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EXPONENTIAL DECAY FOR PRODUCTS OF FOURIER INTEGRAL
OPERATORS∗

NALINI ANANTHARAMAN†

Abstract. This text contains an alternative presentation, and in certain cases an improvement,
of the “hyperbolic dispersive estimate” proved in [1, 3], where it was used to make progress towards
the quantum unique ergodicity conjecture. The main statement gives a sufficient condition to have
exponential decay of the norms of long products of sub-unitary Fourier integral operators. The
improved version presented here is needed in the two papers [5] and [6].
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1. Introduction. On a Hilbert space H, consider the product P̂nP̂n−1 · · · P̂1

of a large number of operators P̂j , with ‖P̂j‖ = 1. Think, for instance, of the case

where each operator P̂j is an orthogonal projector, or a product of an orthogonal
projector and a unitary operator. What kind of geometric considerations can be
helpful to prove that the norm ‖P̂nP̂n−1 · · · P̂1‖ is strictly less than 1 ? or better,
that it decays exponentially fast with n ? In Section 2, we will describe a situation in
which H = L2(Rd), and the operators P̂j are Fourier integral operators associated to
a sequence of canonical transformations κj . We will give a “hyperbolicity” condition,

on the sequence of transformations κj and on the symbols of the operators P̂j , under

which we can prove exponential decay of the norms ‖P̂nP̂n−1 · · · P̂1‖.
This technique was introduced in [1, 3], and is used in [1, 3, 4, 19, 20, 6] to

prove results related to the quantum unique ergodicity conjecture. In [1, 3], the
proofs are written on a riemannian manifold of negative curvature, for the operators

P̂n = e
iτh△

2 χ̂n, in the semiclassical limit h −→ 0; △ is the laplacian, τ > 0 is
fixed, and the operators χ̂n belong to a finite family of h-pseudodifferential operators,
microsupported inside compact sets of small diameters. The exponential decay is
then used to prove a lower bound on the “entropy” of eigenfunctions, answering by
the negative the long-standing question : can a sequence of eigenfunctions concentrate
on a closed geodesic, as the eigenvalue goes to infinity ? An expository paper can
be found in [16], see also the forthcoming paper [2]. We give here an alternative
presentation, based on the use of local adapted symplectic coordinates, which leads
in certain cases to an improvement, needed in the two papers [5] and [6].

Let us also mention the work of Nonnenmacher-Zworski [17, 18], Christianson
[8, 9, 10], Datchev [11], and Burq-Guillarmou-Hassell [7], who showed how to use
these techniques in scattering situations, to prove the existence of a gap below the
real axis in the resonance spectrum, and to get local smoothing estimates with loss,
as well as Strichartz estimates. In this context, the idea of proving exponential decay
for Fourier integral operators was also present, although in an implicit form, in Doi’s
work [12].

The technique is presented in the first four sections, and the applications needed
in [5, 6] are stated in section 5.
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2. A hyperbolic dispersion estimate. In this section, Rd× (Rd)∗ is endowed

with the canonical symplectic form ωo =
∑d

j=1 dxj ∧ dξj , where dxj denotes the

projection on the j-th vector of the canonical basis in R
d, and dξj is the projection

on the j-th vector of the dual basis in (Rd)∗. The space Rd will also be endowed with
its usual scalar product, denoted by 〈., .〉, and we use it to systematically identify R

d

with (Rd)∗.
We consider a sequence of smooth (C∞) transformations κn : Rd×R

d −→ R
d×R

d,
preserving ωo (n ∈ N

∗). We will only be interested in the restriction of κ1 to a fixed
bounded subset of Rd, and it is actually sufficient for us to assume that the product
κn ◦ κn−1 ◦ · · · ◦ κ1 is well defined there for all n. The Darboux-Lie theorem ensures
that every lagrangian foliation can be locally mapped, by a symplectic change of
coordinates, to the foliation of Rd × R

d by the “horizontal” leaves Lξ0 = {(x, ξ) ∈
R

d × R
d, ξ = ξ0}. For our purposes (section 5), there is no loss of generality if we

make the simplifying assumption that each symplectic transformation κn preserves
this horizontal foliation. It means that κn is of the form (x, ξ) 7→ (x′, ξ′ = pn(ξ))
where pn : Rd −→ R

d is a smooth function. In more sophisticated words, κn has a
generating function of the form

Sn(x, x
′, θ) = 〈pn(θ), x

′〉 − 〈θ, x〉 + αn(θ)

(where x, x′, θ ∈ R
d, and αn : Rd −→ R is a smooth function). We have the equiva-

lence

[
(x′, ξ′) = κn(x, ξ)

]
⇐⇒

[
ξ = −∂xSn(x, x

′, θ), ξ′ = ∂x′Sn(x, x
′, θ), ∂θSn(x, x

′, θ) = 0
]
.

The product κn ◦ . . .◦κ2 ◦κ1 also preserves the horizontal foliation, and it admits the
generating function

〈pn ◦ . . . ◦ p1(θ), x
′〉 − 〈θ, x〉 + α1(θ) + α2(p1(θ)) + . . .+ αn(pn−1 ◦ . . . ◦ p1(θ))

= 〈pn ◦ . . . ◦ p1(θ), x
′〉 − 〈θ, x〉 +An(θ),

where the equality defines An(θ).
If p is a map R

d −→ R
d, we will denote ∇p the matrix ( ∂pi

∂θj
)ij , which represents

its differential in the canonical basis.

Assumptions (H) : We shall be interested in the following operators, acting on
L2(Rd) :

P̂nf(x
′) =

1

(2πh)d

∫

x∈Rd,θ∈Rd

e
iSn(x,x′,θ)

h a(n)(x, x′, θ, h)f(x)dxdθ,

where h > 0 is a “semiclassical” parameter destined to go to 0. We will assume the
following :
(FIO1) For a given h > 0, the function (x, x′, θ) 7→ a(n)(x, x′, θ, h) is of class C∞;
(FIO2) When h −→ 0, each a(n)(x, x′, θ, h) has an asymptotic expansion

a(n)(x, x′, θ, h) ∼ (det∇pn(θ))
1/2

∞∑

k=0

hka
(n)
k (x, x′, θ),

valid up to any order and in all the Cℓ norms on compact sets.
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These conditions imply that the operators P̂n are (semiclassical) Fourier integral op-
erators quantizing the transformations κn [13].

In addition, we assume some uniformity in the behaviour of certain functions as
n varies :

(H1) In (FIO2), the asymptotic expansions hold uniformly with respect to n (the

derivatives of a
(n)
k are bounded uniformly in n, and the constants in the

remainder terms of the expansions are independent of n);
(H2) The functions pn are smooth diffeomorphisms, and all the derivatives of pn,

of p−1
n and of αn are bounded uniformly in n.

(H3) For all n, for all (x, θ), (x′, θ′) such that (x′, θ′) = κn(x, θ), we have

|a
(n)
0 (x, x′, θ)| ≤ 1. This condition, together with (H1), ensures that

‖P̂n‖L2−→L2 ≤ 1 +O(h) (uniformly in n).
Finally, the variables x, x′, θ will be restrained to some fixed bounded subsets of

R
d, thanks to the following assumption :
(H4) There exist relatively compact subsets Ω1, Ω2 ⊂ R

d such that, for all n and
h, the functions a(n)(x, x′, θ, h) vanish for x 6∈ Ω1 or x′ 6∈ Ω1 or θ 6∈ Ω2.

2.1. Propagation of a single plane wave. The following theorem is essentially

proved in [1]. We denote eξ0,h the function eξ0,h(x) = e
i〈ξ0,x〉

h .

Theorem 2.1. Fix ξ0 ∈ R
d. Denote ξn = pn ◦ . . . ◦ p1(ξ0).

In addition to the assumptions (H) above, assume that

(2.1) lim sup
k−→+∞

1

k
log‖∇(pn+k ◦ pn+k−1 ◦ . . . ◦ pn+1)(ξn)‖ ≤ 0,

uniformly in n (where ‖.‖ denotes here the norm of a d× d matrix).
Fix K, ǫ̃ > 0 arbitrary, and an integer M ∈ N large enough. Then we have, for

any n ≤ K| log h|, and x ∈ Ω1,

P̂n ◦ . . . ◦ P̂2 ◦ P̂1eξ0,h(x)

= ei
An(ξ0)

h eξn,h(x)(det∇pn ◦ . . . ◦ p1(ξ0))
1/2

[
M−1∑

k=0

hkb
(n)
k (x, ξn)

]
+O(hM(1−ǫ̃))

where the estimate of the remainder holds in the L2-norm, as a function of x.

The functions b
(n)
k , defined on R

d × R
d, are smooth, supported inside Ω1 × Ω2,

and the function b
(n)
0 is defined by

b
(n)
0 (xn, ξn) =

n−1∏

j=0

a
(j)
0 (xj , xj+1, ξj),

where ξn = pn ◦ . . . ◦ p1(ξ0), and the other terms satisfy (xj , ξj) = κj ◦ . . . ◦ κ1(x0, ξ0).

The functions b
(n)
k , for k > 0, have the same support as b

(n)
0 . We have

|b
(n)
0 (xn, ξn)| ≤ 1, and besides, we have bounds

‖djxb
(n)
k ‖∞ ≤ C(k, j, ǫ)nj+3keǫ(j+2k)n

valid for arbitrary ǫ > 0, where the prefactor C(k, j, ǫ) does not depend on n.
If we make the assumption that ‖∇(pn+k ◦ pn+k−1 ◦ . . . ◦ pn+1)(ξn)‖ is bounded

above, uniformly in n, k, the statement holds with ǫ = 0.
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If n is fixed, and if we write P̂n ◦ . . . ◦ P̂2 ◦ P̂1eξ0,h(x) explicitly as an integral
over (Rd)2n, this theorem is a straightforward application of the stationary phase
method. If n is allowed to go to infinity as h −→ 0, our result amounts, in some
sense, to applying the method of stationary phase on a space whose dimension goes
to ∞, and this is known to be very delicate. The theorem was first proved this way,
in an unpublished version (available on request or on my webpage) of the paper [1].
A nicer proof, written with the collaboration of Stéphane Nonnenmacher, is available
in [1], and has also appeared under different forms in [3, 17]. In these papers, the

proofs are written on a riemannian manifold, for P̂n = e
iτĤ
h χ̂n, where the operators

χ̂n belong to a finite family of h-pseudodifferential operators, microsupported inside
compact sets of small diameters, and where τ > 0 is fixed and Ĥ is a semiclassical
Schrödinger operator (Ĥ = −h2△ in [3]). In local coordinates, and on a manifold of
constant negative sectional curvature, the calculations done in [1, 3] amount to the
simpler statement presented here (see section 5).

In all the papers cited above, the hamiltonian flows under study satisfy a uniform
hyperbolicity (or Anosov) property, ensuring a uniform bound supξ∈Ω2

‖∇(pn ◦ . . . ◦
p2 ◦ p1)(ξ)‖ ≤ C, and actually an exponential decay

(2.2) sup
ξ∈Ω2

‖∇(pn ◦ . . . ◦ p2 ◦ p1)(ξ)‖ ≤ Ce−λn,

with uniform constants C, λ > 0, transversally to some “trivial directions”. This is
why, following [17], we call our result a hyperbolic dispersion estimate.

2.2. Estimating the norm of P̂n◦ . . .◦ P̂2◦ P̂1. We use the h-Fourier transform

Fhu(ξ) =
1

(2πh)d/2

∫

Rd

u(x)e−
i〈ξ,x〉

h dx,

the inversion formula

u(x) =
1

(2πh)d/2

∫

Rd

Fhu(ξ)e
i〈ξ,x〉

h dξ,

and the Plancherel formula ‖u‖L2(Rd) = ‖Fhu‖L2(Rd).

We introduce an open relatively compact set Ω̃2 ⊂ R
d, that contains Ω2. Using

the Fourier inversion formula, Theorem 2.1 implies, in a straightforward manner, the
following

Theorem 2.2. In addition to the assumptions (H), we assume that (2.1) holds

uniformly in n and ξ0 ∈ Ω̃2 (with ξn = pn ◦ . . . ◦ p1(ξ0)).
Fix K, ǫ > 0 arbitrary. Then, for n ≤ K| log h|,

‖P̂n ◦ . . . ◦ P̂2 ◦ P̂1‖L2−→L2 ≤
1

(2πh)d/2
sup
ξ∈Ω̃2

| det∇pn ◦ . . . ◦ p1(ξ)|
1/2(1 +O(hn3eǫn)).

Since multiplicative constants do not play a role in the applications we have in
mind, all these estimates are to be understood up to a constant.

Of course, since ‖P̂j‖L2−→L2 ≤ 1+O(h), we always have the trivial bound ‖P̂n ◦

. . .◦ P̂2 ◦ P̂1‖L2−→L2 ≤ 1+O(h| log h|). Since we are working in the limit h −→ 0, our
estimate can only have an interest if we have an upper bound of the form

(2.3) sup
ξ∈Ω̃2

| det∇pn ◦ . . . ◦ p1(ξ)|
1/2 ≤ Ce−λn, λ > 0,
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and if K is large enough. Note that (2.3) is weaker than the condition (2.2).
We now state a refinement of Theorem 2.2. We consider the same family P̂i,

satisfying assumptions (H). The multiplicative constants in our estimates have no
importance, and in what follows we will omit them.

Theorem 2.3. Assume as above that (2.1) holds uniformly in n and ξ0 ∈ Ω̃2.
Let r ≤ d, and assume that the coisotropic foliation by the leaves {ξr+1 =

cr+1, . . . , ξd = cd} is invariant by each canonical transformation κn. In other words,
the map pn is of the form

pn((ξ1, . . . , ξr), (ξr+1, . . . , ξd)) = (mn(ξ1, . . . , ξd), p̃n(ξr+1, . . . , ξd)) ,

where mn : Rd −→ R
r and p̃n : Rd−r −→ R

d−r.
Fix K, ǫ > 0 arbitrary. Then there exists hK > 0 such that, for any n ≤ K| log h|,

and for h < hK,

‖P̂n ◦ . . . ◦ P̂2 ◦ P̂1‖L2−→L2

≤
1

(2πh)(r+ǫ)/2

supξ∈Ω̃2
|(det∇pn ◦ . . . ◦ p1(ξ))|1/2

infξ∈Ω̃2
|(det∇p̃n ◦ . . . ◦ p̃1(ξ))|1/2

(1 +O(n3heǫn)).

In addition, if we make the stronger assumption that ‖∇(pn+k ◦ pn+k−1 ◦ . . . ◦
pn+1)(ξn)‖ is bounded above, uniformly in n, k and for ξ ∈ Ω̃2, the statement holds
with ǫ = 0.

Theorem 2.3 is an improvement of Theorem 2.2 in the case where we have

1

(2πh)d/2
sup
ξ∈Ω2

|(det∇pn ◦ . . . ◦ p1(ξ0))
1/2| ≫ 1

but

1

(2πh)r/2
supξ∈Ω2

|(det∇pn ◦ . . . ◦ p1(ξ))|1/2

infξ∈Ω2 |(det∇p̃n ◦ . . . ◦ p̃1(ξ))|1/2
≪ 1.

As a trivial example, consider the case where each κn is the identity. Theorem 2.2
gives a non-optimal bound, whereas we can take r = 0 in Theorem 2.3, and recover
the (almost) optimal bound ‖P̂n ◦ . . . ◦ P̂2 ◦ P̂1‖L2−→L2 ≤ 1 + O(h| log h|3). A less
trivial example will be given in section 5.

3. Proof of Theorem 2.1. The ideas below are contained in [1, 3]; however,
our notation here is quite different, and we recall (without giving all details) the main
steps. In all this section, M is a fixed integer, and all the calculations are done modulo
remainders of order hM (with explicit control of the constants).

It is useful to keep in mind the following : if (x′, ξ′) = κn ◦ . . . ◦ κ2 ◦ κ1(x, ξ), we
have ξ′ = pn ◦ . . . ◦ p2 ◦ p1(ξ), and x = ∇(pn ◦ . . . ◦ p2 ◦ p1)⊺x′ +∇An(ξ).

3.1. One step of the iteration. Let us first fix ξ ∈ R
d, and look at the action

of the operator P̂n on a function of the form

bξ(x) = e
i〈ξ,x〉

h b(x)

where

b(x) =
M−1∑

k=0

hkbk(x),
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and where the functions bk are of class C∞. Applying P̂n to bξ will automatically
restrict x to a compact subset of Rd.

We introduce the following notation :

(T ξ
na)(x

′) = a
(n)
0 (x, x′, ξ)a(x)

where x is the point such that (x′, pn(ξ)) = κn(x, ξ) (in other words, x = ∇pn(ξ)
⊺x′+

∇αn(ξ)). In the case a
(n)
0 ≡ 1, we note that the operator U ξ

n : a 7→ (det∇pn(ξ))
1/2T ξ

na

is unitary on L2(Rd). If we assume (as above) that |a
(n)
0 (x, x′, ξ)| ≤ 1, U ξ

n defines a
bounded operator on L2(Rd), of norm ≤ 1.

A standard application of the stationary phase method yields :

Proposition 3.1.

P̂nbξ(x
′) = ei

αn(ξ)+〈pn(ξ),x′〉
h (det∇pn(ξ))

1/2

[
M−1∑

k=0

hkb′k(x
′)

]
+ hMRM (x′),

where :
• b′0(x

′) = (T ξ
nb0)(x

′);

• b′k(x
′) =

∑
0≤l≤k−1 D

2(k−l)
n bl(x

′) + (T ξ
nbk)(x

′), where the operator D
2(k−l)
n is

a differential operator of order 2(k − l) (whose expression also depends on ξ,
although it does not appear in our notation). Its coefficients can be expressed

in terms of the derivatives of order ≤ 2(k−l) of a
(n)
l , and of order ≤ 2(k−l)+3

of pn, p
−1
n and αn, at the point (x, x′, ξ), where (x′, pn(ξ)) = κn(x, ξ).

• There exists an integer Nd (depending only on the dimension d), and a posi-
tive real number C such that

‖RM‖L2(Rd) ≤ C

M−1∑

k=0

‖bk‖C2(M−k)+Nd .

The constant C can be expressed in terms of a fixed finite number of derivatives

of the functions a
(n)
l (l ≤ M − 1), pn, p

−1
n and αn at the point (x, x′, ξ). Under our

assumptions (H1) to (H3), C is uniformly bounded for all n. Also note that, under
(H4), the functions b′k are always supported inside the relatively compact set Ω1.

3.2. After many iterations. We now describe the action of the product P̂n ◦
. . .◦P̂2◦P̂1 on eξ0,h. We will give an approximate expression of P̂n◦. . .◦P̂2◦P̂1eξ0,h(x),
in the form

ei
An(ξ0)

h eξn,h(x)(det∇pn ◦ . . . ◦ p1(ξ0))
1/2

[
M−1∑

k=0

hkb
(n)
k (x)

]
,

as announced in the theorem. This expression will approximate P̂n ◦ . . . ◦ P̂2 ◦ P̂1eξ0,h

up to an error of order hM(1−ǫ̃) for any ǫ̃ > 0. The function b
(n)
k (x) depends, of

course, on ξ0, and in the final statement of the theorem we indicated this dependence

by writing b
(n)
k (x, ξn) (with ξn = pn ◦ . . . ◦ p1(ξ0)).

The method consists in iterating the method described in Section 3.1, controlling
carefully how the remainders grow with n in the L2-norm. We recall that ‖P̂n‖L2(Rd) ≤
1 +O(h), uniformly in n.
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Suppose that, after n iterations, we have proved that

P̂n ◦ . . . ◦ P̂2 ◦ P̂1eξ0,h(x)

= ei
An(ξ0)

h eξn,h(x)(det∇pn ◦ . . . ◦ p1(ξ0))
1/2

[
M−1∑

k=0

hkb
(n)
k (x)

]
+ hMR

(n)
M (x).

We then find a similar expression P̂n+1◦. . .◦P̂2◦P̂1eξ0,h, with an explicit expression of

the family (b
(n+1)
k )M−1

k=0 in terms of (b
(n)
k )M−1

k=0 , and a bound on the L2-norm of R
(n+1)
M

in terms of (b
(n)
k )M−1

k=0 and the L2-norm of R
(n)
M .

The calculations done in Section 3.1 allows to describe the action of P̂n+1 on

eξn,h

[∑M−1
k=0 hkb

(n)
k

]
:

(3.1) P̂n+1eξn,h

[
M−1∑

k=0

hkb
(n)
k

]
(x)

= ei
αn+1(ξn)+〈pn+1(ξn),x〉

h (det∇pn+1(ξn))
1/2

[
M−1∑

k=0

hkb
(n+1)
k (x)

]
+ hMR

(n+1)
M (x).

Note that

n∏

ℓ=1

(det∇pℓ(ξℓ−1))
1/2 = (det∇pn ◦ . . . ◦ p1(ξ0))

1/2,

and

An(ξ0) = α1(ξ0) + α2(ξ1) + · · ·+ αn(ξn−1),

so that

P̂n+1P̂n ◦ . . . ◦ P̂2 ◦ P̂1eξ0,h(x)

= ei
An+1(ξ0)

h eξn+1,h(x)(det∇pn+1◦. . .◦p1(ξ0))
1/2

[
M−1∑

k=0

hkb
(n+1)
k (x)

]
+hMR

(n+1)
M (x),

with the relation R
(n+1)
M = ei

An(ξ0)
h (det∇pn ◦ . . . ◦ p1(ξ0))1/2R

(n+1)
M + P̂n+1R

(n)
M .

We need to control how each term in these expansions will grow with n, and in
particular, to control the remainder terms. We form an array B(n) that contains all

the functions b
(n)
k , and a certain number of higher order differentials :

B
(n)
j,k = djb

(n)
k ,

with 0 ≤ k ≤ M − 1 and 0 ≤ j ≤ 2(M − k) + Nd. The index k indicates the power

of h, and the index j indicates the number of differentials. Note that djb
(n)
k is a

(symmetric) covariant tensor field of order j on R
d. If σ is a covariant tensor field of

order j on R
d, we define ‖σ‖∞ = supx∈Rd |σx|, where |σx| is the norm of the j-linear

form σx. By assumption (H4), the forms djb
(n)
k all vanish outside the compact set Ω1.

There is a linear relation between B(n) and B(n+1), that we now make a little
more explicit. We extend the definition of the operators T ξ

n (previously defined on
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functions) to covariant tensor fields, by letting for all v1, . . . , vj ∈ R
d (if σ is of order

j)

(T ξ
nσ)x′(v1, . . . , vj) = a

(n)
0 (x, x′, ξ)σx(∇pn(ξ)

⊺v1, . . . ,∇pn(ξ)
⊺vj),

where x = ∇pn(ξ)
⊺x′. Taking successive derivatives of the relation

b
(n+1)
k =

∑

0≤l≤k−1

D
2(k−l)
n+1 b

(n)
l + T ξ

n+1b
(n)
k ,

which appears in Proposition 3.1, we obtain a linear relation of the form :

B(n+1) = Kn+1B
(n) + Ln+1B

(n) + T ξ
n+1B

(n),

where T ξ
n+1 acts “diagonally”, meaning that [T ξ

n+1B
(n)]j,k = T ξ

n+1

(
B

(n)
j,k

)
. The only

information we need about the other terms is that [Kn+1B
(n)]j,k depends only on the

components B
(n)
j′,l , for l ≤ k− 1 and j′ ≤ 2(k− l) + j; and [Ln+1B

(n)]j,k depends only

on the components B
(n)
j′,k, with j′ ≤ j − 1. Besides, we have

max
j,k

‖[Kn+1B
(n)]j,k‖∞ ≤ Cmax

j,k
‖B

(n)
j,k ‖∞,

where C does not depend on n by our assumptions (H1) and (H2) – and the same
holds with Kn+1 replaced by Ln+1.

By induction, we see that B(n) can be expressed as

(3.2) B(n) =
∑

Mℓ∈{T ξ
ℓ ,Kℓ,Lℓ}

Mn ◦Mn−1 ◦ · · · ◦M1B
(0).

In a product of the form Mn ◦ Mn−1 ◦ · · · ◦ M1 (where Mℓ ∈ {T ξ
ℓ ,Kℓ, Lℓ} for all

ℓ = 1, . . . , n), we see that there can be at most M indices ℓ for which Mℓ = Kℓ, and
2M +Nd indices k such that Mℓ = Lℓ (otherwise the product Mn ◦Mn−1 ◦ · · · ◦M1

vanishes). Even more precisely, when we write

(3.3) B
(n)
j,k =




∑

Mℓ∈{T ξ
ℓ ,Kℓ,Lℓ}

Mn ◦Mn−1 ◦ · · · ◦M1B
(0)




j,k

,

in the right-hand side there can be at most k indices ℓ with Mℓ = Kℓ, and 2k + j
indices ℓ with Mℓ = Lℓ. Hence, the sum has at most 23k+j

(
n

3k+j

)
∼ C(k, j)n3k+j

terms. Besides, the expression of B
(n)
j,k involves the action of the operators T ξ

ℓ on
tensor fields of order at most 2k + j.

We now use our assumption (2.1). We fix ǫ > 0. In the sum (3.3), we use (2.1)

to estimate the norm of a string T ξ
ℓ+mT ξ

ℓ+m−1 . . . T
ξ
ℓ , acting on tensor fields of order

j : the norm ‖T ξ
ℓ+mT ξ

ℓ+m−1 . . . T
ξ
ℓ σ‖∞ can be estimated by ǫǫmj‖σ‖∞. We obtain

‖B
(n)
j,k ‖∞ ≤ C(k, j, ǫ)n3k+jeǫn(j+2k)

where the term eǫn(j+2k) comes from our estimate of strings T ξ
ℓ+mT ξ

ℓ+m−1 . . . T
ξ
ℓ on

tensor fields of order ≤ 2k+ j, and the fact that the total length of these strings is at
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most n. If we make the extra assumption that ‖∇(pn+k ◦ pn+k−1 ◦ . . . ◦ pn+1)(ξn)‖ is
bounded uniformly in n, k and for ξ ∈ Ω̃2, the statement holds with ǫ = 0.

These estimates (combined with Proposition 3.1) imply that

‖R
(n+1)
M ‖L2(Rd) ≤ C

M−1∑

k=0

2(M−k)+Nd∑

j=0

‖B
(n)
j,k ‖∞ ≤ C(M, ǫ)n3M+Ndeǫn(2M+Nd).

Remember the induction relation

R
(n+1)
M = ei

An(ξ0)
h (det∇pn ◦ . . . ◦ p1(ξ0))

1/2R
(n+1)
M + P̂n+1R

(n)
M .

We have ‖P̂n+1R
(n)
M ‖L2(Rd) ≤ (1 +O(h))‖R

(n)
M ‖L2(Rd). We thus have an inequality

‖R
(n+1)
M ‖L2(Rd) ≤ C(M, ǫ)n3M+Ndeǫn(2M+Nd+1) + (1 +O(h))‖R

(n)
M ‖L2(Rd)

with ‖R
(0)
M ‖L2(Rd) = 0. With O(h) ≤ Ch, this implies that

‖R
(n)
M ‖L2(Rd) ≤ C(M, ǫ)n3M+Ndeǫn(2M+Nd+1) (1 + Ch)n − 1

Ch
.

Since we restrict our attention to n ≤ K| log h|, and if we take M larger than Nd, the
right-hand side is bounded by h−ǫ̃M , where ǫ̃ = 5Kǫ.

4. Proof of Theorems 2.2 and 2.3.

4.1. Theorem 2.2. The proof of Theorem 2.2 is now very easy. Let u ∈ L2(Rd).
We know that

u(x) =
1

(2πh)d/2

∫

Rd

Fhu(ξ)e
i〈ξ,x〉

h dξ.

Let Ω̃2 be an open set containing the closure of Ω2. We decompose u = u1+u2, where

u1(x) =
1

(2πh)d/2

∫

Ω̃2

Fhu(ξ)e
i〈ξ,x〉

h dξ

and

u2(x) =
1

(2πh)d/2

∫

Rd\Ω̃2

Fhu(ξ)e
i〈ξ,x〉

h dξ.

Since P̂ ∗
1 P̂1 is a pseudodifferential operator, which vanishes microlocally outside Ω1×

Ω2, we have ‖P̂1u2‖L2(Rd) = O(h∞)‖u2‖L2(Rd).

Concerning u1, we apply Theorem 2.1 for each ξ ∈ Ω̃2. We take n = K| log h| and
choose M accordingly, large enough so that

O(hM(1−ǫ̃)) ≪ sup
ξ∈Ω̃2

| det∇pn ◦ . . . ◦ p1(ξ)|
1/2.

This is possible because our assumptions on the derivatives of pn imply a lower bound
| det∇pn ◦ . . . ◦ p1(ξ)| ≥ e−βn for some positive β.

From Theorem 2.1, we know that

‖P̂n ◦ . . . ◦ P̂2 ◦ P̂1eξ,h‖L2(Rd) ≤ | det∇pn ◦ . . . ◦ p1(ξ)|
1/2(1 +O(hn3e2ǫn))
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(for ǫ > 0 arbitrary). By a direct application of the triangular inequality, it follows
that

‖P̂n ◦ . . . ◦ P̂2 ◦ P̂1u1‖L2(Rd)

≤
1

(2πh)d/2
sup
ξ∈Ω̃2

| det∇pn ◦ . . . ◦ p1(ξ)|
1/2(1 +O(hn3e2ǫn))‖Fhu‖L1(Ω̃2)

≤
1

(2πh)d/2
sup
ξ∈Ω̃2

| det∇pn ◦ . . . ◦ p1(ξ)|
1/2(1 +O(hn3e2ǫn))|Ω̃2|

1/2‖Fhu‖L2(Rd)

and our result follows.

4.2. Theorem 2.3.

4.2.1. The Cotlar-Stein lemma.

Lemma 4.1. Let E,F be two Hilbert spaces. Let (Aα) ∈ L(E,F ) be a countable
family of bounded linear operators from E to F . Assume that for some R > 0 we have

sup
α

∑

β

‖A∗
αAβ‖

1
2 ≤ R

and

sup
α

∑

β

‖AαA
∗
β‖

1
2 ≤ R.

Then A =
∑

α Aα converges strongly and A is a bounded operator with ‖A‖ ≤ R.

The Cotlar-Stein lemma is often used to bound in a precise manner the norm of
pseudodifferential operators (see, for example, [13]).

4.2.2. Remember that we assume everywhere that n = K| log h|, with K fixed.
In order to bound the norm of P̂n ◦ . . . ◦ P̂1 (modulo hN for arbitrary N), the results
of the previous sections show that it is enough to bound the norm of the operator A
defined by

(4.1) Af(x′) =
1

(2πh)d

∫

ξ∈Ω̃2,x∈Rd

(det∇pn ◦ . . . ◦ p1(ξ))
1/2

×

[
M−1∑

k=0

hkb
(n)
k (x′, ξn)

]
e

i
h (〈ξn,x

′〉+An(ξ)−〈ξ,x〉)f(x)dxdξ

=
1

(2πh)d/2

∫

ξ∈Ω̃2,x∈Rd

(det∇pn ◦ . . . ◦ p1(ξ))
1/2

×

[
M−1∑

k=0

hkb
(n)
k (x′, ξn)

]
e

i
h (〈ξn,x

′〉+An(ξ))Fhf(ξ)dξ

for a suitable choice of M , large. We denote everywhere ξn = pn ◦ . . . ◦ p1(ξ).
We decompose Rd = R

r×R
d−r, and write any ξ ∈ R

d as ξ = (ξ(r), ξ̃) where ξ(r) ∈

R
r and ξ̃ ∈ R

d−r. Under our current assumptions, ξn decomposes as ξn = (ξn(r), ξ̃n),

where ξ̃n = p̃n ◦ . . . ◦ p̃1(ξ̃).
To apply the Cotlar-Stein lemma, we partition the operator A into thin tubes

according to the variable ξ̃n; we get a decomposition A =
∑

ℓ∈Zd−r Aℓ, where Aℓ and
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Am are microsupported in disjoint tubes if ‖m− ℓ‖ is large. As a result, we show that
‖A∗

mAℓ‖ and ‖AℓA
∗
m‖ are small when ‖m− ℓ‖ is large, and it follows that the norm

of A is of the same order as the norms of the individual Aℓ.
We introduce a (real-valued) smooth compactly supported χ on R

d−r, such that
0 ≤ χ ≤ 1, and having the property that

∑

ℓ∈Zd−r

χ(ξ̃ − ℓ) = 1

for all ξ̃ ∈ R
d−r. For h > 0, ℓ ∈ Z

d−r and ξ̃ ∈ R
d−r, we denote χh,ℓ(ξ̃) = χ

(
ξ̃

2πh − ℓ
)
.

Using the same notation as in (4.1), we define

(4.2) Aℓf(x
′) =

1

(2πh)d

∫
(det∇pn ◦ . . . ◦ p1(ξ))

1/2

×

[
M−1∑

k=0

hkb
(n)
k (x′, ξn)

]
χh,ℓ(ξ̃n)e

i
h (〈ξn,x

′〉+An(ξ)−〈ξ,x〉)f(x)dxdξ

=
1

(2πh)d/2

∫

ξ∈Ω̃2

(det∇pn ◦ . . . ◦ p1(ξ))
1/2

×

[
M−1∑

k=0

hkb
(n)
k (x′, ξn)

]
χh,ℓ(ξ̃n)e

i
h (〈ξn,x

′〉+An(ξ))Fhf(ξ)dξ.

It is clear that A =
∑

ℓ∈Zd−r Aℓ. A crucial remark is that the function ξ 7→ χh,ℓ(ξ̃n),

defined on Ω2, is supported in a set of volume ≤ (2πh)d−r 1
infξ∈Ω̃2

|(det∇p̃n◦...◦p̃1(ξ))|
.

We are going to apply the Cotlar-Stein lemma to this decomposition. Let us write
explicitly the expression for the adjoint :

(4.3) A∗
ℓf(x) =

1

(2πh)d

∫
(det∇pn ◦ . . . ◦ p1(ξ))

1/2

×

[
M−1∑

k=0

hkb
(n)
k (x′, ξn)

]
χh,ℓ(ξ̃n)e

− i
h (〈ξn,x

′〉+An(ξ)−〈ξ,x〉)f(x′)dx′dξ.

We shall evaluate the norm of A∗
mAℓ and AℓA

∗
m, for all m, ℓ ∈ Z

d−r.

4.2.3. Norm of A∗
mAℓ. We evaluate the norm of A∗

mAℓ acting on L2(Rd) by
studying the scalar product 〈Aℓf,Amf〉 for f ∈ L2(Rd). Using expression (4.2) and
bilinearity of the scalar product, we will bound the scalar product 〈Aℓf,Amf〉 by
studying separately each bracket
(4.4)

χh,ℓ(ξ̃n)χh,m(ξ̃′n)

〈[
M−1∑

k=0

hkb
(n)
k (x′, ξn)

]
e

i
h 〈ξn,x

′〉,

[
M−1∑

k=0

hkb
(n)
k (x′, ξ′n)

]
e

i
h 〈ξ′n,x

′〉

〉

L2
x′

.

Using the notation of §4.2.2, we decompose the complex phase 〈ξn, x′〉 − 〈ξ′n, x
′〉 into

〈ξn(r), x
′
(r)〉−〈ξ′n(r), x

′
(r)〉+〈ξ̃n, x̃

′〉−〈ξ̃′n, x̃
′〉. In the integral defining the scalar product

(4.4), we perform an integration by parts with respect to x̃′ ∈ R
d−r : we integrate N

times the function e
i
h 〈ξ̃n,x̃

′〉−〈ξ̃′n,x̃
′〉 and differentiate the functions b

(n)
k (x′, ξn). Using

the estimates of Theorem 2.1, we obtain
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Proposition 4.2.

(4.5)

χh,ℓ(ξ̃n)χh,m(ξ̃′n)

∣∣∣∣∣

〈[
M−1∑

k=0

hkb
(n)
k (x′, ξn)

]
e

i
h 〈ξn,x

′〉,

[
M−1∑

k=0

hkb
(n)
k (x′, ξ′n)

]
e

i
h 〈ξ′n,x

′〉

〉∣∣∣∣∣

≤ C(ǫ)nNeǫNn 1

(‖m− ℓ‖+ 1)N

for ǫ > 0 arbitrary.

The integer N will be chosen soon, and only depends on the dimension d.

Remark 4.3. The factor eǫNn comes from the estimate of the derivatives of
order N with respect to x′ of the functions b

(n)
k (x′, ξn), given in Theorem 2.1. If we

make the assumption that ‖∇(pn+k ◦ pn+k−1 ◦ . . . ◦ pn+1)(ξn)‖ is bounded above, the
statement holds with ǫ = 0.

We now use the bilinearity of the scalar product, and the fact that

‖χh,ℓ(ξ̃n)Fhf(ξ)‖L1(Ω̃2)

≤ (2πh)(d−r)/2 1

infξ∈Ω̃2
|(det∇p̃n ◦ . . . ◦ p̃1(ξ))|1/2

‖Fhf(ξ)‖L2(Rd).

Combined with expression (4.2), this yields that

(4.6) ‖A∗
mAℓ‖ ≤ C(ǫ)eǫNn 1

(‖m− ℓ‖+ 1)N
1

(2πh)r

supξ∈Ω̃2
|(det∇pn ◦ . . . ◦ p1(ξ))|

infξ∈Ω̃2
|(det∇p̃n ◦ . . . ◦ p̃1(ξ))|

.

Looking at the statement of the Cotlar-Stein lemma, we see that we must choose N
large enough such that

∑
ℓ∈Zd−r

1
(‖ℓ‖+1)N/2 < +∞.

4.2.4. Norm of AℓA
∗
m. This step is actually shorter than the previous one. We

now have to evaluate the scalar product 〈A∗
ℓf,A

∗
mf〉 for f ∈ L2(Rd), and we use the

expression (4.3) of the adjoint. We do not need integration by parts, as we see directly
that 〈A∗

ℓf,A
∗
mf〉 vanishes as soon as ‖m − ℓ‖ is too large (in fact, the supports of

χh,ℓ and χh,m are disjoint if ‖m− ℓ‖ > C, where C is fixed and depends only on the
support of χ). In what follows we consider the case ‖m− ℓ‖ ≤ C. We see that A∗

ℓf
is the Fh-transform of

Fℓ : ξ 7→
1

(2πh)d/2

∫
(det∇pn ◦ . . . ◦ p1(ξ))

1/2

×

[
M−1∑

k=0

hkb
(n)
k (x′, ξn)

]
χh,ℓ(ξ̃n)e

− i
h (〈ξn,x

′〉+An(ξ))f(x′)dx′.

We recall that each b
(n)
k (x′, ξn) is supported in {x′ ∈ Ω1}, and we bound

‖Fℓ‖L2(Rd) ≤
1

(2πh)d/2
sup
ξ∈Ω̃2

|(det∇pn ◦ . . . ◦ p1(ξ))|
1/2(2πh)(d−r)/2

×
1

infξ∈Ω̃2
|(det∇p̃n ◦ . . . ◦ p̃1(ξ))|1/2

‖f‖L1(Ω1),
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and ‖f‖L1(Ω1) ≤ |Ω1|1/2‖f‖L2(Rd). We obtain the bound

(4.7) ‖AℓA
∗
m‖ ≤

1

(2πh)r

supξ∈Ω̃2
|(det∇pn ◦ . . . ◦ p1(ξ))|

infξ∈Ω̃2
|(det∇p̃n ◦ . . . ◦ p̃1(ξ))|

,

and ‖AℓA
∗
m‖ = 0 if ‖ℓ − m‖ > C. Estimates (4.6) and (4.7), combined with the

Cotlar-Stein lemma, yield Theorem 2.3. The last statement of the theorem comes
from Remark 4.3.

5. Examples. We now give an application of Theorems 2.2 and 2.3. These
results are needed in [6] and [5].

Let Y be a d-dimensional C∞ manifold. The cotangent bundle T ∗Y is endowed
with its canonical symplectic form, denoted by ω. Let H : T ∗Y −→ R be a smooth
function (hamiltonian), and let Φt

H : T ∗Y −→ T ∗Y be the corresponding hamiltonian
flow (we assume for simplicity that (Φt

H) is complete).
We assume that we have a smooth foliation F of T ∗Y by lagrangian leaves (in

the sequel we shall simply speak about a “lagrangian foliation”), such that F is Φt
H -

invariant : Φt
H(F) = F for all t. Let O ⊂ T ∗Y be an open, relatively compact subset

of T ∗Y; we assume that we have a finite open covering ofO, O ⊂ O1∪O2∪. . .∪OK , and
for all k = 1, . . . ,K, a smooth symplectic coordinate chart Ψk : (Ok, ω) −→ (R2d, ωo)
which maps Ok to a ball in R

2d, and the foliation F⌉Ok
to the horizontal foliation of

that ball.
We now describe the operators P̂k to which we shall apply the main results. Let

Ĥ be a self-adjoint h-pseudodifferential operator with principal symbol H . We fix a
family χ̂1, . . . , χ̂K of h-pseudodifferential operators, microsupported inside Ok. We
also assume that its principal symbol χk (which is a smooth function on T ∗Y) satisfies
‖χk‖C0 ≤ 1. Fix, finally, a time step τ > 0 and a sequence (α0, α2, . . . , αn−1) ∈
{1, . . . ,K}n. We shall use Theorems 2.2 and 2.3 to estimate the norm of the product∏n−1

k=0 χ̂αk+1
e−

iτĤ
h χ̂αk

. The operator P̂k will be χ̂αk+1
e−

iτĤ
h χ̂αk

, read in an adapted
coordinate system.

We fix a collection of Fourier integral operators Uk : L2(Y) −→ L2(Rd), quantiz-
ing the canonical transformation Ψk (k = 0, . . . n − 1), and such that the pseudodif-
ferential operator U∗

kUk satisfies U∗
kUkχ̂k = χ̂k +O(h∞) and χ̂k = χ̂kU

∗
kUk +O(h∞)

(where the O is to be understood in the L2(Y)-operator norm). We take P̂k =

Uαk+1
χ̂αk+1

e−
iτĤ
h χ̂αk

U∗
αk

. It is a Fourier integral operator L2(Rd) −→ L2(Rd), as-
sociated with the canonical transformation κk = Ψαk+1

Φτ
HΨ−1

αk
, which by construc-

tion preserves the horizontal foliation. These operators satisfy all assumptions (H),
hence we can apply to them Theorems 2.2 and 2.3. Actually, we may allow the
collection of coordinate charts (Ψα0 , . . . ,Ψαn−1) to depend on the whole sequence
(α0, α1, . . . , αn−1), the important requirement being that the derivatives of Ψαk

and
Ψ−1

αk
be bounded, independently of n, (α0, α1, . . . , αn−1), and k.
We give a particular example of application, used in [6] and [5]. We refer to

[6], and more generally to the book [15], for details about semisimple Lie groups
and locally symmetric space of non-positive curvature. Let G denote a non-compact
connected simple Lie group with finite center. Let K < G be a maximal compact
subgroup, and S = G/K be the associated symmetric space. For a lattice Γ < G
we write X = Γ\G and Y = Γ\G/K, the latter being a locally symmetric space of
non-positive curvature.

On T ∗S, consider the algebra H of smooth G-invariant hamiltonians, that are
polynomial in the fibers of the projection T ∗S −→ S. The structure theory of semisim-
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ple Lie algebras shows thatH is isomorphic to a polynomial ring in r generators (where
r is the real rank of G). Moreover, the elements of H commute under the Poisson
bracket. Thus, we have on T ∗S a family of r independent commuting Hamiltonians
H1, ..., Hr. Since the corresponding hamiltonian flows are G-equivariant, they descend
to the quotient T ∗Y.

We apply the discussion above to a Hamiltonian H ∈ H. The local dynami-
cal properties of the flow (Φt

H), and in particular the invariant foliations, are best
understood using the group-theoretical language.

We denote g the Lie algebra of G, k the Lie algebra of K, and a a maximal abelian
subalgebra of g, orthogonal to k for the Killing form. The dimension of a is the real
rank r. For α in the dual a∗, let gα = {X ∈ g, ∀H ∈ a : ad(H)X = α(H)X}, and let
∆ = {α ∈ a∗ \ {0}, gα 6= {0}} be the set of roots of g with respect to a. For α ∈ ∆,
we denote by mα the dimension of gα. We have g0 = a ⊕ m where m = Zk(a), the
centralizer of a in k. In ∆, one can define a notion of positivity, and we will denote
by ∆+ the set of positive roots, by ∆− = −∆+ the set of negative roots. Writing
n = ⊕α>0gα and n̄ = Θn = ⊕α<0gα, we have g = n⊕ a⊕m⊕ n̄. Finally, let N,A < G
be the connected subgroups corresponding to the subalgebras n, a ⊂ g respectively,
and let M = ZK(a).

We consider an open set O ⊂ T ∗Y such that the differentials (dH1, . . . , dHr)
are everywhere independent on O. It is known that any common energy layer {H1 =
E1, . . . , Hr = Er} ⊂ T ∗Y, where the differentials dHi are independent, may naturally
be identified (in a G-equivariant way) with G/M [14]. We thus have an equivariant
map O −→ R

r ×G/M which is a diffeomorphism onto its image. In all that follows,
we identify O with an open subset of Rr ×G/M . Under this identification, the action
of Φt

H is transported to

(E1, . . . , Er, ρM) 7→ (E1, . . . , Er, ρe
taE1,··· ,ErM),

where aE1,...,Er ∈ a depends smoothly on E1, . . . , Er, and linearly on H – see [14, 6]
for detailed explanations. The foliation F can be described as follows : the leaf of
(E1, . . . , Er, ρM) ∈ R

r ×G/M is (E1, . . . , Er)× {ρan̄M, a ∈ A, n̄ ∈ N̄}.
We assume that each Ok is small enough so that, for any given (E1, . . . , Er, ρM) ∈

Ok, the map

R
r × n× a× n̄ −→ R

r ×G/M

(ε1, . . . , εr, X, Y, Z) 7→ (ε1, . . . , εr, ρe
XeY eZM)

is a local diffeomorphism from a neighbourhood of (E1, . . . , Er, 0, 0, 0) onto Ok. In
such coordinates, the leaves of the foliation F are then given by the equations
(ε1, . . . , εr, X) = cst.

Let (α0, . . . , αn−1) be such that Oα0 ∩ Φ−τ
H (Oα1) ∩ . . . ∩ Φ

−(n−1)τ
H (Oαn−1) 6= ∅.

We can then take ρ = ραk
and (E1, . . . , Er) such that (E1, . . . , Er, ραk

M) ∈ Oαk

and (E1, . . . , Er, ραk+1
M) = Φτ

H(E1, . . . , Er, ραk
M). As explained in the previous

paragraph, fixing ραk
allows to identify Oαk

with a subset of Rr × n× a× n̄; and we
denote (ε1, . . . , εr, X, Y, Z) these coordinates.

Denote by d the dimension of S (note that d = r + dim n = r +
∑

α∈∆+ mα).
By the Darboux-Lie theorem [21], we can find some coordinate system Ψk =
(xk

1 , . . . , x
k
d, ξ

k
1 , . . . , ξ

k
d ) : Oαk

−→ R
2d mapping ω to ωo, and such that (ξk1 , . . . , ξ

k
d ) =

(ε1, · · · , εr, X). The canonical transformations κk = Ψk+1Φ
τ
HΨ−1

k preserve the hor-
izontal foliation of R2d, hence they are of the form κk : (x, ξ) 7→ (x′, ξ′ = pk(ξ)).
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It turns out, in this particular case, that the maps pk are all the same, and of the
particular form

pk(ε1, · · · , εr, X) = (ε1, . . . , εr, Ad(e
−τaε1,··· ,εr ).X),

where aε1,...,εr ∈ a depends smoothly on ε1, . . . , εr. The linear maps Ad(e−τaε1,...,εr )
acting on n are all simultaneously diagonalizable, the eigenspaces being the root spaces
gα, with eigenvalue e−τα(aε1,...,εr ). We are thus in a case of application of Theorem
2.3 provided that condition (2.1) is satisfied; in our case this holds if and only if
α(aε1,...,εr ) ≥ 0 for all α ∈ ∆+, since each pk is a linear map. This means that we want
the leaves of F to be expanded under the action of κk. If we fix J ⊂ ∆+ arbitrarily,
the map κk preserves the coisotropic foliation by the leaves (ε1, . . . , εr, XJ) = cst
(where any X ∈ n is decomposed into X =

∑
α∈∆+ Xα, Xα ∈ gα, and XJ is defined

by XJ =
∑

α∈J Xα).

Corollary 5.1. Assume that H and O are such that α(aε1,...,εr) ≥ 0 for all
(ε1, . . . , εr, ρM) ∈ O and all α ∈ ∆+. Fix a subset J ⊂ ∆+ of the sets of roots.

Fix K > 0 arbitrary. Then, for any n ≤ K| log h|, and for every sequence
(α0, . . . , αn−1),

‖
n−1∏

k=0

χ̂αk+1
e−

iτhĤ
h χ̂αk

‖ ≤ sup
(ε1,...,εr ,ρM)∈O

∏

α∈∆+\J

(
e−nτα(aε1,...,εr )

2πh

)mα/2

for h > 0 small enough.

In applications, one gets the best possible bound by choosing J such that

e−nτα(aε1,...,εr )

2πh
< 1

for all α ∈ ∆+ \ J . If n is small, J = ∆+ is the best possible choice and one gets the

trivial bound ‖
∏n−1

k=0 χ̂αk+1
e−

iτhĤ
h χ̂αk

‖ ≤ 1. Taking J 6= ∆+ starts to be interesting
for n = K| log h| with K large enough.

Remark 5.2. In the situation of [6], we actually do not have α(aε1,...,εr ) ≥ 0,
but α(aε1,...,εr ) ≥ −δ, where δ > 0 can be made arbitrarily small by conveniently
choosing the set O. Once K is given, we can choose δ small enough (and O) so that
the proof of Section 4.2 works for n = K| log h|.

In the special case G = SOo(d, 1), Y is a hyperbolic manifold of dimension d.

We have r = 1, and H is generated by the laplacian △. We take Ĥ = −h2△
2 ,

J = ∅, and assume that the pseudodifferential operators χ̂k are all microsupported in
{(x, ξ) ∈ T ∗Y, ‖ξ‖ ∈ [1− η, 1+ η]} for some small η > 0. With the previous notation,
this implies that α(aε1,...,εr ) is in [1− η, 1 + η]. We thus obtain the estimate

‖
n−1∏

k=0

χ̂αk+1
e−

iτhĤ
h χ̂αk

‖ ≤

(
e−nτ(1−η)

2πh

) d−1
2

.

If n ≤ | log h|
1−η , this bound is trivial and it is preferrable to take J = ∆+ as we said

above. But as soon as n ≥ | log h|
1−η , the bound is optimized by taking J = ∅.
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We note that the result proved in [1, 3], which was only based on the idea of
Theorem 2.2, was

‖
n−1∏

k=0

χ̂αk+1
e−

iτhĤ
h χ̂αk

‖ ≤
1

(2πh)d/2
e−nτ

(d−1)
2 (1−η).

We see that Theorem 2.3 allows to improve the prefactor 1
(2πh)d/2

to 1
(2πh)(d−1)/2 , as

needed in [5].

Remark 5.3. Versions of the hyperbolic dispersion estimate have also been
proved for more general uniformly hyperbolic dynamical systems [1, 3, 17, 19], and
even for certain non-uniformly hyperbolic systems [20]. We refer the reader to [16]
for an expository paper. It is not clear to me whether the new presentation (and im-
provement) introduced here can be used for those systems. Indeed, there is in general
no smooth lagrangian foliations preserved by the hamiltonian flow, and so one cannot
hope that the symplectic changes of coordinates Ψk used above will have uniformly
bounded derivatives. Control of high order derivatives is crucial when one applies
the techniques of semiclassical analysis (method of stationary phase, integration by
parts,...) It is a drawback of semiclassical analysis that it cannot deal with symplectic
transformations of low regularity: I don’t know if this obstacle can be overcome.
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Poincaré, 11:6 (2010), pp. 1085–1116.

[21] I. Vaisman, Basics of Lagrangian foliations, Publ. Mat., 33:3 (1989), pp. 559–575.



182 N. ANANTHARAMAN


