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WEAK SOLUTIONS TO LUBRICATION EQUATIONS IN THE

PRESENCE OF STRONG SLIPPAGE∗

GEORGY KITAVTSEV† , PHILIPPE LAURENÇOT‡ , AND BARBARA NIETHAMMER§

Abstract. The existence of global weak solutions is proved for one-dimensional lubrication
models that describe the dewetting process of nanoscopic thin polymer films on hydrophobyzed
substrates and take account of large slippage at the polymer-substrate interface. The convergence of
these solutions as either the Reynolds number or the capillarity goes to zero, as well as their limiting
behaviour as the slip length goes to zero or infinity are investigated.
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1. Introduction. During the last thirty years lubrication theory was success-
fully applied to modeling of dewetting processes in microscopic and nanoscopic liquid
films on solid polymer substrates see e.g. Oron et al. [1], Münch et al. [2] and ref-
erences therein. The influence of intermolecular interactions that are typically due
to the competition between the long-range attractive van der Waals and short-range
Born repulsive intermolecular forces play an important role in such processes, see Oron
et al. [1], de Gennes [3].

Besides intermolecular forces and surface tension at the free surface of the film it
has been shown by Fetzer et al. [4] that the dewetting of polymer films on hydrophobic
substrates also involves such boundary effect as slippage on a solid substrate. The
measure of slip is a so-called slip length, which is defined as an extrapolated distance
relative to the wall where the tangential velocity component of the liquid vanishes.
Recently, it has been shown experimentally and theoretically that the early stages of
the dewetting process and the evolving morphology depend markedly on the magni-
tude of the effective slip length, which can be of the size of the height of the liquid film
or even larger for nanoscale systems, see e.g. Fetzer et al. [5], Münch and Wagner [6].
Recently in Münch et al. [2], Kargupta et al. [7] closed-form one-dimensional lubri-
cation equations over a wide range of slip lengths were derived from the underlying
equations for conservation of mass and momentum, together with boundary condi-
tions for the tangential and normal stresses, as well as the kinematic condition at the
free boundary, impermeability and Navier-slip condition at the liquid-solid interface.
Asymptotic arguments, based on the magnitude of the slip length show that within a
lubrication scaling there are two distinguished limits, see Münch et al. [2].

These are the well-known weak-slip model

(1.1) ∂th = −∂x
(

(h3 + b h2)∂x (σ∂xxh−Π(h))
)
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with b denoting the slip length parameter, and the strong-slip model

Re (∂t(hu) + ∂x(hu
2)) = 4∂x(ν(h)∂xu) + h∂x(σ∂xxh−Π(h))− u

β
(1.2a)

∂th = − ∂x (hu) ,(1.2b)

respectively. Here, u(x, t) and h(x, t) denote the average velocity in the lateral direc-
tion and the height profile of the free surface, respectively. The positive slip length
parameters b and β are related by orders of magnitude via b ∼ η2β, where the (small)
parameter η, 0 < η ≪ 1, refers to the vertical to horizontal scale separation of the
thin film. The high order of the lubrication equations (1.1) and (1.2a)–(1.2b) is a
result of the contribution from surface tension at the free boundary, reflected by the
linearized curvature term σ∂xxh with parameter σ ≥ 0. A further contribution to the
pressure is denoted by Π(h) and represents that of the intermolecular forces, namely
long-range attractive van der Waals and short-range Born repulsive intermolecular
forces. A commonly used expression for it is given by

(1.3) Π(h) =
1

h3
− α

h4
with α > 0.

The terms Re (∂t(hu) + ∂x(hu
2)), with Re ≥ 0 denoting the Reynolds number, and

4∂x(ν(h)∂xu) in (1.2a)–(1.2b) represent inertial and Trouton viscosity terms, respec-
tively. We assume below linear dependence of the viscosity coefficient on the height,
namely

ν(h) := νh, ν > 0.

For these choices of the constitutive laws, we first investigate the existence of global
weak solutions to (1.2a)–(1.2b) on the interval (0, 1), supplemented with the boundary
conditions

u = 0 at x = 0, 1 ,(1.4)

∂xh = 0 at x = 0, 1 ,(1.5)

and initial data (h0, u0) with positive first component h0. Observe that, in particular,
the boundary conditions (1.4) for u guarantee the conservation of mass

(1.6)

∫ 1

0

h(x, t) dx = hc :=

∫ 1

0

h0(x) dx , t ≥ 0,

where hc is the average of the height profile.
We next investigate the behaviour of these weak solutions as some of the parameters
in the model go to zero or to infinity. More precisely, let us point out that the strong-
slip model (1.2a)–(1.2b) includes as limiting cases three further lubrication models.
One is obtained from the strong-slip model in the limit β → ∞ and describes the
dynamics of suspended free films, see e.g. Brenner and Gueyffier [8]:

Re (∂t(hu) + ∂x(hu
2)) = 4∂x(ν(h)∂xu) + h∂x(σ∂xxh−Π(h)),(1.7a)

∂th = − ∂x (hu) .(1.7b)

In the second one, we neglect the inertial terms which corresponds to a vanishing
Reynolds number. For the third limiting case which is derived in Münch et al. [2] the
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slip length parameter βI is of order of magnitude lying in between those that lead to
the weak-slip model (1.1) and the strong-slip model (1.2a)–(1.2b), i.e. b ≪ βI ≪ β.
The corresponding intermediate-slip model is given by

(1.8) ∂th = −∂x
(

h2∂x (σ∂xxh−Π(h))
)

.

It can be obtained by rescaling time in (1.1) by b and letting b → ∞ or by rescaling
time and the horizontal velocity by β in (1.2a)–(1.2b) and taking the limit β → 0.
We consider here the second limit and change variables in (1.2a)–(1.2b) as follows:

(1.9) x := x̄ , t := t̄β , h := h̄ , and u :=
ū

β
,

where x̄, t̄, h̄, and ū denote the old variables. We show that, as β → 0, the rescaled
solutions to (1.2a)–(1.2b) converge to a solution to

u = h∂x(σ∂xxh−Π(h)),(1.10a)

∂th = − ∂x (hu) ,(1.10b)

satisfying boundary conditions (1.4)–(1.5) that is, a solution to the intermediate-slip
equation (1.8).

Our proofs follow a strategy that has also been employed in other systems aris-
ing in fluid dynamics and phase transition theories. In fact, Bresch et al. [9] and
Bresch [10] considered the following Korteweg system

∂t(hu) + div (hu⊗ u) = div (µ(h)(∇u + (∇u)T ) +∇(λ(h)div u)(1.11a)

+ σh∇∆h−∇P (h),
∂th = − div (hu) .(1.11b)

In the case

σ = 0, µ(h) = µ = const, λ(h) = λ = const,

the system (1.11a)–(1.11b) gives the compressible Navier-Stokes equations. For the
latter, considered on a bounded domain with P (h) having a globally Lipschitz contin-
uous derivative, existence of a unique strong solution was shown by Solonnikov [11]
in dimensions d ≥ 2. Recently, Bresch et al. [9] showed existence of a weak solution
to (1.11a)–(1.11b) in a bounded domain with

(1.12) σ ≥ 0, µ(h) = νh, λ(h) = 0,

and similar requirements on P (h) for dimensions d ≥ 2. In the proof the authors
use a so-called BD entropy equality introduced by them originally in Bresch and
Desjardins [12] for the case σ = 0 and in Bresch and Desjardins [13] for the case
σ > 0 under some structure condition on the capillary term. In the former case
(1.11a)–(1.11b) coincides with viscous shallow-water equations. In a recent review by
Bresch [10] on those equations it was shown that the BD entropy equality holds for
(1.11a)–(1.11b) in dimensions d ≥ 2 if a special relation between viscosity coefficients
is satisfied, namely

(1.13) λ(h) = 2(µ′(h)h− µ(h))
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that is satisfied for (1.12).

We also notice that the strong-slip lubrication equation (1.2a)–(1.2b) has a similar
form to the one dimensional case of (1.11a)–(1.11b). Indeed, in one space dimension
(1.11a)–(1.11b) reduces to

∂t(hu) + ∂x(hu
2) = ∂x(ν(h)∂xu) + σh∂3xh− ∂xP (h),(1.14a)

∂th = − ∂x (hu) .(1.14b)

Recently, in Mellet and Vasseur [14] an analogue of the BD entropy identity was
shown for (1.14a)–(1.14b) with any C2 smooth viscosity function ν(h) and σ = 0.
Furthermore, they proved existence of strong solutions to (1.14a)–(1.14b) on the whole
real line R with σ = 0, ν(h) = νhk and P (h) = hγ , where k ≤ 1/2 and γ > 1. Still
for σ = 0, a similar tool is used in Li et al. [15] when ν(h) = νhα and P (h) = hγ

to establish the existence of weak solutions which might present vacuum regions for
α > 1/2 and γ > α/2.

The main difference in (1.2a)–(1.2b) compared to (1.14) is the special form of the
intermolecular pressure (1.3) which is singular when the height h vanishes and com-
plicates the analysis. Nevertheless, it also provides a very useful positive lower bound
for h. Equations (1.2a)–(1.2b) also include an additional slip term which is easily
handled for the existence theory but plays a crucial role for the limit β → 0 (leading
to equation (1.8)).

In this paper we start in section 2 with recalling the energy identity associated
to (1.2a)–(1.2b) and derive a version of a BD entropy identity. These two estimates
provide the main ingredients of our existence results. In section 3 we follow the strat-
egy of Bresch and Desjardins [16] by setting up a higher-order regularized equation
for which analogous energy and entropy inequalities are satisfied. The a priori esti-
mates allow us to pass to the limit in the regularization parameter to obtain global
weak solutions to (1.2a)–(1.2b). In section 4 we establish existence of global weak
solutions for the cases Re = 0, β = ∞ and σ = 0 by passing to the respective limits
in (1.2a)–(1.2b). While the first two cases are straightforward, we need to refine the
estimates from section 2 in order to enable us to deal with the limit σ → 0. Finally,
in section 5 we establish that solutions of (1.2a)–(1.2b) converge, after the rescaling
(1.9), in the limit β → 0 to a solution of the intermediate-slip model (1.8).

2. A priori estimates. In this section we state two relations that are satisfied
by classical solutions of (1.2a)–(1.2b). As it was stated in the introduction both have
their counterparts for viscous shallow-water equation (1.11a)–(1.11b) and lubrication
equations (1.1) and (1.8). For the latter they were initially derived by Bernis and
Friedman [17]. The energy equality for shallow-water equations is known already
for several decades, whereas the entropy equality was suggested recently by Bresch
and Desjardins [12]. For the strong-slip model (1.2a)–(1.2b) the derivation of the
energy equality is again standard, see Kitavtsev and Wagner [18]. As a new result we
derive here the entropy equality for (1.2a)–(1.2b) following the approach of Bresch and
Desjardins [12]. At the end of this section we use the energy and entropy equalities
to derive a priori estimates in the case σ > 0 on classical solutions to (1.2a)–(1.2b)
having positive h and satisfying (1.6), (1.4)–(1.5). For consistency we start with the
energy equality.
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Lemma 2.1 (Energy equality). For classical solutions of the system (1.2a)–(1.2b)
with boundary conditions (1.4)–(1.5) the following equality holds

(2.1)
d

dt

∫ 1

0

[

Reh
u2

2
+ U(h) + σ

|∂xh|2
2

]

dx = −4

∫ 1

0

νh|∂xu|2 dx−
∫ 1

0

u2

β
dx,

where the potential function U is the indefinite integral of Π defined by

(2.2) U(h) = − 1

2 h2
+

α

3 h3
, h > 0 .

Proof. One way to show (2.1) is to use the fact that

(2.3) E(u, h) :=

∫ 1

0

[

Reh
u2

2
+ U(h) + σ

|∂xh|2
2

]

dx

is a Lyapunov functional for the system (1.2a)–(1.2b), see Kitavtsev and Wagner [18].
Here we give another standard derivation of (2.1). Multiplying (1.2a) by u and inte-
grating in x we obtain

Re

∫ 1

0

[

∂t(hu)u+ ∂x(hu
2)u
]

dx− 4

∫ 1

0

∂x(ν h∂xu)u dx

−
∫ 1

0

hu∂x(σ∂xxh−Π(h)) dx +

∫ 1

0

u2

β
dx = 0.

Using now several integrations by parts, (1.2b) and boundary conditions (1.4)–(1.5)
we obtain

0 = Re

∫ 1

0

[

∂t

(

h
u2

2

)

+ ∂th
u2

2
− hu2∂xu

]

dx

+ 4

∫ 1

0

ν h(∂xu)
2 dx−

∫ 1

0

∂th(σ∂xxh−Π(h)) dx+

∫ 1

0

u2

β
dx

= Re

∫ 1

0

[

∂t

(

h
u2

2

)

− ∂x(hu)
u2

2
− hu∂x

(

u2

2

)]

dx

+ 4

∫ 1

0

ν h(∂xu)
2 dx+

∫ 1

0

∂t

(

σ
|∂xh|2

2
+ U(h)

)

dx+

∫ 1

0

u2

β
dx

= Re

∫ 1

0

∂t

(

h
u2

2

)

dx+ 4

∫ 1

0

ν h(∂xu)
2 dx+

∫ 1

0

∂t

(

σ
|∂xh|2

2
+ U(h)

)

dx +

∫ 1

0

u2

β
dx.

From the last expression (2.1) follows.

Lemma 2.2. For classical solutions of the system (1.2a)–(1.2b) with boundary
conditions (1.4)–(1.5) the following equality holds

(2.4)
1

2

d

dt

∫ 1

0

|∂xh|2
h

dx =

∫ 1

0

∂x

(

∂xh

h

)

∂xu h dx.
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Proof. The statement is verified again using several integrations by parts, equation
(1.2a) and boundary conditions (1.4)–(1.5) as follows.

1

2

d

dt

∫ 1

0

|∂xh|2
h

dx =

∫ 1

0

∂xh∂xth

h
dx− 1

2

∫ 1

0

∂th|∂xh|2
h2

dx

= −
∫ 1

0

∂xh

h
∂xx(hu) dx+

1

2

∫ 1

0

∂x(hu)

(

∂xh

h

)2

dx

=

∫ 1

0

∂x

(

∂xh

h

)

∂x(hu) dx−
∫ 1

0

u∂xh∂x

(

∂xh

h

)

dx

=

∫ 1

0

∂x

(

∂xh

h

)

∂xu h dx.

Let us define a so-called entropy function by ϕ(h) := 4ν log h for h > 0. Then we
have the following lemma.

Lemma 2.3 (Entropy equality). For classical solutions of the system (1.2a)–
(1.2b) with boundary conditions (1.4)–(1.5) the following equality holds.

d

dt

∫ 1

0

[

1

2
h(Reu+ ∂xϕ(h))

2 − 1

β
ϕ(h) + Re

(

σ
|∂xh|2

2
+ U(h)

)]

dx

= −Re

∫ 1

0

u2

β
dx− 4σν

∫ 1

0

|∂xxh|2 dx− 4ν

∫ 1

0

Π′(h)|∂xh|2 dx.(2.5)

Proof. Let us multiply equation (1.2a) by ∂xϕ(h), integrate with respect to x and
use an integration by parts, (1.2b) and (1.5):

4νRe

∫ 1

0

(∂tu+ u∂xu)∂xh dx = −16ν2
∫ 1

0

∂x

(

∂xh

h

)

∂xu h dx

−4ν

∫ 1

0

u∂xh

βh
dx − 4σν

∫ 1

0

|∂xxh|2 dx− 4ν

∫ 1

0

Π′(h)|∂xh|2 dx.(2.6)

On one hand, a further integration by parts in the left-hand side of (2.6), equation
(1.2b), and the energy equality (2.1) give

4νRe

∫ 1

0

(∂tu+ u∂xu)∂xh dx

= 4νRe

(

d

dt

∫ 1

0

u∂xh dx−
∫ 1

0

u∂xth dx+

∫ 1

0

u∂xu∂xh dx

)

= 4νRe

(

d

dt

∫ 1

0

u∂xh dx−
∫ 1

0

∂xu∂x(uh) dx+

∫ 1

0

u∂xu∂xh dx

)

= 4νRe

(

d

dt

∫ 1

0

u∂xh dx−
∫ 1

0

h(∂xu)
2 dx

)

= Re

(

d

dt

∫ 1

0

[

4νu∂xh+Reh
u2

2
+ U(h) + σ

|∂xh|2
2

]

dx +

∫ 1

0

u2

β
dx

)

.
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On the other hand, using Lemma 2.2 and the definition of ϕ, one can write the first
term on the right-hand side of (2.6) as

−16ν2
∫ 1

0

∂x

(

∂xh

h

)

∂xuh dx = −1

2

d

dt

∫ 1

0

h |∂xϕ(h)|2 dx,

while it follows from (1.2b) and (1.4) that the second term on the right-hand side of
(2.6) can be transformed into

−4ν

∫ 1

0

u∂xh

βh
dx = −4ν

∫ 1

0

∂x(uh)

βh
dx+ 4ν

∫ 1

0

∂xu

β
dx =

1

β

d

dt

∫ 1

0

ϕ(h) dx.

Substituting finally the last three identities into (2.6) one obtains

d

dt

∫ 1

0

[

Re 2

2
hu2 +

1

2
h |∂xϕ(h)|2 + 4νReu∂xh− 1

β
ϕ(h) + Re

(

σ
|∂xh|2

2
+ U(h)

)]

dx

= −Re

∫ 1

0

u2

β
dx− 4σν

∫ 1

0

|∂xxh|2 dx− 4ν

∫ 1

0

Π′(h)|∂xh|2 dx.

Using the definition of ϕ the last expression can be easily transformed into (2.5).

Lemma 2.4. For smooth functions (h, u) with a positive first component h, we
have

(2.7)
1

4

∫ 1

0

h|∂xϕ(h)|2 dx ≤ 1

2

∫ 1

0

h (Reu+ ∂xϕ(h))
2
dx+ReE(u, h) +

Re

6α2
,

where E(u, h) is defined in (2.3).

Proof. Using the elementary inequality

(y + z)2 ≥ y2

2
− z2,

the fact that

(2.8) U(h) ≥ −1/(6α2)

for all h > 0, and the definition (2.3) of E one obtains

∫ 1

0

h (Reu+ ∂xϕ(h))
2
dx ≥ 1

2

∫ 1

0

h|∂xϕ(h)|2 dx− Re2
∫ 1

0

hu2 dx

≥ 1

2

∫ 1

0

h|∂xϕ(h)|2 dx− 2Re

[

E(u, h)−
∫ 1

0

(

U(h) + σ
|∂xh|2

2

)

dx

]

≥ 1

2

∫ 1

0

h|∂xϕ(h)|2 dx− 2ReE(u, h)− Re

3α2
,

from which the statement of the lemma follows.

We now deduce several bounds from Lemmas 2.1 and 2.3 for classical solutions (h, u)
to the system (1.2a)–(1.2b) with boundary conditions (1.4)–(1.5) and a positive first
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component. To this end, we assume that the initial data h0 and u0 for (1.2a)–(1.2b)
satisfy

h0 ∈ H1(0, 1), h0(x) > 0 for all x ∈ [0, 1] and u0 ∈ L2(0, 1).(2.9)

As already mentioned, a first consequence of (1.2b) and (1.4) is the conservation of
mass (1.6). We next combine (1.6), the energy and entropy identities to obtain the
following bounds when σ > 0.

Proposition 2.5 (a priori estimates). For fixed positive σ,Re, β, T and initial
data satisfying (2.9) there exists a positive constant C0 > 1 depending only on T , α,
ν, Re, σ, E(u0, h0), and Sβ(u0, h0) defined in (2.13) below such that the following
terms are bounded by C0 in respective norms

√
h, ∂x

√
h, h−3/2, ∂xh,

√
Re

√
hu ∈ L∞(0, T ;L2(0, 1)),(2.10)

∂x(h
−3/2), ∂xxh,

√
h∂xu,

u√
β

∈ L2((0, 1)× (0, T )),(2.11)

and

(2.12) C−1
0 ≤ h(x, t) ≤ C0

for all x ∈ (0, 1) and t ∈ (0, T ). The constant C0 tends to ∞ as σ → 0.

Proof. Integrating the energy equality (2.1) with respect to time over (0, t),
t ∈ (0, T ), and using the inequality

U(h) ≥ α

6h3
− 2

3α2
,

we obtain

‖
√
Re
√

h(t)u(t)‖22 +
α

3
‖h−3/2(t)‖22 + ‖

√
σ∂xh(t)‖22 ≤ C1 := 2E(u0, h0) +

4

3α2
,

∫ t

0

[

4ν‖
√

h(s)∂xu(s)‖22 +
∥

∥

∥

∥

u(s)√
β

∥

∥

∥

∥

2

2

]

ds ≤ C1.

Therefore, the norms of
√
σ∂xh, h

−3/2, and
√
Re

√
hu in L∞(0, T ;L2(0, 1)) are

bounded by a constant that depends only on C1 while the norms of
√
h∂xu and

u/
√
β in L2((0, 1)× (0, T )) are bounded by a constant that depends only on C1 and

ν. Using the bound on ∂xh one obtains

|h(x, t) − h(y, t)| =
∣

∣

∣

∣

∫ y

x

∂xh(z, t) dz

∣

∣

∣

∣

≤ |x− y|1/2 ‖∂xh(t)‖2 ≤ C1√
σ
|x− y|1/2

for all (x, y) ∈ (0, 1) × (0, 1) and t ∈ (0, T ). Integrating the above inequality with
respect to y ∈ (0, 1) and using (1.6) readily give the upper bound in (2.12). To
establish the lower bound for h in (2.12), we combine the L∞(0, T ;L2(0, 1))-estimates
on h−3/2 and

√
σ∂xh just established to obtain a bound on the norm of 1/

√
h in

L∞(0, T ;W 1,1(0, 1)) since

∫ 1

0

∣

∣

∣
∂x

(

h−1/2
)∣

∣

∣
dx =

1

2

∫ 1

0

|∂xh|
h3/2

dx ≤ 1

2
√
σ

‖
√
σ∂xh‖2 ‖h−3/2‖2.
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Owing to the continuous embedding of W 1,1(0, 1) in L∞(0, 1), the positive lower
bound in (2.12) readily follows.

Next, let us introduce the functional Sβ(u, h) defined by

(2.13) Sβ(u, h) :=

∫ 1

0

[1

2
h(Reu+∂xϕ(h))

2+
1

β
(4νh−ϕ(h))+Re σ

|∂xh|
2

2
+ReU(h)

]

dx.

It follows from the mass conservation (1.6) and the entropy equality (2.5) that

(2.14) Sβ(u(t), h(t))+

∫ t

0

∫ 1

0

(

Re

β
u
2 + 4σν|∂xxh|

2 + 4νΠ′(h)|∂xh|
2

)

dx ds = Sβ(u0, h0)

for any t ∈ (0, T ). Since z− log(z) ≥ 1 for all z > 0, it follows from the energy equality
(2.1), (2.8), and Lemma 2.4 that

Sβ(u, h) ≥
1

2

∫ 1

0

h(Reu+ ∂xϕ(h))
2 dx+

1

β

∫ 1

0

(4νh− ϕ(h)) dx − Re

6α2

≥ 1

2

∫ 1

0

h(Reu+ ∂xϕ(h))
2 dx− Re

6α2
(2.15)

≥ 1

4

∫ 1

0

h|∂xϕ(h)|2 dx− ReE(u, h)− Re

3α2

≥ 1

4

∫ 1

0

h|∂xϕ(h)|2 dx− ReE(u0, h0)−
Re

3α2
.

Combining this with the previous estimate on
√
σ∂xh, (2.14), and the fact that

Π′(h) ≥ 2α

h5
−
(

6

5

)5
1

2α4
,

we obtain

1

4

∫ 1

0

h(t)|∂xϕ(h(t))|2 dx+

∫ t

0

∫ 1

0

(

4σν|∂xxh(s)|2 +
8να|∂xh(s)|2

h5(s)

)

dx ds

≤ C2 +

(

6

5

)5
2ν

α4

∫ t

0

∫ 1

0

|∂xh(s)|2 dx ds ≤ C2 +

(

6

5

)5
2ν

α4

C2
1T

σ

with C2 := Sβ(u0, h0) + ReE(u0, h0) + (Re/3α2). Since h|∂xϕ(h)|2 = 4|∂x
√
h|2, this

completes the proof of (2.10)–(2.11).

Remark 2.6. As in Theorem 1 of Bertozzi et al. [19] that shows existence of
uniform lower bounds for solutions of (1.8) many estimates in the proof of Proposi-
tion 2.5 heavily rely on the positivity of the parameter α in Π and become unbounded
as α → 0. The estimates (2.10), (2.11), and (2.12) are no longer valid in that case.
The same remark holds for the case σ = 0 since the estimates depend on the bound
for

√
σ∂xh. On the contrary the proof holds without changes for the cases Re = 0

or β = ∞ except for the fact that then one looses estimates on Re
√
hu and u/

√
β in

(2.10)–(2.11), respectively.
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3. Existence of weak solutions. We first define a weak formulation of the
problem (1.2a)–(1.2b) with boundary conditions (1.4)–(1.5). Consider two functions
h0 and u0 satisfying (2.9).

Definition 3.1. A pair (h, u) is a global weak solution to (1.2a)–(1.2b) with
boundary conditions (1.4)–(1.5) and initial conditions (h0, u0) if h and u enjoy the
regularity properties stated in (2.10)–(2.11)–(2.12) and the following holds

∫ ∞

0

∫ 1

0

h∂tψ dxdt+

∫ 1

0

h0ψ(·, 0) dx = −

∫ ∞

0

∫ 1

0

hu∂xψ dxdt,(3.1)

Re

∫ ∞

0

∫ 1

0

hu∂tφ dxdt+Re

∫ 1

0

h0u0φ(·, 0) dx+Re

∫ ∞

0

∫ 1

0

hu
2
∂xφ dx dt

− 4ν

∫ ∞

0

∫ 1

0

h∂xu∂xφ dx dt− σ

∫ ∞

0

∫ 1

0

∂xh∂xxhφdx dt− σ

∫ ∞

0

∫ 1

0

h∂xxh∂xφ dx dt

+

∫ ∞

0

∫ 1

0

Π1(h)∂xφdxdt−
1

β

∫ ∞

0

∫ 1

0

uφdxdt = 0(3.2)

for all ψ ∈ C∞
0 ([0, 1]× [0,∞)) and φ ∈ C∞

0 ((0, 1)× [0,∞)), where

(3.3) Π1(h) := −
∫ ∞

h

τΠ′(τ) dτ.

To show the existence of weak solutions to (1.2a)–(1.2b)–(1.4)–(1.5) we construct
approximating systems involving higher derivatives of h and u similar to those sug-
gested by Bresch and Desjardins [16] for the Korteweg and viscous shallow-water
equations (1.11a)–(1.11b), the simpler approximation relying on a modification of the
pressure law used in, e.g., Li et al. [15] being not appropriate here because of the cap-
illary term (σ > 0). Although the pressure term Π(h) does not need a regularization
as in the case of Bresch and Desjardins [16], one still needs to regularize the function
h sufficiently in order to control additional higher order terms arising in the entropy
equality. The approximating systems we take are given by

Re (∂t(hεuε) + ∂x(hεu
2
ε)) = 4∂x(ν hε∂xuε) + hε∂x(σ∂xxhε −Π(hε))−

uε
β

(3.4a)

+ εhε∂
7
xhε − ε2∂4xuε,

∂thε = − ∂x (hεuε) ,(3.4b)

where ε > 0 is a small parameter. Consider (3.4a)–(3.4b) with boundary conditions

(3.5) uε = ∂xxuε = ∂xhε = ∂3xhε = ∂5xhε = 0, (x, t) ∈ {0, 1} × (0, T ),

and initial conditions

(3.6) uε(x, 0) = uε,0(x) and hε(x, 0) = hε,0(x) > 0, x ∈ (0, 1),

where uε,0 and hε,0 are smooth functions such that

(3.7) uε,0 → u0 in L2(0, 1), hε,0 → h0 in H1(0, 1), and εhε,0 → 0 in H3(0, 1) as ε→ 0.

Proceeding as in Lemmas 2.1 and 2.3 one derives formulas analogous to (2.1) and
(2.5) for the system (3.4a)–(3.4b) with boundary and initial conditions (3.5)–(3.6).
Namely, introducing the energy

Eε(uε, hε) :=

∫ 1

0

[

Rehε
u2ε
2

+ U(hε) + σ
|∂xhε|2

2
+
ε

2
|∂3xhε|2

]

dx,
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and the entropy

Sε(uε, hε) :=

∫ 1

0

[

1

2
hε(Reuε + ∂xϕ(hε))

2 − 1

β
ϕ(hε)

]

dx

+ Re

∫ 1

0

[

σ
|∂xhε|2

2
+ U(hε) +

ε

2
|∂3xhε|2

]

dx,

the corresponding energy and entropy equalities read

(3.8)
d

dt
Eε(uε, hε) = −4

∫ 1

0

νhε|∂xuε|2 dx−
∫ 1

0

u2ε
β
dx− ε2

∫ 1

0

|∂xxuε|2 dx

and

d

dt
Sε(uε, hε) = −Re

∫ 1

0

u2ε
β
dx− 4σν

∫ 1

0

|∂xxhε|2 dx− 4ν

∫ 1

0

Π′(hε)|∂xhε|2 dx

−
∫ 1

0

[

Re ε2|∂xxuε|2 + 4νε|∂4xhε|2 + 4νε2∂xxuε∂
3
x log hε

]

dx.(3.9)

Given ε > 0, equation (3.4a) is parabolic with respect to u. Arguing as in Bresch
and Desjardins [16], the initial-boundary value problem (3.4a)–(3.4b) with (3.5)–(3.6)
has a unique classical solution at least locally in time. The next proposition establishes
a uniform lower bound for hε and thus guarantees the global in time solvability for
(3.4a)–(3.4b).

Proposition 3.2. For fixed positive ε, σ,Re, β and T > 0 let (hε, uε) be the
solution of the initial-boundary value problem (3.4a)–(3.4b) with (3.5)–(3.6) in (0, 1)×
(0, T ). There exists a positive constant C3 ≥ 1 depending only on T , α, ν, Re, β, σ,
h0, and u0 such that, for all sufficiently small ε > 0, the following terms are bounded
by C3 in respective norms

√

hε, ∂x
√

hε, h
−3/2
ε , ∂xhε,

√

hεuε,
√
ε∂3xhε ∈ L∞(0, T ;L2(0, 1)),(3.10)

∂x

(

h−3/2
ε

)

, ∂xxhε,
√

hε∂xuε, uε,
√
ε∂4xhε, ε∂xxuε ∈ L2((0, 1)× (0, T )),(3.11)

and

(3.12)
1

C3
≤ hε(x, t) ≤ C3 , (x, t) ∈ (0, 1)× (0, T ) .

Proof. Throughout the proof C denotes a positive constant depending on the
same parameters as C3 that may vary from line to line. Proceeding as in the proof of
Proposition 2.5, the mass conservation and the energy equality (3.8) imply the esti-

mate (3.12) and all bounds in (3.10)–(3.11) except those on ∂x
√
hε, ∂xxhε, ∂x

(

h
−3/2
ε

)

and
√
ε∂4xhε. Using the previously obtained bounds (in particular the lower bound

(3.12) on hε) and the interpolation inequalities

‖∂xxhε‖L∞(0,1) ≤ C ‖∂3xhε‖L2(0,1) and ‖∂xhε‖L6(0,1) ≤ C ‖∂xxhε‖1/3L2(0,1) ‖∂xhε‖
2/3
L2(0,1) ,
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one can estimate the last term on the right-hand side of the entropy equality (3.9) as
follows:

∣

∣

∣

∣

∣

4νε2
∫ T

0

∫ 1

0

∂xxuε · ∂3x log hε dx dt
∣

∣

∣

∣

∣

≤ 4νε

(

∫ T

0

∫ 1

0

ε2|∂xxuε|2 dx dt
)1/2

sup
[0,T ]

||∂3x log hε||L2(0,1)

≤ C ε sup
[0,T ]

∥

∥

∥

∥

∂3xhε
hε

− 3
∂xhε∂xxhε

h2ε
+ 2

|∂xhε|3
h3ε

∥

∥

∥

∥

L2(0,1)

(3.13)

≤ C ε sup
[0,T ]

{

‖∂3xhε‖L2(0,1) + ‖∂xhε‖L2(0,1) ‖∂xxhε||L∞(0,1) + ‖∂xhε‖3L6(0,1)

}

≤ C ε sup
[0,T ]

{

‖∂3xhε‖L2(0,1) + C ‖∂3xhε‖L2(0,1) + C ‖∂xxhε‖L2(0,1)

}

+ C
√
ε sup

[0,T ]

‖
√
ε ∂3xhε‖L2(0,1) ≤ C

√
ε.

Therefore, taking ε sufficiently small, the bounds in (3.10)–(3.11) still to be proved
follow from the entropy inequality (3.9) exactly as in the proof of Proposition 2.5.

We now show that solutions to the system (3.4a)–(3.4b) with boundary and initial
conditions (3.5)–(3.6) converge to a solution to (3.1)–(3.2) as ε→ 0.

Theorem 3.3. For any positive σ,Re, β and initial data (h0, u0) satisfying (2.9),
there exists a global weak solution (h, u) to the system (1.2a)–(1.2b) with boundary
conditions (1.4)–(1.5) and initial conditions (h0, u0) in the sense of Definition 3.1.

Proof. Take a sequence {εn}n≥1 → 0 and, for each n ≥ 1, denote the corre-
sponding solution to the approximate system (3.4a)–(3.4b)–(3.5)–(3.6) with ε = εn
by (hεn , uεn).

We investigate the compactness properties of the sequence (hεn , uεn) and
to this end use the estimates derived in Proposition 3.2. Let T > 0.
First, owing to (3.10) and (3.12), (

√

hεn) and (
√

hεnuεn) are bounded in
L∞((0, 1) × (0, T )) and L∞(0, T ;L2(0, 1)), respectively. Hence, by (3.4b), (∂thεn)
is bounded in L∞(0, T ;H−1(0, 1)). Since (hεn) is bounded in L∞(0, T ;H1(0, 1))
and L2(0, T ;H2(0, 1)) by (3.10) and (3.11), it follows from the compactness of the
embedding of H1(0, 1) in C([0, 1]) and Corollary 4 in Simon [20] that there is
h ∈ C([0, 1]× [0, T ]) such that, after possibly extracting a subsequence,

hεn → h in L2(0, T ;W 1,p(0, 1)) ∩ C([0, 1]× [0, T ]) for p ∈ [1,∞),(3.14)

∂thεn
⋆
⇀ ∂th in L∞(0, T ;H−1(0, 1)).

Combining (3.12) and (3.14) we additionally obtain that h is positive and

(3.15) h−1
εn → h−1 in C([0, 1]× [0, T ]).

We next turn to compactness properties of (uεn). For that purpose, we write
(3.4a) as

Re ∂t(hεnuεn) = −Re ∂x(hεnu
2
εn) + 4∂x(ν hεn∂xuεn)

+ hεn∂x(σ∂xxhεn −Π(hεn))−
uεn
β

+ εnhεn∂
7
xhεn − ε2n∂

4
xuεn(3.16)
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and claim that the right-hand side of (3.16) is bounded in L2(0, T ;H−3(0, 1)). In-
deed, by (3.10)–(3.12), (hεnu

2
εn), (

√

hεn), and (
√

hεn∂xuεn) are in L
∞(0, T ;L1(0, 1)),

L∞((0, 1) × (0, T )), and L2((0, 1) × (0, T )), which imply that (hεnu
2
εn) and

(∂x(hεn∂xuεn)) are bounded in L2(0, T ;H−1(0, 1)). Next, for any ψ ∈ C∞
0 ((0, 1) ×

(0, T )) one obtains, using integration by parts and (3.10)–(3.12), that

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

ψhεn∂
3
xhεn dx dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

∂xxhεn [hεn∂xψ + ψ∂xhεn ] dx dt

∣

∣

∣

∣

∣

≤
∫ T

0

‖∂xxhεn‖L2(0,1)

[

‖hεn‖L∞(0,1)‖∂xψ‖L2(0,1) + ‖ψ‖L∞(0,1)‖∂xhεn‖L2(0,1)

]

dt

≤ C

(

∫ T

0

‖ψ‖2H1(0,1) dt

)1/2

and
∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

ψ hεn∂xΠ(hεn) dx dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

∂xψΠ1(hεn) dx dt

∣

∣

∣

∣

∣

≤ ‖Π1(hεn)‖L∞((0,1)×(0,T ))

(

∫ T

0

‖ψ‖2H1(0,1) dt

)1/2

,

where Π1(h) is defined in (3.3). Similarly,

εn

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

ψhεn∂
7
xhεn dx dt

∣

∣

∣

∣

∣

= εn

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

∂4xhεn
(

ψ ∂3xhεn + 3∂xψ ∂xxhεn + 3∂xxψ ∂xhεn + hεn ∂
3
xψ
)

dx dt

∣

∣

∣

∣

∣

≤ εn

∫ T

0

‖∂4xhεn‖L2(0,1)

(

‖ψ‖L∞(0,1)‖∂3xhεn‖L2(0,1) + ‖hεn‖L∞(0,1)‖∂3xψ‖L2(0,1)

+ 3‖∂xψ‖L∞(0,1)‖∂xxhεn‖L2(0,1) + 3‖∂xxψ‖L∞(0,1)‖∂xhεn‖L2(0,1)

)

dt

≤ C
√
εn

∫ T

0

‖∂4xhεn‖L2(0,1)‖ψ‖H3(0,1) dt ≤ C ‖ψ‖L2(0,T ;H3(0,1)).

Finally, (uεn) and (εn∂xxuεn) are bounded in L2((0, 1) × (0, T )) and
L2(0, T ;H−2(0, 1)), respectively, by (3.11). Collecting the above information
completes the proof of the boundedness of the right-hand side of (3.16), whence

(3.17) (∂t(hεnuεn)) is bounded in L2(0, T ;H−3(0, 1)).

Now, owing to (3.11) and (3.12), we realize that (uεn) is bounded in L2(0, T ;H1(0, 1)).
This fact along with (3.10)–(3.12) allows us to conclude that (hεnuεn) is bounded in
L2(0, T ;H1(0, 1)). Combining this with (3.17) and Corollary 4 in Simon [20] ensures
that (hεnuεn) is compact in L2((0, 1) × (0, T )). Then, thanks to (3.15), there exists
u ∈ L2(0, T ;H1(0, 1)) such that

(3.18) ∂xuεn ⇀ ∂xu in L2((0, 1)× (0, T )) and uεn → u in L2((0, 1)× (0, T )).
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The convergences (3.14), (3.15), and (3.18) then allow to pass to the limit as n→ ∞
in the weak formulation of the approximating systems (3.4a)–(3.4b)–(3.5)–(3.6) in
order to get that (h, u) satisfies (3.1)–(3.2).

Remark 3.4 (Energy and entropy inequalities). It follows from the proof of
Theorem 3.3 together with the energy and entropy identities (3.8), (3.9), the property
(3.7) and the estimate (3.14) that the weak solutions to (3.1)–(3.2) obtained above
satisfy the corresponding energy inequality

sup
t∈(0,T ]

∫ 1

0

[

Reh
u2

2
+ U(h) + σ

|∂xh|2
2

]

dx+

∫ T

0

∫ 1

0

(

4νh|∂xu|2 +
u2

β

)

dxdt(3.19)

≤
∫ 1

0

[

Reh0
u20
2

+ U(h0) + σ
|∂xh0|2

2

]

dx

and entropy inequality

sup
t∈(0,T ]

∫ 1

0

[

1

2
h (Reu+ ∂xϕ(h))

2 − 1

β
ϕ(h) + Re

(

σ
|∂xh|2

2
+ U(h)

)]

dx

+

∫ T

0

∫ 1

0

(

Re
u2

β
+ 4σν|∂xxh|2 + 4νΠ′(h)|∂xh|2

)

dxdt

≤
∫ 1

0

[

1

2
h0 (Re u0 + ∂xϕ(h0))

2 − 1

β
ϕ(h0) + Re

(

σ
|∂xh0|2

2
+ U(h0)

)]

dx.(3.20)

Note that the right-hand side of (3.19)–(3.20) does not depend on T . Consequently,
the statements of Lemma 2.4 and Proposition 2.5 hold also for the weak solutions to
(3.1)–(3.2) constructed in Theorem 3.3.

4. Limiting cases.

4.1. Cases Re = 0 and β = ∞. By Remark 3.4, the statement of Proposition 2.5
is true for the weak solutions to (3.1)–(3.2) provided by Theorem 3.3. We may then
investigate the behaviour of these solutions as either Re → 0 or β → ∞. Let us
first consider a sequence of positive real numbers (βn), βn → ∞, and denote the
corresponding solutions to (3.1)–(3.2) with a fixed Re > 0 and β = βn by (hβn

, uβn
).

Though the estimate on (uβn
/βn) is useless in that case, one still recovers the estimate

of (uβn
) in L2(0, T ;H1

0 (0, 1)) as a consequence of (2.11), (2.12), and the Poincaré
inequality. Arguing as in the proof of Theorem 3.3, we conclude that, after possibly
extracting a subsequence, (hβn

, uβn
) converges towards a weak solution to the strong-

slip model (1.7a)–(1.7b) describing the dynamics of free suspended films.
If we now consider a sequence of positive real numbers (Ren), Ren → 0, and denote

the corresponding weak solutions to (3.1)–(3.2) with Re = Ren and a fixed β ∈ (0,∞]
by (hRen , uRen), we may again proceed as in the proof of Theorem 3.3 to show that,
after possibly extracting a subsequence, (hRen , uRen) converges towards a weak solu-
tion to the strong-slip model (1.2a)–(1.2b) without inertial terms. There is however
an important difference as the bound on (∂t(hRenuRen)) in L

2(0, T ;H−3(0, 1)) is no
longer available and we only obtain the weaker conclusion

uRen ⇀ u in L2(0, T ;H1(0, 1)).

Still, owing to the strong convergence of (hRen), this allows us to pass to the limit as
n→ ∞ in all the terms which depend linearly on uRen , that is, all the terms involving
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uRen except RenhRenu
2
Ren

. But the latter converges to zero as Ren → 0 since (hRen)
and (uRen) are bounded in L∞((0, 1)× (0, T )) and L2(0, T ;H1

0 (0, 1)), respectively, by
(2.11)–(2.12).

4.2. Case σ = 0. As already pointed out in Remark 2.6, for weak solutions
(h, u) to (3.1)–(3.2), the estimate on ∂xh in (2.11) and both bounds in (2.12) depend
on σ and explode as σ → 0. In order to investigate the limiting behaviour of weak
solutions to (3.1)–(3.2) as σ → 0, we refine the a priori bounds of Proposition 2.5 in
the next proposition so as to avoid their dependence on σ, although paying for it with
an exponential growth with respect to time.

Proposition 4.1. For fixed positive σ,Re, β, T and initial data satisfying (2.9),
let (h, u) be a weak solution to (3.1)–(3.2). There exists a positive constant C4 > 1
depending only on T , α, ν, Re, E(u0, h0), and Sβ(u0, h0) defined in (2.13) (but not
on σ ∈ (0, 1)) such that the following terms are bounded by C4 in respective norms

√
h, ∂x

√
h, h−3/2,

√
hu ∈ L∞(0, T ;L2(0, 1)),(4.1)

∂x(h
−3/2),

√
σ∂xxh,

√
h∂xu, u ∈ L2((0, 1)× (0, T )),(4.2)

and

(4.3) C−1
4 ≤ h(x, t) ≤ C4 , (x, t) ∈ (0, 1)× (0, T ).

Proof. First, the L∞(0, T ;L2(0, 1))-estimates on
√
h,

√
hu and h−3/2 and the

L2((0, 1)×(0, T ))-estimates on
√
h∂xu and u readily follow from the mass conservation

and the energy inequality (3.19) as before. Next, we actually estimate in a different
way the term 4νΠ′(h)|∂xh|2 in the entropy inequality (3.20). More precisely, using
the estimate

Π′(h) =
4α− 3h

h5
≥ χ(0,α)(h)

α

h5
+ χ(α,∞)(h)

(

− 3

h4

)

≥ α

h5
− χ(α,∞)(h)

(

α

h5
+

3

h4

)

≥ α

h5
− χ(α,∞)(h)

4

h4
,

where χA denotes the characteristic function of a set A ⊂ R and recalling that
ϕ(h) = 4ν log h, one obtains

(4.4) Π′(h)|∂xh|2 ≥ α

h5
|∂xh|2 − χ(α,∞)(h)

h|∂xϕ(h)|2
4ν2α3

≥ α

h5
|∂xh|2 −

h|∂xϕ(h)|2
4ν2α3

.

Next, let us consider as in the proof of Proposition 2.5 the function Sβ(u, h) defined
in (2.13). Thanks to the mass conservation (1.6), the entropy inequality (3.20) also
reads

Sβ(u(t), h(t)) +

∫ t

0

∫ 1

0

(

Re
u2

β
+ 4σν|∂xxh|2

)

dx ds

≤ Sβ(u0, h0)− 4ν

∫ t

0

∫ 1

0

Π′(h)|∂xh|2 dx ds.(4.5)



198 G. KITAVTSEV, P. LAURENÇOT AND B. NIETHAMMER

Recalling that

(4.6) Sβ(u, h) ≥
1

2

∫ 1

0

h(Reu+ ∂xϕ(h))
2 dx− Re

6α2

by (2.15), it follows from (4.4), (4.6), and Lemma 2.4 that

−4ν

∫ 1

0

Π′(h)|∂xh|2 dx ≤ −4αν

∫ 1

0

|∂xh|2
h5

dx+
1

να3

∫ 1

0

h|∂xϕ(h)|2 dx

≤ −4αν

∫ 1

0

|∂xh|2
h5

dx+
4

να3

(

Sβ(u, h) + ReE(u, h) +
Re

3α2

)

≤ −4αν

∫ 1

0

|∂xh|2
h5

dx+
4

να3

(

Sβ(u, h) + ReE(u0, h0) +
Re

3α2

)

,

where we used the energy inequality (3.19) in the last estimate. Inserting this in (4.5)
one ends up with

Sβ(u(t), h(t)) +

∫ t

0

∫ 1

0

(

Re
u2

β
+ 4σν|∂xxh|2 + 4αν

|∂xh|2
h5

)

dx ds

≤ Sβ(u0, h0) +
4Re

να3

(

E(u0, h0) +
1

3α2

)

t+
4

να3

∫ t

0

Sβ(u(s), h(s)) ds.

Applying Gronwall’s inequality gives

Sβ(u(t), h(t)) +

∫ t

0

∫ 1

0

(

Re
u2

β
+ 4σν|∂xxh|2

)

dx dt

≤
(

Sβ(u0, h0) + Re

[

E(u0, h0) +
1

3α2

])

exp

(

4t

να3

)

.(4.7)

Combining (2.7), (4.6), and (4.7) implies the estimates on ∂x
√
h in L∞(0, T ;L2(0, 1))

and ∂x(h
−3/2),

√
σ∂xxh in L2((0, 1)× (0, T )) and completes the proof of (4.1)–(4.2).

To check (4.3), we first notice that the bound on
√
h in L∞(0, T ;H1(0, 1)) from (4.1)

and the embedding of H1(0, 1) in L∞(0, 1) guarantee the upper bound in (4.3). Next,
integrating the following identity

1

h(x)
=

1

h(y)
−
∫ x

y

∂zh(z)

h2(z)
dz , x ∈ (0, 1) ,

with respect to y and using the Cauchy-Schwarz inequality give

1

h(x)
≤
∫ 1

0

dy

h(y)
+

(
∫ 1

0

|∂zh(z)|2
h(z)

dz

)1/2 (∫ 1

0

dz

h3(z)

)1/2

≤ ‖h−3/2‖2/3L2(0,1) + 4 ‖∂x
√
h‖L2(0,1) ‖h−3/2‖L2(0,1).

The lower bound in (4.3) then follows from the above inequality by (4.1).

Using the a priori bounds from Proposition 4.1 one can show existence of weak
solutions to (3.1)–(3.2) in the case σ = 0.

Theorem 4.2. Let σ = 0. For any positive Re, β and initial data (h0, u0)
satisfying (2.9) there exists a global weak solution (h, u) to (1.2a)–(1.2b) satisfying
(3.1)–(3.2).
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Proof. Let us take a sequence {σn} → 0 and, for each n ≥ 1, denote the corre-
sponding weak solution to (3.1)–(3.2) with σ = σn by (hσn

, uσn
). Owing to Propo-

sition 4.1 we may proceed as in the proof of Theorem 3.3 to show the existence of
functions h and u satisfying

hσn
→ h and h−1

σn

→ h−1 in C([0, 1]× [0, T ]),

∂thσn

∗
⇀ ∂th in L∞(0, T ;H−1(0, 1))

and

∂xuσn
⇀ ∂xu in L2((0, 1)× (0, T )) and uσn

→ u in L2((0, 1)× (0, T )).

In addition,

σn∂xxhσn
→ 0 in L2((0, 1)× (0, T ))

by (4.2), from which we deduce that

σn∂xhσn
∂xxhσn

⇀ 0 and σnhσn
∂xxhσn

⇀ 0 in L1((0, 1)× (0, T ))

with the help of (4.1). This allows us to pass to the limit as n→ ∞ in all integrals in
(3.1)–(3.2) and conclude that (h, u) satisfies (3.1)–(3.2) with σ = 0.

5. Convergence to solutions of intermediate-slip equation. In the in-
troduction we mentioned that performing the change of variables (1.9) and passing
formally to the limit as β → 0 in (1.2a)–(1.2b) give (1.10a)–(1.10b) and consequently
that solutions of the strong-slip equation are expected to converge to that of (1.8).
The next theorem makes this formal procedure rigorous. More precisely, we show
that scaled weak solutions to (1.2a)–(1.2b) converge to that of (1.8) when σ > 0. In
this section, we denote the unscaled variables in (1.2a)–(1.2b) with bars.

Theorem 5.1. For fixed positive Re, σ, let (βn) be a sequence of positive real
numbers, βn → 0, and, for n ≥ 1, denote a global weak solution to (3.1)–(3.2) with
initial data (h0, u0) satisfying (2.9) and β = βn by (h̄n, ūn). Using (1.9), we define

hn(x, t) := h̄n

(

x,
t

βn

)

and un(x, t) :=
1

βn
ūn

(

x,
t

βn

)

,(5.1)

(x, t) ∈ (0, 1)× (0,∞).

Then there exist a positive function h and a subsequence of (hn, un) (not relabeled)
such that, for any T > 0,

hn → h in L2(0, T ;H1(0, 1)) ∩ C([0, 1]× [0, T ]),

un ⇀ u := h∂x(σ∂xxh−Π(h)) in L2((0, 1)× (0, T )),

and h is a global weak solution to (1.8) considered with initial condition h0 satisfying
(2.9) and boundary conditions (1.4)–(1.5).

Proof. Owing to (3.1)–(3.2), for each n ≥ 1, the functions (hn, un) satisfy the



200 G. KITAVTSEV, P. LAURENÇOT AND B. NIETHAMMER

following scaled weak formulation
∫ ∞

0

∫ 1

0

hn∂tψ dxdt+

∫ 1

0

h0ψ(., 0) dx = −

∫ ∞

0

∫ 1

0

hnun∂xψ dxdt,(5.2a)

β
2
n

(

Re

∫ ∞

0

∫ 1

0

hnun∂tφ dx dt+Re

∫ 1

0

h0u0φ(., 0) dx+Re

∫ ∞

0

∫ 1

0

hnu
2
n∂xφdx dt

)

− 4βnν

∫ ∞

0

∫ 1

0

hn∂xun∂xφdx dt− σ

∫ ∞

0

∫ 1

0

∂xhn∂xxhnφ dx dt

−

∫ ∞

0

∫ 1

0

(σ hn∂xxhn − Π1(hn)) ∂xφ dx dt−

∫ ∞

0

∫ 1

0

unφdx dt = 0(5.2b)

for all ψ ∈ C∞
0 ([0, 1]× [0,∞)) and φ ∈ C∞

0 ((0, 1)× [0,∞)). In addition, for any T > 0,
(hn, un) satisfies the scaled energy inequality

sup
t∈[0,T ]

∫ 1

0

[

β2
nRehn

u2n
2

+ U(hn) + σ
|∂xhn|2

2

]

dx+

∫ T

0

∫ 1

0

(

4νβn hn|∂xun|2 + u2n
)

dx dt

≤
∫ 1

0

[

β2
nReh0

u20
2

+ U(h0) + σ
|∂xh0|2

2

]

dx

and the scaled entropy inequality

sup
t∈[0,T ]

∫ 1

0

[

βn
2
hn(βnReun + ∂xϕ(hn))

2 + βnRe

(

σ
|∂xhn|2

2
+ U(hn)

)

− ϕ(hn)

]

dx

+

∫ T

0

∫ 1

0

(

βnReu
2
n + 4σν|∂xxhn|2 + 4νΠ′(hn)|∂xhn|2

)

dx dt

≤ βn

∫ 1

0

[

1

2
h0(βnReu0 + ∂xϕ(h0))

2 +Re

(

σ
|∂xh0|2

2
+ U(h0)

)]

dx−
∫ 1

0

ϕ(h0) dx.

Using the fact that σ > 0 and proceeding as in the proof of Proposition 2.5, it follows
from the mass conservation and the scaled energy inequality that

(
√

hn), (h
−3/2
n ), (∂xhn) are bounded in L∞(0, T ;L2(0, 1)),(5.3)

(un), (
√

βn
√

hn∂xun) are bounded in L2((0, 1)× (0, T )),(5.4)

and there exists C5 > 1 such that

C−1
5 ≤ hn(x, t) ≤ C5 , (x, t) ∈ (0, 1)× (0, T ).

We next use the scaled entropy inequality as at the end of the proof of Proposition 2.5
to establish that

(∂x(h
−3/2
n )), (∂xxhn), are bounded in L2((0, 1)× (0, T )).(5.5)

Proceeding as in the proof of Theorems 3.3 and 4.2 one obtains that there exist
functions h and u such that

hn → h in L2(0, T ;H1(0, 1)) ∩ C([0, 1]× [0, T ]),

h−1
n → h−1 in C([0, 1]× [0, T ]),

un ⇀ u in L2((0, 1)× (0, T )),

βnhn∂xun → 0 in L2((0, 1)× (0, T )).
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It is then straightforward to pass to the limit βn → 0 in (5.2a)–(5.2b) to obtain

∫ ∞

0

∫ 1

0

h∂tψ dxdt+

∫ 1

0

h0ψ(., 0) dx = −
∫ ∞

0

∫ 1

0

hu∂xψ dxdt,(5.6a)

−σ
∫ ∞

0

∫ 1

0

∂xxh∂x(hφ) dxdt +

∫ ∞

0

∫ 1

0

Π1(h)∂xφdxdt =

∫ ∞

0

∫ 1

0

uφdx dt.(5.6b)

Using an approximation argument, we may actually take φ = h∂xψ in (5.6b) with
ψ ∈ C∞

0 ((0, 1)× [0,∞)) and obtain

∫ ∞

0

∫ 1

0

h∂tψ dxdt +

∫ 1

0

h0ψ(., 0) dx = σ

∫ ∞

0

∫ 1

0

∂xxh∂x(h
2∂xψ) dx dt

+

∫ ∞

0

∫ 1

0

h2∂x(Π(h))ψ dxdt,

which coincides with the weak formulation for (1.8) introduced in Bernis and Fried-
man [17] and Bertozzi and Pugh [21].

Remark 5.2. Owing to the positivity of the weak solution h to (1.8) constructed
in Theorem 5.1, equation (1.8) is then uniformly parabolic and it is likely that classical
parabolic regularity results ensure that h is actually a classical solution to (1.8). As
it is shown in Bertozzi et al. [19] that there is a unique positive classical solution to
(1.8), this implies the convergence of the whole sequence (hn) towards it.

6. Discussion. We would like to note some open questions that remain to be
solved for the strong-slip system (1.2a)–(1.2b) as well as the corresponding shallow-
water equations (1.11a)–(1.11b). First, it would be of interest to figure out whether
the weak solutions constructed in the previous sections are more regular. Partial
answers have already been given for particular cases of (1.11a)–(1.11b) with σ = 0,
see Solonnikov [11] and Mellet and Vasseur [14] where the existence of strong solutions
is established. Furthermore, in Vaynblat et al. [22] the two-dimensional analogue of
(1.7a)–(1.7b) describing dewetting of three-dimensional free suspended films is derived
and reads

∂t(hu) + div (hu⊗ u) = div (h(∇u+ (∇u)T )) + 2∇(hdiv u) + σh∇∆h−∇P (h),(6.1a)

∂th = −div (hu) ,(6.1b)

which corresponds to the choice µ(h) = h and λ(h) = 2h in (1.11a)–(1.11b). As
mentioned in the introduction the BD entropy equality has been so far only established
for (1.11a)–(1.11b) if the relation (1.13) for the viscosities is satisfied. Unfortunately
this relation is not fulfilled for (6.1a)–(6.1b). Analogously a two-dimensional version
of (1.2a)–(1.2b) can be constructed but will present the same difficulty, so that the
analysis presented herein is not likely to extend in a straightforward way to the two-
dimensional model.

Acknowledgements. GK acknowledges the support from the Weierstrass In-
stitute and the postdoctoral scholarship at the Max-Planck-Institute for Mathemat-
ics in the Natural Sciences, Leipzig. PhL and BN were partially supported by the
CNRS/RSE project JP090230 and the EPSRC Science and Innovation award to the
Oxford Centre for Nonlinear PDE (EP/E035027/1).



202 G. KITAVTSEV, P. LAURENÇOT AND B. NIETHAMMER
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