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C1 MEASURE RESPECTING MAPS PRESERVE BV IFF THEY

HAVE BOUNDED DERIVATIVE∗

FERRUCCIO COLOMBINI† , TAO LUO‡ , AND JEFFREY RAUCH§

Abstract. If Ωj ∈ Rd (d ≥ 2) are bounded open subsets and Φ ∈ C1(Ω1 ; Ω2) respects Lebesgue
measure and satisfies F ◦ Φ ∈ BV (Ω1) for all F ∈ BV (Ω2) then Φ is uniformly Lipschitzean.
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The problem addressed in this note is motivated by the study of the propagation
of regularity in the transport by vector fields with bounded divergence,

(1)
∂u

∂t
+

d
∑

j=1

aj(t, x)
∂u

∂xj
= 0, x ∈ R

d, d ≥ 2, t > 0,

where x = (x1, x2, · · · , xd) and,
(2)

a := (a1, · · · , ad) ∈ L∞
(

[0, T ]×Rd
)

, divxa =
d

∑

j=1

∂xj
aj(t, x) ∈ L∞

(

[0, T ]×Rd
)

.

The recent result of [Am] shows that this suffices to guarantee the uniqueness of L∞

solutions of Cauchy problem if the vector field a is of BV regularity.
Then, for arbitrary initial data u0(x) ∈ L∞(Rd) there is a unique solution

u(t, x) ∈ L∞
(

[0, T ] × Rd
)

with u|t=0 = u0. With the same hypotheses, there is a
well defined flow Φt and the solution is given by u(t) = u0 ◦ Φ−t. The flow respects
Lebesgue measure in the sense of (3) below.

We have given examples [CLR2] which show that such transport equations do not
in general propagate either Hölder or BV regularity. The counterexamples had flows
which were mostly smooth with small singular sets. Thus there were large open sets
on which the flows were C1 maps. On those sets, the following result shows that BV

preservation implies that the flow must of necessity be uniformly Lipschitzean. In the
examples in [CLR2], it is easily seen that the the flows are not uniformly Lipschitzean.

The example (shown to us by L. Ambrosio) of a measure preserving Φ : ]0, 2[ →
]− 1, 1[

Φ(x) = x for 0 < x < 1 , Φ(x) = x− 2 for 1 < x < 2 ,

shows that measure preserving maps which are smooth except for jumps, can preserve
BV without being Lipschitzean. The following result shows that this cannot happen
for C1 maps. The result applies as well to maps which respect but do not preserve
measure.
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Theorem 1. Suppose that Ωj are bounded open subsets of Rd (d ≥ 2) and
Φ ∈ C1(Ω1 ; Ω2) has the following two properties;

(3) ∃γ > 0, ∀ Borel subsets A ⊂ Ω2,
1

γ

∣

∣Φ−1(A)
∣

∣ ≤
∣

∣A
∣

∣ ≤ γ
∣

∣Φ−1(A)
∣

∣,

where
∣

∣ ·
∣

∣ denotes Lebesgue measure, and,

(4) ∀F ∈ BV (Ω2), F ◦ Φ ∈ BV (Ω1) .

Then Φ ∈ W 1,∞(Ω1).

The proof of Theorem 1 consists of two lemmas.

Lemma 2. If Φ ∈ C1 but not in W 1,∞ then for any positive number M , there
exists an F ∈ C∞

0 (Ω2) such that

(5) ||
(

F ◦ Φ
)′||L1(Ω1) ≥ M ||F ′||L1(Ω2).

Proof. The chain rule implies that for any F ∈ C1
0 and 1 ≤ i ≤ d,

(6)
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∣
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∣

∣
dx =

∫

Ω1

∣

∣
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∣

∣
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dx.

Since Φ′ is not bounded, there is for any M > 0, an x̄ ∈ Ω1 such that
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∣
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.

Without loss of generality, we may assume that

(8)
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∣
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.

Let ȳ = (ȳ1, ȳ2, · · · , ȳd) := Φ(x̄). For 0 < ǫ small,

(9) Nǫ :=
{

y ∈ Rd : |y1 − ȳ1| < ǫ, |yj − ȳj | <
√
ǫ for 2 ≤ j

}

⊂ Ω2.

Define

Mǫ := Φ−1
(

Nǫ

)

.

For ǫ small and x ∈ Mǫ,
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, and for j ≥ 2,
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Choose φ ∈ C∞
0 (]− 1 , 1[) satisfying

(11)

∫ ∞

−∞

|φ(z)|dz = 1 .
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Define

F := φ

(

y1 − ȳ1

ǫ

) d
∏

j=2

φ

(

yj − ȳj√
ǫ

)

.

Then,

||F ′ ||L1(Ω2) :=

∫

Ω2

d
∑
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∣

∣
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F (y)
∣
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d
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For ǫ small,

(13) ||F ′ ||L1(Ω2) ≤ 2 ǫ(d−1)/2
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In view of (6), (9) and (10), we have
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Using (3) yields

≥
∣

∣

∣

∂Φ1(x̄)

∂x1

∣

∣

∣

[

γ

2

∫

Nǫ

∣

∣

∣

∂F (y)

∂y1

∣

∣

∣
dy − 2

γ

∫

Nǫ

d
∑

j=2

∣

∣

∣

∂F (y)

∂yj

∣

∣

∣
dy

]

=
∣

∣

∣

∂Φ1

∂x1
(x̄)

∣

∣

∣

(

γ

2
− 2

γ
ǫ(d− 1)

)

ǫ(d−1)/2

∫ ∞

−∞

|φ′(z)|dz .

Thus, for ǫ small

(14)

∫

Ω1

∣

∣

∣

∂(F ◦ Φ)(x)
∂x1

∣

∣

∣
dx ≥ γ

4

∣

∣

∣

∂Φ1

∂x1
(x̄)

∣

∣

∣
ǫ(d−1)/2

∫ ∞

−∞

|φ′(z)|dz.

Estimates (13) and (14) imply
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(5) follows from (8) and (15).
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The next lemma completes the proof.

Lemma 3. If Φ ∈ C1(Ω1 ; Ω2) satisfies hypotheses (3) and (4) of Theorem 1, then
there is a constant C > 0 so that for all F ∈ BV (Ω2)

∥

∥(F ◦ Φ)′
∥

∥

Var
≤ C ‖F ′

∥

∥

Var
.

Proof. The space of functions H belonging to BV (Ωj) (modulo the constants)
is a Banach space normed by ‖H ′ ‖Var. Using the Closed Graph Theorem, it suffices
to verify that the map from BV (Ω2) to BV (Ω1) which sends F to F ◦ Φ has closed
graph.

To that end, suppose that

Fn → F in BV (Ω2) ,

and

(16) Fn ◦ Φ → G in BV (Ω1) .

It suffices to show that G′ = (F ◦ Φ)′ in the sense of distributions.

Choose representatives F̃n of Fn and F̃ of F so that,

∫

Ω2

F̃n dy = 0 ,

∫

Ω2

F̃ dy = 0 .

This together with BV convergence implies that

(17) F̃n → F̃ in L1(Ω2) .

Since

|A| =
∣

∣Φ
(

Φ−1(A)
)
∣

∣ ≥ γ|Φ−1(A)| ,

one sees , starting with g = χA, that the map sending g to g ◦ Φ is continuous from
L1(Ω2) to L1(Ω1). Therefore,

F̃n ◦ Φ → F̃ ◦ Φ in L1(Ω1) .

Therefore

(F̃n ◦ Φ)′ → (F̃ ◦ Φ)′ in the sense of distributions,D′(Ω1) .

On the other hand (16) implies that,

(F̃n ◦ Φ)′ → G′ in D′(Ω1) .

Therefore (F ◦ Φ)′ = G′ which completes the proof.
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