.

Theorem 2.1 (Global existence ([23])). Let s ≥ 3 and suppose that the initial

data satisfy w0 − w∞ ∈ Hs and (1.6). Put I0 = ‖w0 − w∞‖Hs . Then there exists a

positive constant ε0 such that if I0 ≤ ε0, then the initial value problem (1.1), (1.5)
has a unique global solution w(t, x) with w−w∞ ∈ C([0,∞);Hs)∩C1([0,∞);Hs−1).
The solution satisfies the uniform energy estimate

(2.6) N0(t)
2 +D0(t)

2 ≤ CI20

for t ≥ 0. Moreover, the solution w(t, x) converges to the constant state w∞ uniformly

in x ∈ R3 as t → ∞. More precisely, we have

‖(n− n∞, u, E)(t)‖W s−2,∞ → 0,

‖(B −B∞)(t)‖W s−4,∞ → 0

as t → ∞, where the asymptotic convergence for B holds true only by assuming the

additional regularity s ≥ 4.

Remark. We note that the uniform energy estimate (2.6) is of the regularity-loss
type because we have 1-regularity loss for (E,B) in the dissipation partD0(t) of (2.6).

For the solution constructed in Theorem 2.1, we can derive the quantitive decay
estimate. To state the result precisely, we introduce the following time weighted
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energy norm N(t) and the corresponding dissipation norm D(t):

N(t)2 :=

[s/2]
∑

k=0

sup
0≤τ≤t

(1 + τ)k‖∂k
x(w − w∞)(τ)‖2Hs−2k ,

D(t)2 :=

[s/2]
∑

k=0

∫ t

0

(1 + τ)k‖∂k
xu(τ)‖

2
Hs−2kdτ +

[s/2]−1
∑

k=0

∫ t

0

(1 + τ)kD̃k(τ)
2dτ,

(2.7)

where

(2.8) D̃k(t)
2 := ‖∂k

x(n− n∞, u)(t)‖2Hs−2k + ‖∂k
xE(t)‖2Hs−2k−1 + ‖∂k+1

x B(t)‖2Hs−2k−2 .

Also, we use the following support norm N⊥(t):

(2.9) N⊥(t) :=

[s/2]−1
∑

k=0

sup
0≤τ≤t

(1 + t)1/2+k/2‖∂k
x(n− n∞, u, E)(t)‖Hs−2k−2 .

Then our first main result in this paper is stated as follows.

Theorem 2.2 (Decay estimate). Let s ≥ 6 and suppose that the initial data

satisfy w0 −w∞ ∈ Hs and (1.6). Then there exists a positive constant ε1 such that if

I0 ≤ ε1, then the global solution constructed in Theorem 2.1 satisfies the time weighted

energy estimate

(2.10) N(t)2 +D(t)2 +N⊥(t)
2 ≤ CI20

for t ≥ 0. In particular, we have the following quantitative decay estimates:

‖∂k
x(w − w∞)(t)‖Hs−2k ≤ CI0(1 + t)−k/2,(2.11)

‖∂k
x(n− n∞, u, E)(t)‖Hs−2k−2 ≤ CI0(1 + t)−1/2−k/2,(2.12)

‖∂k
x(n− n∞)(t)‖Hs−2k−4 ≤ CI0(1 + t)−1−k/2,(2.13)

where 0 ≤ k ≤ [s/2] in (2.11), 0 ≤ k ≤ [s/2]− 1 in (2.12), and 0 ≤ k ≤ [s/2]− 2 in

(2.13).

Moreover, under the additional condition w0 − w∞ ∈ L1, we can show the faster
decay estimate. We introduce the following time weighted norm:

(2.14) M(t) :=

[(s−1)/2]−1
∑

k=0

sup
0≤τ≤t

(1 + τ)3/4+k/2‖∂k
x(w − w∞)(τ)‖Hs−2k−3 ,

that is corresponding to the optimal decay for lower order derivatives of the solution.
Our second main result in this paper is then stated as follows.

Theorem 2.3 (Faster decay estimate). Let s ≥ 6 and suppose that the initial

data satisfy w0 − w∞ ∈ Hs ∩ L1 and (1.6). Put I1 = ‖w0 − w∞‖Hs + ‖w0 − w∞‖L1 .

Then there exists a positive constant ε2 such that if I1 ≤ ε2, then the global solution

constructed in Theorem 2.1 satisfies the estimate

(2.15) M(t) ≤ CI1
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for t ≥ 0. In particular, we have

‖∂k
x(w − w∞)(t)‖Hs−2k−3 ≤ CI1(1 + t)−3/4−k/2,(2.16)

‖∂k
x(n− n∞, u, E)(t)‖Hs−2k−5 ≤ CI1(1 + t)−5/4−k/2,(2.17)

‖∂k
x(n− n∞)(t)‖Hs−2k−7 ≤ CI1(1 + t)−7/4−k/2,(2.18)

where 0 ≤ k ≤ [(s− 1)/2]− 1 in (2.16), 0 ≤ k ≤ [(s− 1)/2]− 2 in (2.17), and s ≥ 7
and 0 ≤ k ≤ [(s− 1)/2]− 3 in (2.18).

3. Energy method. In this section, we review the energy method employed in
[23] for the Euler-Maxwell system (1.1), (1.2), (1.3). This will be useful in introducing
our time weighted energy method in the next section.

In the following, we consider solutions satisfying

(3.1) ‖(w − w∞)(t)‖L∞ ≤ ε̄,

where ε̄ is a suitably small positive constant. Let 0 ≤ ℓ ≤ s. We apply ∂ℓ
x to (2.1).

The result is written as

(3.2)



























∂ℓ
xnt + u · ∇∂ℓ

xn+ n div ∂ℓ
xu = f

(ℓ)
1 ,

∂ℓ
xut + (n · ∇) ∂ℓ

xu+ a(n)∇∂ℓ
xn+ ∂ℓ

xE + ∂ℓ
xu×B + ∂ℓ

xu = f
(ℓ)
2 + f̃

(ℓ)
2 ,

∂ℓ
xEt − rot∂ℓ

xB − n ∂ℓ
xu = f̃

(ℓ)
3 ,

∂ℓ
xBt + rot∂ℓ

xE = 0,

where we put

f
(ℓ)
1 = −[∂ℓ

x, u · ∇]n− [∂ℓ
x, n div]u, f

(ℓ)
2 = −[∂ℓ

x, (u · ∇)]u− [∂ℓ
x, a(n)∇]n,

f̃
(ℓ)
2 = −{∂ℓ

x(u×B)− ∂ℓ
xu×B}, f̃

(ℓ)
3 = ∂ℓ

x(nu)− n ∂ℓ
xu,

and [ , ] denotes the commutator defined by [A,B] = AB −BA. The system (3.2) is
written as

(3.3) A0(w)∂ℓ
xwt +

3
∑

j=1

Aj(w)∂ℓ
xwxj

+ L(w)∂ℓ
xw = f

(ℓ)
A + f

(ℓ)
L ,

where f
(ℓ)
A = (a(n)f

(ℓ)
1 , nf

(ℓ)
2 , 0, 0)T and f

(ℓ)
L = (0, nf̃

(ℓ)
2 , f̃

(ℓ)
3 , 0)T . Notice that f

(ℓ)
A =

f
(ℓ)
L = 0 for ℓ = 0. The system (3.3) is regarded as a symmetric hyperbolic system for
∂ℓ
xw. We take the inner product of (3.3) with ∂ℓ

x(w−w∞) and integrate the resultant
equation with respect to x ∈ R3. This yields the standard energy inequality

(3.4)
d

dt
H

(ℓ)
0 + c‖∂ℓ

xu‖
2
L2 ≤ R

(ℓ)
A +R

(ℓ)
L ,

where H
(ℓ)
0 =

∫

R3〈A
0(w)∂ℓ

x(w − w∞), ∂ℓ
x(w −w∞)〉 dx. We see that R

(ℓ)
L = 0 if ℓ = 0,

which is due to the fact that f
(ℓ)
L = 0 for ℓ = 0. The technical computations as in [23]

show that

c‖∂ℓ
x(w − w∞)‖2L2 ≤ H

(ℓ)
0 ≤ C‖∂ℓ

x(w − w∞)‖2L2 ,

R
(ℓ)
A ≤ C‖∂x(n, u)‖L∞‖∂ℓ

x(n− n∞, u)‖2L2,

R
(ℓ)
L ≤ C‖B −B∞‖L∞‖∂ℓ

xu‖
2
L2

+ C‖(n− n∞, u)‖L∞‖∂ℓ
x(n− n∞, u)‖L2‖∂ℓ

x(E,B −B∞)‖L2

(3.5)
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for 0 ≤ ℓ ≤ s.
Next we rewrite the system (2.1) as

(3.6)



















nt + n∞div u = g1,

ut + a∞∇n+ E + u×B∞ + u = g2,

Et − rotB − n∞u = g3,

Bt + rotE = 0,

where a∞ = a(n∞) with a(n) = p′(n)/n and

g1 = −u · ∇n− (n− n∞)div u,

g2 = −(u · ∇)u − (a(n)− a∞)∇n− u× (B −B∞),

g3 = (n− n∞)u.

We regard (3.6) as a linear system for w with constant coefficient. Now, letting
0 ≤ ℓ ≤ s− 1, we apply ∂ℓ

x to (3.6) to get the system for ∂ℓ
xw; we denote this system

for ∂ℓ
xw by ∂ℓ

x(3.6). We create the dissipation terms by using the system ∂ℓ
x(3.6). First,

we multiply the first equation of ∂ℓ
x(3.6) by −a∞div∂ℓ

xu, and take the inner product of
the second and the third equations with a∞∇∂ℓ

xn+ ∂ℓ
xE and ∂ℓ

xu, respectively. Then
we add these three equations and integrate over x ∈ R

3. The technical computations
in [23], which make use of (1.2), give

(3.7)
d

dt
H

(ℓ)
1 + c

(

‖∂ℓ
x(n− n∞)‖2H1 + ‖∂ℓ

xE‖2L2

)

≤ ε‖∂ℓ+1
x B‖2L2 + Cε‖∂

ℓ
xu‖

2
H1 +G

(ℓ)
1

for any ε > 0, where H
(ℓ)
1 =

∫

R3 H
(ℓ)
1 dx with H

(ℓ)
1 = −a∞∂ℓ

x(n − n∞) div∂ℓ
xu + ∂ℓ

xu ·

∂ℓ
xE, and Cε is a positive constant depending on ε. As in [23] we have

H
(ℓ)
1 ≤ C

(

‖∂ℓ
x(n− n∞, E)‖L2 + ‖∂ℓ

xu‖
2
H1

)

,

G
(ℓ)
1 ≤ C‖w − w∞‖L∞

(

‖∂ℓ
x(n− n∞, u)‖2H1 + ‖∂ℓ

xE‖2L2

)

+ C‖u‖L∞‖∂ℓ
x(B − B∞)‖2L2

(3.8)

for 0 ≤ ℓ ≤ s − 1, where the term C‖u‖L∞‖∂ℓ
x(B − B∞)‖2L2 in the estimate of G

(ℓ)
1

can be omitted if ℓ = 0. Here we note that the term ε‖∂ℓ+1
x B‖2L2 in (3.7) comes from

∫

R3 ∂
ℓ
xu · rot∂ℓ

xB dx. If we integrate it by parts, then we can modify (3.7) as

(3.9)
d

dt
H

(ℓ)
1 +c

(

‖∂ℓ
x(n−n∞)‖2H1+‖∂ℓ

xE‖2L2

)

≤ ε‖∂ℓ
x(B−B∞)‖2L2+Cε‖∂

ℓ
xu‖

2
H1+G

(ℓ)
1 .

Finally, we take the inner product of the third and the fourth equation of ∂ℓ
x(3.6)

with −rot∂ℓ
xB and −rot∂ℓ

xE, respectively. Then we add these two equations and
integrate over x ∈ R3. After a simple computation as in [23], using (1.3), we get

(3.10)
d

dt
H

(ℓ)
2 + c‖∂ℓ+1

x B‖2L2 ≤ C
(

‖∂ℓ+1
x E‖2L2 + ‖∂ℓ

xu‖
2
L2

)

+G
(ℓ)
2 ,

where H
(ℓ)
2 = −

∫

R3 ∂
ℓ
xE · rot∂ℓ

xB dx. As in [23], we easily see that

H
(ℓ)
2 ≤ C

(

‖∂ℓ
xE‖L2 + ‖∂ℓ+1

x B‖2L2

)

,

G
(ℓ)
2 ≤ C‖(n− n∞, u)‖L∞‖∂ℓ

x(n− n∞, u)‖L2‖∂ℓ+1
x B‖L2

(3.11)
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for 0 ≤ ℓ ≤ s − 1. The standard energy inequality (3.4) together with (3.7), (3.9)
and (3.10) was sufficient to show the uniform energy estimate of solutions to the
Euler-Maxwell system (1.1), (1.2), (1.3). For the details, see [23].

4. Time weighted energy estimates. The key to the proof of our main The-
orem 2.2 is to derive the following time weighted energy estimate as a priori estimate
of solutions to the problem (1.1), (1.5).

Proposition 4.1 (Time weighted energy estimate). Let s ≥ 6 and suppose that

the initial data satisfy w0 − w∞ ∈ Hs and (1.6). Let w(t, x) be a solution to the

problem (1.1), (1.5) satisfying w − w∞ ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1) and (3.1)
for some T > 0. Then there are some positive constants ε3 and C independent of T
such that if I0 ≤ ε3, then the following a priori estimate holds for t ∈ [0, T ]:

(4.1) N(t)2 +D(t)2 +N⊥(t)
2 ≤ CI20 .

To prove Proposition 4.1, we introduce the following norms:

W0(t) := sup
0≤τ≤t

‖(w − w∞)(τ)‖W 1,∞ , J0(t)
2 :=

∫ t

0

‖(n− n∞, u)(τ)‖2L∞dτ.

Note that W0(t) ≤ CN0(t) ≤ CN(t) for s ≥ 3 and J0(t) ≤ CD0(t) ≤ CD(t)
for s ≥ 2, which are due to the Gagliardo-Nirenberg inequality in R

3: ‖v‖L∞ ≤

C‖v‖
1/4
L2 ‖∂2

xv‖
3/4
L2 . We also use the norm

W⊥(t) := sup
0≤τ≤t

(1 + τ)‖(n− n∞, u, E)(τ)‖W 1,∞ ,

which can be estimated by N⊥(t) in (2.9) as

(4.2) W⊥(t) ≤ CN⊥(t)

for s ≥ 6. Indeed, by applying the Gagliardo-Nirenberg inequality for v = (n −
n∞, u, E), we obtain

‖v‖L∞ ≤ C‖v‖
1/4
L2 ‖∂2

xv‖
3/4
L2 ≤ C‖v‖

1/4
Hs−2‖∂

2
xv‖

3/4
Hs−6 ≤ CN⊥(t)(1 + t)−5/4

for s ≥ 6. Also we have ‖∂xv‖L∞ ≤ C‖∂xv‖H2 ≤ C‖∂xv‖Hs−4 ≤ CN⊥(t)(1 + t)−1 for
s ≥ 6. This shows (4.2).

In order to show the a priori estimate in Proposition 4.1, we derive the following
time weighted energy inequality for the system (1.1).

Proposition 4.2 (Time weighted energy inequality). Let s ≥ 3 and assume that

the same conditions in Proposition 4.1 hold true. Then we have the following time

weighted energy inequality:

(4.3) N(t)2 +D(t)2 ≤ CI20 + C(N(t) +W⊥(t))D(t)2.

The proof of Proposition 4.2 consists of two lemmas. The first lemma is on the
time weighted energy norm N(t).
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Lemma 4.3. Let s ≥ 3. Under the same conditions in Proposition 4.2, we have

the following time weighted energy inequality:

(1 + t)k‖∂k
x(w − w∞)(t)‖2Hs−2k +

∫ t

0

(1 + τ)k‖∂k
xu(τ)‖

2
Hs−2kdτ

≤ CI20 + k C

∫ t

0

(1 + τ)k−1‖∂k
x(w − w∞)(τ)‖2Hs−2kdτ + C(N(t) +W⊥(t))D(t)2

(4.4)

for 0 ≤ k ≤ [s/2].

Proof. Let 0 ≤ k ≤ [s/2]. Multiplying (3.4) by (1 + t)k, integrating the resultant
inequality with respect to t, and summing up for ℓ with k ≤ ℓ ≤ s− k, we obtain

(1 + t)k‖∂k
x(w − w∞)(t)‖2Hs−2k +

∫ t

0

(1 + τ)k‖∂k
xu(τ)‖

2
Hs−2kdτ

≤ CI20 + k C

∫ t

0

(1 + τ)k−1‖∂k
x(w − w∞)(τ)‖2Hs−2kdτ

+ C

∫ t

0

(1 + τ)k
s−k
∑

ℓ=k

(R
(ℓ)
A +R

(ℓ)
L )(τ)dτ,

(4.5)

where we used the estimate (3.5) for H
(ℓ)
0 .

We need to estimate the remainder terms in (4.5) by using the dissipation norm
D(t) in (2.7). To this end, we observe that ‖∂k

x(w − w∞)‖2Hs−2k ≤ D̃2
k−1 (for k ≥ 1),

which together with the definition of D(t) gives

(4.6)

∫ t

0

(1 + τ)k−1‖∂k
x(w − w∞)(τ)‖2Hs−2kdτ ≤

∫ t

0

(1 + τ)k−1D̃k−1(τ)
2dτ ≤ D(t)2

for 1 ≤ k ≤ [s/2]. Now we estimate the remainder term including R
(ℓ)
A . When

1 ≤ k ≤ [s/2], by using (3.5) and (4.6), we have

∫ t

0

(1 + τ )k
s−k
∑

ℓ=k

R
(ℓ)
A (τ )dτ ≤ C

∫ t

0

(1 + τ )k‖∂x(n, u)‖L∞‖∂k
x(n, u)‖

2
Hs−2kdτ ≤ CW⊥(t)D(t)2.

On the other hand, when k = 0, we can estimate the term by using (3.5) as

∫ t

0

s
∑

ℓ=0

R
(ℓ)
A (τ)dτ ≤ C

∫ t

0

‖∂x(n, u)‖L∞‖(n− n∞, u)‖2Hsdτ

≤ CW0(t)D0(t)
2 ≤ CN(t)D(t)2.

Finally, we estimate the term including R
(ℓ)
L . When 1 ≤ k ≤ [s/2], by using (3.5) and

(4.6), we get

∫ t

0

(1 + τ)k
s−k
∑

ℓ=k

R
(ℓ)
L (τ)dτ ≤ C

∫ t

0

(1 + τ)k‖B −B∞‖L∞‖∂k
xu‖

2
Hs−2kdτ

+ C

∫ t

0

(1 + τ)k‖(n− n∞, u)‖L∞‖∂k
x(n, u)‖Hs−2k‖∂k

x(E,B)‖Hs−2kdτ

≤ CW0(t)D(t)2 + CW⊥(t)D(t)2 ≤ C(N(t) +W⊥(t))D(t)2.
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Also, when k = 0, we estimate the term as

∫ t

0

s
∑

ℓ=0

R
(ℓ)
L (τ)dτ =

∫ t

0

s
∑

ℓ=1

R
(ℓ)
L (τ)dτ ≤ C

∫ t

0

‖B −B∞‖L∞‖∂xu‖
2
Hs−1dτ

+ C

∫ t

0

‖(n− n∞, u)‖L∞‖∂x(n, u)‖Hs−1‖∂x(E,B)‖Hs−1dτ

≤ CW0(t)D0(t)
2 + CN0(t)J0(t)D0(t) ≤ CN(t)D(t)2.

Substituting these estimates into (4.5), we arrive at the desired estimate (4.4). This
completes the proof of Lemma 4.3.

The second lemma is on the time weighted dissipation norm D(t).

Lemma 4.4. Let s ≥ 3. Under the same conditions in Proposition 4.2, we have

the following time weighted energy inequality:

∫ t

0

(1 + τ)kD̃k(τ)
2dτ ≤ CI20 + k C

∫ t

0

(1 + τ)k−1‖∂k
x(w − w∞)(τ)‖2Hs−2kdτ

+ C(N(t) +W⊥(t))D(t)2

(4.7)

for 0 ≤ k ≤ [s/2]− 1, where D̃k is given in (2.8).

Proof. First, we multiply (3.7) with ℓ = k by (1 + t)k and integrate with respect
to t. Also, we multiply (3.9) by (1 + t)k, sum up the resultant inequality for ℓ with
k + 1 ≤ ℓ ≤ s − k − 1 and integrate with respect to t. Then, adding these two
inequalities, we obtain

∫ t

0

(1 + τ)k
(

‖∂k
x(n− n∞)(τ)‖2Hs−2k + ‖∂k

xE(τ)‖2Hs−2k−1

)

dτ

≤ CI20 + ε

∫ t

0

(1 + τ)k‖∂k+1
x B(τ)‖2Hs−2k−2dτ

+ C(1 + t)k‖∂k
x(w − w∞)(t)‖2Hs−2k + Cε

∫ t

0

(1 + τ)k‖∂k
xu(τ)‖

2
Hs−2kdτ

+ k C

∫ t

0

(1 + τ)k−1‖∂k
x(w − w∞)(τ)‖2Hs−2kdτ + C

∫ t

0

(1 + τ)k
s−k−1
∑

ℓ=k

G
(ℓ)
1 (τ) dτ

(4.8)

for any ε > 0, where 0 ≤ k ≤ [s/2] − 1, and Cε is a positive constant depend on ε.

Here we used the estimate (3.8) for H
(ℓ)
1 . The remainder term in (4.8) is estimated

as follows. When 1 ≤ k ≤ [s/2]− 1, by using (3.8) and (4.6), we have

∫ t

0

(1 + τ)k
s−k−1
∑

ℓ=k

G
(ℓ)
1 (τ)dτ

≤ C

∫ t

0

(1 + τ)k‖w − w∞‖L∞

(

‖∂k
x(n− n∞, u)‖Hs−2k + ‖∂k

xE‖2Hs−2k−1

)

dτ

+ C

∫ t

0

(1 + τ)k‖u‖L∞‖∂k
x(B −B∞)‖Hs−2k−1dτ

≤ CW0(t)D(t)2 + CW⊥(t)D(t)2 ≤ C(N(t) +W⊥(t))D(t)2.
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On the other hand, when k = 0, we estimate the term simply as

∫ t

0

s−1
∑

ℓ=0

G
(ℓ)
1 (τ )dτ ≤ C

∫ t

0

‖w − w∞‖L∞

(

‖(n− n∞, u)‖Hs + ‖E‖2Hs−1 + ‖∂xB‖Hs−2

)

dτ

≤ CW0(t)D0(t)
2 ≤ CN(t)D(t)2.

Next, we multiply (3.10) by (1 + t)k, sum up the resultant inequality for ℓ with
k ≤ ℓ ≤ s− k − 2 and integrating with respect t. This yields

∫ t

0

(1 + τ)k‖∂k+1
x B(τ)‖2Hs−2k−2dτ ≤ CI20 + C

∫ t

0

(1 + τ)k‖∂k+1
x E(τ)‖2Hs−2k−2dτ

+ C(1 + t)k‖∂k
x(w − w∞)(t)‖2Hs−2k−1 + C

∫ t

0

(1 + τ)k‖∂k
xu(τ)‖

2
Hs−2k−2dτ

+ k C

∫ t

0

(1 + τ)k−1‖∂k
x(w − w∞)(τ)‖2Hs−2k−1dτ + C

∫ t

0

(1 + τ)k
s−k−2
∑

ℓ=k

G
(ℓ)
2 (τ) dτ

(4.9)

for 0 ≤ k ≤ [s/2] − 1, where we used the estimate (3.11) for H
(ℓ)
2 . The remainder

term in (4.9) is estimated by using (3.11) as

∫ t

0

(1 + τ)k
s−k−2
∑

ℓ=k

G
(ℓ)
2 (τ)dτ

≤ C

∫ t

0

(1 + τ)k‖(n− n∞, u)‖L∞‖∂k
x(n− n∞, u)‖Hs−2k−2‖∂k+1

x B‖Hs−2k−2dτ

≤ CW0(t)D(t)2 ≤ CN(t)D(t)2.

Finally, we combine (4.8) and (4.9), and take ε > 0 sufficiently small. This yields

∫ t

0

(1 + τ)k
(

‖∂k
x(n− n∞)(τ)‖2Hs−2k + ‖∂k

xE(τ)‖2Hs−2k+1 + ‖∂k+1
x B(τ)‖2Hs−2k−2

)

dτ

≤ CI20 + C(1 + t)k‖∂k
x(w − w∞)(t)‖2Hs−2k + C

∫ t

0

(1 + τ)k‖∂k
xu(τ)‖

2
Hs−2kdτ

+ k C

∫ t

0

(1 + τ)k−1‖∂k
x(w − w∞)(τ)‖2Hs−2kdτ + C(N(t) +W⊥(t))D(t)2

for 0 ≤ k ≤ [s/2]− 1, which together with (4.4) gives the desired estimate (4.7). This
completes the proof of Lemma 4.4.

Proof of Proposition 4.2. For the proof of Proposition 4.2, it suffices to show the
following estimates:

(1 + t)k‖∂k
x(w − w∞)(t)‖2Hs−2k +

∫ t

0

(1 + τ)k‖∂k
xu(τ)‖

2
Hs−2kdτ

≤ CI20 + C(N(t) +W⊥(t))D(t)2,

(4.10)

(4.11)

∫ t

0

(1 + τ)kD̃k(τ)
2dτ ≤ CI20 + C(N(t) +W⊥(t))D(t)2,
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where 0 ≤ k ≤ [s/2] in (4.10), 0 ≤ k ≤ [s/2]− 1 in (4.11), and D̃k is given in (2.8).
These estimates can be obtained by applying the induction argument with respect to
k to the inequalities (4.4) and (4.7), respectively. Indeed, putting k = 0 in (4.4) and
(4.7), we see that (4.10) and (4.11) hold true for k = 0. Also, we put k = 1 in (4.4)
and apply (4.6) with k = 1 and (4.11) with k = 0. This shows that (4.10) hold true
also for k = 1. Thus we have shown the estimates (4.10) and (4.11) for s = 3. When
s ≥ 4, letting 1 ≤ j ≤ [s/2]− 1, we assume that (4.11) holds true for k = j − 1. Then
we show (4.10) for k = j, j + 1 and (4.11) for k = j. To this end, we put k = j in
(4.4) and (4.7), and apply (4.6) with k = j and (4.11) with k = j − 1. This gives
(4.10) and (4.11) for k = j. Moreover, letting k = j + 1 in (4.4) and using (4.6) with
k = j + 1 and (4.11) with k = j, we find that (4.10) holds true also for k = j + 1.
Thus we have shown (4.10) and (4.11) also for s ≥ 4. This completes the proof of
Proposition 4.2.

In order to get the desired a priori estimate (4.1) in Proposition 4.1, we need to
control the quantity N⊥(t) (cf. (4.2)).

Proposition 4.5. Let s ≥ 3. Under the same conditions in Proposition 4.2, we

have the following time weighted inequality:

(4.12) N⊥(t) ≤ CI0 + CN(t) + CN(t)(N⊥(t) +W⊥(t)).

Proof. We rewrite the second and the third equations of (3.6) as

(4.13)

{

ut + E + u×B∞ + u = g̃2,

Et − n∞u = g̃3,

where

g̃2 = −(u · ∇)u− a(n)∇n− u× (B −B∞),

g̃3 = rotB + (n− n∞)u.

We regard (4.13) as a system of ordinary differential equations for (u,E) and write as

(4.14)

(

n∞I O

O I

)(

u

E

)

t

+

(

n∞(I − ΩB∞
) n∞I

−n∞I O

)(

u

E

)

=

(

n∞g̃2

g̃3

)

.

We see that the fundamental solution of (4.14) decays exponentially for t → ∞.
Therefore, solving (4.14) by using the fundamental solution, applying ∂ℓ

x to the resul-
tant solution formula and taking the L2-norm, we obtain

(4.15) ‖∂ℓ
x(u,E)(t)‖L2 ≤ CI0 e

−ct + C

∫ t

0

e−c(t−τ)‖∂ℓ
x(g̃2, g̃3)(τ)‖L2 dτ,

where 0 ≤ ℓ ≤ [s/2]− 1. Here we see that

‖∂ℓ
x(g̃2, g̃3)‖L2 ≤ C‖∂ℓ+1

x (n, u,B)‖L2

+ C‖w − w∞‖L∞‖∂ℓ
x(n− n∞, u)‖L2 + C‖u‖L∞‖∂ℓ

x(B −B∞)‖L2 .
(4.16)
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Therefore, summing up (4.15) for ℓ with k ≤ ℓ ≤ s−k−2 and using (4.16), we obtain

‖∂k
x(u,E)(t)‖Hs−2k−2 ≤ CI0 e

−ct + C

∫ t

0

e−c(t−τ)‖∂k+1
x w(τ)‖Hs−2k−2dτ

+ C

∫ t

0

e−c(t−τ)‖(w − w∞)(τ)‖L∞‖∂k
x(n− n∞, u)(τ)‖Hs−2k−2dτ

+ C

∫ t

0

e−c(t−τ)‖u(τ)‖L∞‖∂k
x(B −B∞)(τ)‖Hs−2k−2dτ,

(4.17)

where 0 ≤ k ≤ [s/2]− 1. We denote the integrals on the right hand side of (4.17) by
K1, K2 and K3, respectively. These integrals can be estimated as follows.

K1 ≤ CN(t)

∫ t

0

e−c(t−τ)(1 + τ)−
k+1
2 dτ ≤ CN(t)(1 + t)−

k+1
2 ,

K2 ≤ CW0(t)N⊥(t)

∫ t

0

e−c(t−τ)(1 + τ)−
k+1
2 dτ ≤ CN(t)N⊥(t)(1 + t)−

k+1
2 ,

K3 ≤ CW⊥(t)N(t)

∫ t

0

e−c(t−τ)(1 + τ)−1− k
2 dτ ≤ CW⊥(t)N(t)(1 + t)−1− k

2 .

Substituting these estimates into (4.17), we get

(4.18) (1 + t)
k+1
2 ‖∂k

x(u,E)(t)‖Hs−2k−2 ≤ CI0 + CN(t) + CN(t)(N⊥(t) +W⊥(t)),

where 0 ≤ k ≤ [s/2] − 1. On the other hand, using (1.2), we see that ‖∂k
x(n −

n∞)(t)‖Hs−2k−2 ≤ ‖∂k+1
x E(t)‖Hs−2k−2 ≤ N(t)(1 + t)−(k+1)/2. Namely, we have

(4.19) (1 + t)
k+1
2 ‖∂k

x(n− n∞)(t)‖Hs−2k−2 ≤ N(t),

where 0 ≤ k ≤ [s/2] − 1. The desired inequality (4.12) directly follows from (4.18)
and (4.19). This completes the proof of Lemma 4.5.

Proof of Proposition 4.1. Let s ≥ 6. Then we have (4.2). Substituting (4.2) in
(4.3) and (4.12), we obtain

N(t)2 +D(t)2 ≤ CI20 + C(N(t) +N⊥(t))D(t)2,

N⊥(t) ≤ CI20 + CN(t) + CN(t)N⊥(t).

Put Y (t) = N(t)+D(t)+N⊥(t). Then we obtain the inequality Y (t)2 ≤ CI20+CY (t)3,
from which we can deduce that Y (t) ≤ CI0, provided that I0 is suitably small, say,
I0 ≤ ε3. This gives the desired estimate (4.1) and hence the proof of Proposition 4.1
is complete.

Proof of Theorem 2.2. The global existence of our solution can be proved by the
standard continuation argument based on a local existence result and the a priori
estimate given in Proposition 4.1. This global solution verifies the time weighted
energy estimate (2.10) for all t ≥ 0. Consequently, we we have the L2 decay estimates
(2.11) and (2.12). Moreover, using (1.2) and (2.12), we obtain

‖∂k
x(n− n∞)(t)‖Hs−2k−4 ≤ ‖∂k+1

x E(t)‖Hs−2k−4 ≤ CI0(1 + t)−1−k/2

for 0 ≤ k ≤ [s/2]− 2. Thus the proof of Theorem 2.2 is complete.
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5. Decay estimate (linear case). In this section, we derive the optimal decay
estimate for the linearized Euler-Maxwell system. First we introduce v = nu/n∞ and
rewrite (1.1) as

(5.1)



























nt + n∞div v = 0,

vt + a∞∇n+ E + v ×B∞ + v = (divQ2 + r2)/n∞,

Et − rotB − n∞v = 0,

Bt + rotE = 0,

where a∞ = a(n∞) with a(n) = p′(n)/n and

Q2 = −nu⊗ u− {p(n)− p(n∞)− p′(n∞)(n− n∞)}I,

r2 = −(n− n∞)E − nu× (B −B∞).

We put z = (n− n∞, v, E,B − B∞)T and rewrite (5.1) in the vector form as

(5.2) A0zt +

3
∑

j=1

Ajzxj
+ Lz =

3
∑

j=1

qjxj
+ r,

where A0, Aj and L are the constant matrices given by (2.3) with w = w∞, and
qj = ( 0, qj2, 0, 0 )

T and r = ( 0, r2, 0, 0 )
T ; the i component of the vector qj2 is given

by the (i, j) component of the matrix Q2. We note that qj , r = O(|w − w∞|2).
We consider the linearized Euler-Maxwell system

(5.3) A0zt +

3
∑

j=1

Ajzxj
+ Lz = 0.

We write z = (ρ, v, E, h)T , where ρ = n − n∞ and h = B − B∞. Then the system
(5.3) is written explicitly as

(5.4)



























ρt + n∞div v = 0,

vt + a∞∇ρ+ E + v ×B∞ + v = 0,

Et − roth− n∞v = 0,

ht + rotE = 0,

The equations (1.2) and (1.3), which are linear, are reduced to

(5.5) divE = −ρ,

(5.6) div h = 0.

Let z0 = (ρ0, v0, E0, h0)
T be the initial data for z and assume that

(5.7) divE0 = −ρ0, div h0 = 0.

Then, as remarked in Section 1, the corresponding solution of (5.4) always satisfies
(5.5) and (5.6) for all t > 0.
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We apply the Fourier transform of (5.3), obtaining

(5.8) A0ẑt + i|ξ|A(ω)ẑ + Lẑ = 0,

where A(ω) =
∑3

j=1 A
jωj and ω = ξ/|ξ| ∈ S2. Put

(5.9) Φ̂(iξ) = −(A0)−1(i|ξ|A(ω) + L).

Then the solution of (5.8) with the initial data ẑ(0, ξ) = ẑ0(ξ) is given by ẑ(t, ξ) =

etΦ̂(iξ)ẑ0(ξ). The semigroup etΦ associated with the linearized Euler-Maxwell system
(5.3) is then defined by the formula

(5.10) (etΦϕ)(x) = F−1[etΦ̂(iξ)ϕ̂(ξ)](x).

We have the following pointwise estimate for the matrix exponential etΦ̂(iξ).

Theorem 5.1. Let Φ̂(iξ) be the matrix in (5.9). Let ϕ = (ρ0, v0, E0, h0)
T be a

function satisfying (5.7). Then the matrix exponential etΦ̂(iξ) applied to such a vector

ϕ̂(ξ) verifies the pointwise estimate

(5.11) |etΦ̂(iξ)| ≤ Ce−cη(ξ)t,

for t ≥ 0 and ξ ∈ R3, where η(ξ) = |ξ|2/(1 + |ξ|2)2.

As an easy consequence of (5.11), we have the following decay estimate for the
semigroup etΦ.

Corollary 5.2. Let etΦ be the semigroup associated with the linearized Euler-

Maxwell system (5.3), which is defined in (5.10). Let ϕ = (ρ0, v0, E0, h0)
T satisfy

(5.7). Then we have the decay estimate

(5.12) ‖∂k
xe

tΦϕ‖L2 ≤ C(1 + t)−3/4−k/2‖ϕ‖L1 + C(1 + t)−ℓ/2‖∂k+ℓ
x ϕ‖L2 ,

where k and ℓ are non-negative integers.

Remark. The decay estimate (5.12) is of the regularity-loss type because we have
quantitative decay (1 + t)−ℓ/2 only by assuming the additional ℓ-th order regularity
on the initial data.

Proof of Theorem 5.1. We prove (5.11) by applying the energy method in the
Fourier space. The system (5.8) is written explicitly as

ρ̂t + n∞i|ξ| v̂ · ω = 0,(5.13a)

v̂t + a∞i|ξ|ρ̂ ω + Ê + v̂ ×B∞ + v̂ = 0,(5.13b)

Êt + i|ξ| ĥ× ω − n∞v̂ = 0,(5.13c)

ĥt − i|ξ|Ê × ω = 0.(5.13d)

Also, applying the Fourier transform to (5.5) and (5.6), we have

(5.14) i|ξ| Ê · ω = −ρ̂,

(5.15) i|ξ| ĥ · ω = 0.
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We construct a Lyapunov function for the system (5.13) with (5.14) and (5.15).
For this purpose, we first take the inner product in C10 of (5.8) with ẑ. From the real
part we have

(5.16) (Ĥ0)t + c0|v̂|
2 = 0,

where we put Ĥ0 = 〈A0ẑ , ẑ〉 = a∞|ρ̂|2 + n∞|v̂|2 + |Ê|2 + |ĥ|2 and c0 = 2n∞. Here
〈· , ·〉 denotes the inner product in C

10. It is clear that there are positive constants c1
and C1 such that

c1|ẑ|
2 ≤ Ĥ0 ≤ C1|ẑ|

2.

Next we create the dissipation terms. To this end, we first multiply (5.13a) by
〈a∞i|ξ|ω | v̂〉 = a∞i|ξ|¯̂v ·ω, where 〈· | ·〉 denotes the inner product in C3. Also, we take
the inner product in C3 of (5.13b) and (5.13c) with a∞i|ξ|ρ̂ ω+ Ê and v̂, respectively.
Then, adding the resultant three equalities, we obtain

{〈a∞i|ξ|ρ̂t ω | v̂〉+ 〈v̂t | a∞i|ξ|ρ̂ ω〉}+ {〈v̂t | Ê〉+ 〈Êt | v̂〉}

+
∣

∣a∞i|ξ|ρ̂ ω + Ê
∣

∣

2
− n∞|v̂|2 − p′∞|ξ|2|v̂ · ω|2

+ 〈v̂ ×B∞ + v̂ | a∞i|ξ|ρ̂ ω + Ê〉+ i|ξ|〈ĥ× ω | v̂〉 = 0,

(5.17)

where p′∞ = p′(n∞). Here we can compute the term
∣

∣a∞i|ξ|ρ̂ω + Ê
∣

∣

2
as

∣

∣a∞i|ξ|ρ̂ω + Ê
∣

∣

2
= a2∞|ξ|2|ρ̂|2 + |Ê|2 + 2Re〈a∞i|ξ|ρ̂ ω | Ê〉

= a2∞|ξ|2|ρ̂|2 + |Ê|2 + 2a∞|ρ̂|2,

where we used (5.14) in the last equality. Thus, from the real part of (5.17), we obtain

(5.18) (Ĥ1)t + D̂1 = M̂1,

where Ĥ1, D̂1 and M̂1 are given by

Ĥ1 = Re{a∞i|ξ|〈ρ̂ ω | v̂〉+ 〈v̂ | Ê〉}, D̂1 = 2a∞|ρ̂|2 + a2∞|ξ|2|ρ̂|2 + |Ê|2,

M̂1 = −Re
{

i|ξ|〈ĥ× ω | v̂〉+ 〈v̂ ×B∞ + v̂ | a∞i|ξ|ρ̂ ω + Ê〉
}

+ n∞|v̂|2 + p′∞|ξ|2|v̂ · ω|2.

We can estimate the term M̂1 as

M̂1 ≤ C|ξ||v̂||ĥ|+ C|v̂|(|ξ||ρ̂|+ |Ê|)} + C(1 + |ξ|2)|v̂|2.

≤ ε
|ξ|2

1 + |ξ|2
|ĥ|2 + δ(|ξ|2|ρ̂|2 + |Ê|2) + Cε,δ(1 + |ξ|2)|v̂|2

for any ε, δ > 0, where Cε,δ is a positive constant depends on (ε, δ). We substitute
this estimate into (5.18) and choose δ > 0 suitably small. This yields

(5.19) (Ĥ1)t + c2(1 + |ξ|2)|ρ̂|2 + c2|Ê|2 ≤ ε
|ξ|2

1 + |ξ|2
|ĥ|2 + Cε(1 + |ξ|2)|v̂|2,

where c2 and Cε are positive constants; Cε depends on ε.
Next we take the inner product in C3 of (5.13c) and (5.13d) with i|ξ|ĥ × ω and

i|ξ|Ê × ω, respectively. Adding the resultant two equations, we have

|ξ|{〈Êt | ĥ× iω〉+ 〈ĥt | Ê × iω〉}+ |ξ|2|ĥ× ω|2 = |ξ|2|Ê × ω|2 − n∞i|ξ|〈v̂|ĥ× ω〉.
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Taking the real part, we get

(|ξ|Ĥ2)t + |ξ|2|ĥ× ω|2 = |ξ|2|Ê × ω|2 − Re(n∞i|ξ|〈v̂ | ĥ× ω〉),

where Ĥ2 = Re〈Ê | ĥ× iω〉. Thus we arrive at the inequality

(5.20) (|ξ|Ĥ2)t + c3|ξ|
2|ĥ|2 ≤ C3|ξ|

2|Ê|2 + C3|v̂|
2,

where we used |ĥ × ω| = |ĥ| which is due to (5.15), and c3 and C3 are positive
constants.

Finally, combining (5.16), (5.19) and (5.20), we derive the desired estimate. First
we multiply (5.19) and (5.20) by 1 + |ξ|2 and β > 0, respectively, and add these two
inequalities. This gives

{(1 + |ξ|2)Ĥ1 + βĤ2}t + c2(1 + |ξ|2)2|ρ̂|2 + {c2(1 + |ξ|2)− βC3|ξ|
2}|Ê|2

+ (βc3 − ε)|ξ|2|ĥ|2 ≤ {Cε(1 + |ξ|2)2 + βC3}|v̂|
2.

(5.21)

Next we multiply (5.16) and (5.21) by (1 + |ξ|2)2 and α > 0, respectively, and sum
up these two inequalities. Then we arrive at

(1 + |ξ|2)2Ĥt + {c0(1 + |ξ|2)2 − α{Cε(1 + |ξ|2)2 + βC3}}|v̂|
2

+ αc2(1 + |ξ|2)2|ρ̂|2 + α{c2(1 + |ξ|2)− βC3|ξ|
2}|Ê|2 + α(βc3 − ε)|ξ|2|ĥ|2 ≤ 0,

(5.22)

where we put

(5.23) Ĥ = Ĥ0 +
α

1 + |ξ|2

(

Ĥ1 +
β|ξ|

1 + |ξ|2
Ĥ2

)

.

Let β = c2/2C3 and choose ε > 0 such that ε = βc3/2. For this choice of (β, ε), we
take α > 0 suitably small. Then, dividing (5.22) by (1+ |ξ|2)2, we reach the inequality

(5.24) Ĥt + cD̂ ≤ 0,

where

c|ẑ|2 ≤ Ĥ ≤ C|ẑ|2,

D̂ = |ρ̂|2 + |v̂|2 +
1

1 + |ξ|2
|Ê|2 +

|ξ|2

(1 + |ξ|2)2
|ĥ|2.

(5.25)

This shows that Ĥ in (5.23) is the desired Lyapunov function for our linearized Euler-
Maxwell system. We see easily that D̂ ≥ cη(ξ)Ĥ , where η(ξ) = |ξ|2/(1 + |ξ|2)2.
Therefore (5.24) gives Ĥt + cη(ξ)Ĥ ≤ 0. Solving this ordinary differential inequal-
ity, we obtain Ĥ(t, ξ) ≤ e−cη(ξ)tĤ(0, ξ). This together with (5.25) gives the desired
pointwise estimate (5.11). This completes the proof of Theorem 5.1.

Proof of Corollary 5.2. By applying the Plancherel theorem and the pointwise
estimate (5.11) in Theorem 5.1, we have

(5.26) ‖∂k
xe

tΦϕ‖2L2 =

∫

R3

|ξ|2k|etΦ̂(iξ)ϕ̂(ξ)|2 dξ ≤ C

∫

R3

|ξ|2ke−cη(ξ)t|ϕ̂(ξ)|2 dξ.
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We estimate the right hand side of (5.26). We divide the integral into two parts R1

and R2 according to the low frequency region |ξ| ≤ 1 and the high frequency region
|ξ| ≥ 1, respectively. Since η(ξ) ≥ c|ξ|2 for |ξ| ≤ 1, we find that

R1 ≤ C sup
|ξ|≤1

|ϕ̂(ξ)|2
∫

|ξ|≤1

|ξ|2ke−c|ξ|2t dξ ≤ C(1 + t)−3/2+k‖ϕ‖2L1 .

On the other hand, we have η(ξ) ≥ c/|ξ|2 for |ξ| ≥ 1. Therefore we can estimate R2

as

R2 ≤ C sup
|ξ|≥1

e−ct/|ξ|2

|ξ|2ℓ

∫

|ξ|≥1

|ξ|2(k+ℓ)|ϕ̂(ξ)|2 dξ ≤ C(1 + t)−ℓ‖∂k+ℓ
x ϕ‖2L2 .

Thus, substituting these estimates into (5.26), we obtain the desired estimate (5.12).
This complete the proof of Corollary 5.2.

6. Decay estimate (nonlinear case). The aim of this last section is to prove
Theorem 2.3. We need to estimate the time weighted norm M(t) in (2.14). To this
end, we introduce

W (t) := sup
0≤τ≤t

(1 + τ)‖(w − w∞)(τ)‖L∞ .

This norm can be estimated by M(t) as

(6.1) W (t) ≤ CM(t)

for s ≥ 6. In fact, applying the Gagliardo-Nirenberg inequality, we have

‖w − w∞‖L∞ ≤ C‖w − w∞‖
1/4
L2 ‖∂2

xw‖
3/4
L2

≤ C‖w − w∞‖
1/4
Hs−3‖∂xw‖

3/4
Hs−5 ≤ CM(t)(1 + t)−9/8,

which gives (6.1), where we assumed s ≥ 6. We can estimate M(t) in terms of N(t)
and W (t) as follows.

Proposition 6.1. Let s ≥ 3 and suppose that the initial data satisfy w0 −w∞ ∈
Hs ∩ L1 and (1.6). Let w(t, x) be a solution to the problem (1.1), (1.5) satisfying

w − w∞ ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1) and (3.1) for some T > 0. Then we have

(6.2) M(t) ≤ CI1 + CM(t)2 + CW (t)N(t),

where I1 = ‖w − w∞‖Hs + ‖w − w∞‖L1.

Proof. By making use of the semigroup etΦ and applying the Duhamel principle,
we can transform (5.2) to the integral equation

(6.3) z(t) = etΦz0 +

∫ t

0

e(t−τ)Φ(A0)−1(∂xq + r)(τ) dτ,

where we simply wrote ∂xq =
∑3

j=1 q
j
xj
. Let 0 ≤ k ≤ [(s − 1)/2] − 1 and 0 ≤ m ≤

s− 2k − 3. We apply ∂k+m
x to (6.3) and take the L2 norm, obtaining

‖∂k+m
x z(t)‖L2 ≤ ‖∂k+m

x etΦz0‖L2

+
(

∫ t/2

0

+

∫ t

t/2

)

‖∂k+m
x e(t−τ)Φ(A0)−1(∂xq + r)(τ)‖L2dτ =: T0 + T1 + T2.

(6.4)
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For the first term T0, we apply (5.12) with ℓ = k + 2 to get

T0 ≤ C(1 + t)−3/4−(k+m)/2‖z0‖L1 + C(1 + t)−(k+2)/2‖∂2k+2+m
x z0‖L2

≤ CI1(1 + t)−3/4−k/2,

where we used ‖∂2k+2+m
x z0‖L2 ≤ C‖w0 − w∞‖Hs−1 ≤ CI0. Next we estimate the

term T1. We apply (5.12) with ℓ = k + 2, ϕ = (A0)−1q and ϕ = (A0)−1r. This gives

T1 ≤ C

∫ t/2

0

(1 + t− τ )−5/4−(k+m)/2‖q(τ )‖L1 + (1 + t− τ )−(k+2)/2‖∂2k+3+m
x q(τ )‖L2 dτ

+ C

∫ t/2

0

(1 + t− τ )−3/4−(k+m)/2‖r(τ )‖L1 + (1 + t− τ )−(k+2)/2‖∂2k+2+m
x r(τ )‖L2 dτ

≤ C

∫ t/2

0

(1 + t− τ )−3/4−k/2‖(w − w∞)(τ )‖2L2 dτ

+ C

∫ t/2

0

(1 + t− τ )−1−k/2‖(w − w∞)(τ )‖L∞‖∂2k+2+m
x w(τ )‖H1 dτ =: T11 + T12,

where we used the fact that ‖∂j
x(p, r)‖L2 ≤ C‖w − w∞‖L∞‖∂j

x(w − w∞)‖L2 for 0 ≤
j ≤ s. Moreover, we have

T11 ≤ CM(t)2
∫ t/2

0

(1 + t− τ)−3/4−k/2(1 + τ)−3/2dτ ≤ CM(t)2(1 + t)−3/4−k/2,

T12 ≤ CW (t)N(t)

∫ t/2

0

(1 + t− τ)−1−k/2(1 + τ)−1dτ

≤ CW (t)N(t)(1 + t)−1−k/2 log(1 + t),

where we used ‖∂2k+2+m
x w‖H1 ≤ ‖w − w∞‖Hs ≤ N(t). Similarly, we estimate T2 by

applying (5.12) with ℓ = 1, ϕ = (A0)−1∂k
xq and ϕ = (A0)−1∂k

xr. We have

T2 ≤ C

∫ t

t/2

(1 + t− τ)−5/4−m/2‖∂k
xq(τ)‖L1 + (1 + t− τ)−1/2‖∂k+2+m

x q(τ)‖L2 dτ

+ C

∫ t

t/2

(1 + t− τ)−3/4−m/2‖∂k
xr(τ)‖L1 + (1 + t− τ)−1/2‖∂k+1+m

x r(τ)‖L2 dτ

≤ C

∫ t

t/2

(1 + t− τ)−3/4‖(w − w∞)(τ)‖L2‖∂k
x(w − w∞)(τ)‖L2 dτ

+ C

∫ t

t/2

(1 + t− τ)−1/2‖(w − w∞)(τ)‖L∞‖∂k+1+m
x w(τ)‖H1 dτ =: T21 + T22.

Here we see that

T21 ≤ CM(t)2
∫ t

t/2

(1 + t− τ)−3/4(1 + τ)−3/2−k/2dτ ≤ CM(t)2(1 + t)−5/4−k/2,

T22 ≤ CW (t)N(t)

∫ t

t/2

(1 + t− τ)−1/2(1 + τ)−3/2−k/2dτ

≤ CW (t)N(t)(1 + t)−1−k/2,

where we used the fact that ‖∂k+1+m
x w‖H1 ≤ ‖∂k+1

x w‖Hs−2(k+1) ≤ N(t)(1 + τ)−(k+1).
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Finally, we substitute all these estimates into (6.4) and use ‖∂k+m
x (w−w∞)‖L2 ≤

C‖∂k+m
x z‖L2. Then, adding for m with 0 ≤ m ≤ s− 2k − 3, we arrive at

(1 + t)3/4+k/2‖∂k
x(w − w∞)(t)‖Hs−2k−3 ≤ CI0 + CM(t)2 + CW (t)N(t)

for 0 ≤ k ≤ [(s − 1)/2] − 1, from which follows the desired estimate (6.2). This
completes the proof of Proposition 6.1.

Finally, to prove the sharper decay estimate (2.17), we introduce the following
support norm:

M⊥(t) :=

[(s−1)/2]−2
∑

k=0

sup
0≤τ≤0

(1 + τ)5/4+k/2‖∂k
x(n− n∞, u, E)(τ)‖Hs−2k−5 .

Proposition 6.2. Let s ≥ 5. Under the same conditions in Proposition 4.2, we

have

(6.5) M⊥(t) ≤ CI0 + CM(t) + CW (t)M(t).

Proof. Similarly as in the derivation of (4.17), we obtain

‖∂k
x(u,E)(t)‖Hs−2k−5 ≤ CI0 e

−ct + C

∫ t

0

e−c(t−τ)‖∂k+1
x w(τ)‖Hs−2k−5 dτ

+ C

∫ t

0

e−c(t−τ)‖(w − w∞)(τ)‖L∞‖∂k
x(w − w∞)(τ)‖Hs−2k−5 dτ

(6.6)

for 0 ≤ k ≤ [(s − 1)/2] − 2. We denote the integrals on the right hand side of (6.6)
by K1 and K2, respectively. Since ‖∂

k+1
x w(τ)‖Hs−2k−5 ≤ M(t)(1+ τ)−3/4−(k+1)/2, we

can estimate the term K1 as

K1 ≤ CM(t)

∫ t

0

e−c(t−τ)(1 + τ)−5/4−k/2dτ ≤ CM(t)(1 + t)−5/4−k/2.

Also, the term K2 is estimated as

K2 ≤ CW (t)M(t)

∫ t

0

e−c(t−τ)(1 + τ)−7/4−k/2dτ ≤ CW (t)M(t)(1 + t)−7/4−k/2.

Thus we obtain

(6.7) (1 + t)5/4+k/2‖∂k
x(u,E)(t)‖Hs−2k−5 ≤ CI0 + CM(t) + CW (t)M(t)

for 0 ≤ k ≤ [(s− 1)/2]− 2. On the other hand, by using (1.2), we have

(6.8) ‖∂k
x(n− n∞)(t)‖Hs−2k−5 ≤ ‖∂k+1

x E(t)‖Hs−2k−5 ≤ M(t)(1 + t)−5/4−k/2

for 0 ≤ k ≤ [(s − 1)/2] − 2. Thus, combining (6.7) and (6.8), we get the desired
estimate (6.5). This completes the proof of Proposition 6.2.

Proof of Theorem 2.3. Let s ≥ 6. Then we have (6.1). Also we already proved
N(t) ≤ CI0 in (2.10). Substituting these estimates into (6.2), we get

M(t) ≤ CI1 + CM(t)2 + CI0M(t).
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This inequality is solved as M(t) ≤ CI1, provided that I1 is suitably small, say, I1 ≤
ε2. Thus we have proved (2.15). The decay estimate (2.16) is a direct consequence of
(2.15). Moreover, using (6.1) and (2.15) in (6.5), we find that M⊥(t) ≤ CI1, which
gives the decay estimate (2.17). Finally, using (1.2) and (2.17), we obtain

‖∂k
x(n− n∞)(t)‖Hs−2k−7 ≤ ‖∂k+1

x E(t)‖Hs−2k−7 ≤ CI1(1 + t)−7/4−k/2

for s ≥ 7 and 0 ≤ k ≤ [(s− 1)/2]− 3. Thus the proof of Theorem 2.3 is complete.
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[16] J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete

and Continuous Dynamical Systems, 9 (2003), pp. 1625–1639.
[17] Y. J. Peng and S. Wang, Rigorous derivation of incompressible e-MHD equations from com-

pressible Euler-Maxwell equations, SIAM J. Math. Anal., 40 (2008), pp. 540–565.
[18] Y. J. Peng and S. Wang, Asymptotic expansions in two-fluid compressible Euler-Maxwell

equations with small parameters, Discrete and Continuous Dynamical Systems, 23 (2009),
pp. 415–433.

[19] Y. J. Peng, S. Wang and Q. L. Gu, Relaxation limit and global existence of smooth solutions

of compressible Euler-Maxwell equations, preprint.



DECAY PROPERTY FOR THE EULER-MAXWELL SYSTEM 267

[20] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with appli-

cations to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), pp. 249–275.
[21] Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear dissipative plate

equation, J. Hyperbolic Differential Equations, 7 (2010), pp. 471–501.
[22] T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations

of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), pp. 435–457.
[23] Y. Ueda, S. Wang and S. Kawashima, Dissipative structure of the regularity-loss type and

time asymptotic decay of solutions for the Euler-Maxwell system, to appear in SIAM J.
Math. Anal.

[24] W.-A. Yong, Entropy and global existence for hyperbolic balance laws, Arch. Rational Mech.
Anal., 172 (2004), pp. 247–266.



268 Y. UEDA AND S. KAWASHIMA


