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A CONSTRUCTIVE METHOD TO CONTROLLABILITY AND
OBSERVABILITY FOR QUASILINEAR HYPERBOLIC SYSTEMS∗

TATSIEN LI (DAQIAN LI)†

Abstract. A simple constructive method is presented to get the exact boundary controllability,
the exact boundary controllability of nodal profile and the exact boundary observability for 1-D
quasilinear hyperbolic systems.
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1. Introduction and preliminaries. The controllability and observability are
of great importance in both theory and applications. A complete theory has been
established for linear hyperbolic systems, in particular, for linear wave equations [25–
27]. There have also been some results for semilinear wave equations [4, 11, 29–30].
For quasilinear hyperbolic systems that have numerous applications in mechanics,
physics and other applied sciences, however, very few results are available even in
one-space-dimensional case [2–3].

In this paper we will present a simple and efficient constructive method to the
exact boundary controllability, the exact boundary controllability of nodal profile and
the exact boundary observability for general 1-D quasilinear hyperbolic systems with
general nonlinear boundary conditions [12, 14–17, 19–21].

Noting that for the weak solution to quasilinear hyperbolic systems, which in-
cludes shock waves and corresponds to an irreversible process, generically speaking, it
is impossible to have the exact boundary controllability for any arbitrarily given initial
and final states [1]. In order to give a general and systematic presentation, we consider
only the classical solution to quasilinear hyperbolic systems, which corresponds to a
reversible process.

Since this method is given in the framework of classical solutions, only the local
exact boundary controllability and the local exact boundary observability can be
obtained generically, however, in the special case that the problem is linear, this
method will directly lead to the global exact boundary controllability and the global
exact boundary observability.

In what follows, we consider only the case of first order quasilinear hyperbolic
systems, for higher order quasilinear hyperbolic systems the corresponding problem
can be discussed in a similar way [13, 22–23, 28].

Consider the following 1-D first order quasilinear hyperbolic system

(1.1)
∂u

∂t
+A(u)

∂u

∂x
= B(u),

where u = (u1, . . . , un)
T is the unknown vector function of (t, x), A(u) is a given n×n

matrix with C1 elements aij(u) (i, j = 1, . . . , n) and B(u) = (b1(u), . . . , bn(u))
T is a

given C1 vector function of u.
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By hyperbolicity, for any given u on the domain under consideration, A(u) pos-
sesses n real eigenvalues λ1(u), . . . , λn(u) and a complete set of left eigenvectors
li(u) = (li1(u), . . . , lin(u)) (i = 1, . . . , n):

(1.2) li(u)A(u) = λi(u)li(u).

We suppose that all λi(u) and li(u) (i = 1, . . . , n) have the same C1 regularity as
A(u) = (aij(u)).

Suppose that on the domain under consideration there are no zero eigenvalues:

(1.3) λr(u) < 0 < λs(u) (r = 1, . . . ,m; s = m+ 1, . . . , n),

and, for simplicity of statement, we assume that the number of positive eigenvalues
is equal to that of negative ones:

(1.4) n−m = m, i.e., n = 2m.

We now give all the basic ingredients of our constructive method as follows.

A. Semi-global C1 solution to the mixed initial-boundary value prob-
lem [16, 18].

Let

(1.5) vi = li(u)u (i = 1, . . . , n).

vi is called to be the diagonalized variable corresponding to the i-th characteristic

dx

dt
= λi(u).

On the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ L} we consider the forward mixed initial-
boundary value problem for system (1.1) with the initial condition

(1.6) t = 0 : u = ϕ(x), 0 ≤ x ≤ L

and the following boundary conditions

x = 0 : vs = Gs(t, v1, . . . , vm) +Hs(t) (s = m+ 1, . . . , n),(1.7)

x = L : vr = Gr(t, vm+1, . . . , vn) +Hr(t) (r = 1, . . . ,m),(1.8)

where ϕ,Gi and Hi (i = 1, . . . , n) are all C1 functions with respect to their arguments
and, without loss of generality, we assume

(1.9) Gi(t, 0, . . . , 0) ≡ 0 (i = 1, . . . , n).

We point out that (1.7) and (1.8) are the most general nonlinear boundary condi-
tions to guarantee the well-posedness for the forward mixed problem, the characters
of which can be shown as

1) The number of boundary conditions on x = 0 (resp. on x = L) is equal to the
number of positive (resp. negative) eigenvalues.

These characteristics which reach the corresponding boundary from the interior
of the domain are called to be the coming characteristics, while, all other character-
istics which enter the domain from the corresponding boundary are called to be the
departing characteristics.
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Thus, the first character can be restated as
1) The number of boundary conditions on x = 0 (resp. on x = L) is equal to the

number of coming characteristics on it.
2) The boundary conditions on x = 0 (resp. on x = L) are written in the form

that all the diagonalized variables corresponding to the coming characteristics are
explicitly expressed by other diagonalized variables corresponding to the departing
characteristics.

When the conditions of C1 compatibility are satisfied at the point (t, x) = (0, 0)
and (0, L), respectively, the froward mixed problem (1.1) and (1.6)–(1.8) admits a
unique local C1 solution u = u(t, x) on the domain R(δ0) = {(t, x) | 0 ≤ t ≤ δ0, 0 ≤
x ≤ L}, where δ0 > 0 is a suitably small number [24]. However, in order to realize
the exact boundary controllability and the exact boundary observability, we need the
C1 solution u = u(t, x) to the mixed problem on a domain R(T0) = {(t, x) | 0 ≤ t ≤
T0, 0 ≤ x ≤ L}, where T0 > 0 is a preassigned and possibly quite large number. This
kind of C1 solution, which is neither a local C1 solution nor a global C1 solution, is
called to be a semi-global C1 solution. In order to guarantee the existence of semi-
global C1 solution, some additional hypotheses are needed. We have the following

Lemma 1.1 (Semi-global C1 solution to the forward mixed problem). Under the
previous assumptions, suppose furthermore that

(1.10) B(0) = 0,

namely, u = 0 is an equilibrium of system (1.1). For any given T0 > 0, if the C1

norms ‖ϕ‖C1[0,L] and ‖H‖C1[0,T0] (in which H(t) = (H1(t), . . . , Hn(t))
T ) are small

enough (depending on T0), the forward mixed initial-boundary value problem (1.1)
and (1.6)–(1.8) admits a unique semi-global C1 solution u = u(t, x) with small C1

norm on the domain R(T0) = {(t, x) | 0 ≤ t ≤ T0, 0 ≤ x ≤ L}. Moreover, under the
additional hypotheses that ∂Gi

∂t
(i = 1, . . . , n) satisfy locally the Lipschitz condition

with respect to the variable v = (v1, . . . , vn)
T , we have

(1.11) ‖u‖C1[R(T0)] ≤ C(‖ϕ‖C1[0,L] + ‖H‖C1[0,T0]),

where C is a positive constant possibly depending on T0.
For the backward mixed initial-boundary value problem for system (1.1) with the

final condition

(1.12) t = T0 : u = Φ(x), 0 ≤ x ≤ L,

similar results can be obtained. However, since in this situation the original coming
characteristics on the boundaries x = 0 and x = L become the departing character-
istics and vice versa, we should assume that the boundary conditions (1.7)–(1.8) can
be equivalently rewritten as

x = 0 :vr = Ḡr(t, vm+1, . . . , vn) + H̄r(t) (r = 1, . . . ,m),(1.13)

x = L :vs = Ḡs(t, v1, . . . , vm) + H̄s(t) (s = m+ 1, . . . , n)(1.14)

with

(1.15) Ḡi(t, 0, . . . , 0) ≡ 0 (i = 1, . . . , n).

B. Global C1 solution to the Cauchy problem on a finite initial interval.
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Similarly to Lemma 1.1, we have

Lemma 1.2 (Global C1 solution to the Cauchy problem on a finite initial interval).
Under assumption (1.10), if ‖ϕ‖C1[0,L] is small enough, then the Cauchy problem
(1.1) and (1.6) admits a unique global C1 solution u = u(t, x) on the whole maximum
determinate domain D = {(t, x) | t ≥ 0, x̄(t) ≤ x ≤ ¯̄x(t)} and

(1.16) ‖u‖C1(D) ≤ C‖ϕ‖C1[0,L],

where C is a positive constant, x = x̄(t) is the rightmost characteristic passing through
the point (t, x) = (0, 0):

(1.17)






dx̄(t)

dt
= max

i=1,...,n
λi(u(t, x̄(t))),

x̄(0) = 0

and x = ¯̄x(t) is the leftmost characteristic passing through the point (t, x) = (0, L):

(1.18)






d¯̄x(t)

dt
= min

i=1,...,n
λi(u(t, ¯̄x(t))),

¯̄x(0) = L.

Similar results can be obtained for the backward Cauchy problem.

C. Uniqueness of C1 solution to the one-sided mixed initial-boundary
value problem [23].

Lemma 1.3 (Uniqueness of C1 solution to the one-sided mixed problem). For the
one-sided mixed initial-boundary value problem (1.1) and (1.6)–(1.7), its C1 solution
u = u(t, x) is unique on the maximum determinate domain {(t, x) | t ≥ 0, 0 ≤
x ≤ ¯̄x(t)}, where x = ¯̄x(t) is the leftmost characteristic passing through the point
(t, x) = (0, L), defined by (1.18).

For the one-sided mixed problem (1.1), (1.6) and (1.8), similar results hold.

D. Change the role of t and x.

Since there are no zero eigenvalues (see (1.3)), we can change the role of t and x,
and the original system (1.1) is rewritten as

(1.19)
∂u

∂x
+A−1(u)

∂u

∂t
= B̃(u)

def.
= A−1(u)B(u).

Thus, the matrix A(u) is replaced by its inverse A−1(u), correspondingly, the eigen-
values λi(u) (i = 1, · · · , n) become 1

λi(u)
(i = 1, · · · , n), however, the left eigenvectors

li(u) (i = 1, · · · , n) keep unchanged, then the variables vi (i = 1, · · · , n) are still given
by the same formula (1.5).

In this situation we have similar results for the leftward (resp. rightward) mixed
problem and for the leftward (resp. rightward) Cauchy problem.

In what follows we will see that by means of the previous four basic facts, a
constructive method can be flexibly used to get the desired conclusion on the exact
boundary controllability, on the exact boundary controllability of nodal profile and
on the exact boundary observability.
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2. Exact boundary controllability. For any given C1 final state at t = T :

(2.1) t = T : u = Φ(x), 0 ≤ x ≤ L,

we hope to choose suitable boundary controls Hi(t) (i = 1, . . . , n) or a part of
Hi(t) (i = 1, . . . , n), such that the corresponding mixed initial-boundary value prob-
lem (1.1) and (1.6)–(1.8) admits a unique C1 solution u = u(t, x) on the domain
R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies exactly the final condition
(2.1). If we can do so, then the exact boundary controllability is realized.

Since the hyperbolic wave has a finite speed of propagation, in order to realize
the exact boundary controllability, T > 0 should be suitably large. It is the reason to
consider the semi-global C1 solution for our mixed problem.

When all the boundary functions Hi(t)(i = 1, . . . , n) acting on both ends x = 0
and x = L are used to realize the exact boundary controllability, we get the two-sided
exact boundary controllability, while, if, for instance, only the boundary functions
Hr(t) (r = 1, . . . ,m) acting on one end x = L are used to realize the exact boundary
controllability, we get the one-sided exact boundary controllability.

For fixing the idea, in what follows we consider only the one-sided exact boundary
controllability. In this case, we should suppose that

(2.2) T > L

(
max

r=1,...,m

1

|λr(0)|
+ max

s=m+1,...,n

1

λs(0)

)
.

The two-sided exact boundary controllability can be similarly discussed [16, 19–20].
The whole framework of resolution is to use a simple constructive method to

construct a C1 solution u = u(t, x) to system (1.1) on the domain R(T ) = {(t, x) |
0 ≤ t ≤ T, 0 ≤ x ≤ L}, such that it satisfies simultaneously the initial condition (1.6),
the final condition (2.1) and the boundary condition (1.7) on the end x = 0 without
control. Once such a C1 solution u = u(t, x) is obtained, substituting it into the
boundary condition (1.8), we finally get the boundary controls Hr(t) (r = 1, . . . ,m)
on the end x = L, and then the desired one-sided exact boundary controllability.

To find such a C1 solution u = u(t, x) on the domain R(T ) is a non-standard
problem. There is no uniqueness for this problem, however, the solution to this
problem can be obtained by solving some well-posed mixed initial-boundary value
problems, then the whole procedure of resolution possesses the stability.

Noting (2.2), there exists ε0 > 0 so small that

(2.3) T > L

(
sup

|u|≤ε0

max
r=1,...,m

1

|λr(u)|
+ sup

|u|≤ε0

max
s=m+1,...,n

1

λs(u)

)
.

Let

(2.4) T1 = L sup
|u|≤ε0

max
r=1,...,m

1

|λr(u)|

and

(2.5) T2 = L sup
|u|≤ε0

max
s=m+1,...,n

1

λs(u)
.

Obviously, T > T1 + T2.
The constructive method can be divided into several steps.
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(i) We first consider the forward mixed initial-boundary value problem for system
(1.1) with the initial condition (1.6), the boundary condition (1.7) on x = 0 and the
following artificial boundary condition

(2.6) x = L : vr = fr(t) (r = 1, . . . ,m),

where fr(t) (r = 1, . . . ,m) are any given functions of t with small C1[0, T1] norm, such
that the conditions of C1 compatibility are satisfied at the point (t, x) = (0, L). By
Lemma 1.1, there exists a unique semi-global C1 solution u = uf (t, x) with small C1

norm on the domain Rf = {(t, x) | 0 ≤ t ≤ T1, 0 ≤ x ≤ L}. In particular, we have

(2.7) |uf(t, x)| ≤ ε0, ∀(t, x) ∈ Rf .

Thus we can determine the value of u = uf(t, x) at x = 0 as

(2.8) x = 0 : uf = a(t), 0 ≤ t ≤ T1

and the C1[0, T1] norm of a(t) is suitably small (Figure 1).

a(t)

T

t

L xO

Rf

T1

b(t)

L xO

Rb

t

T

T − T2

Fig. 1 Fig. 2

(ii) In order to solve a corresponding backward mixed initial-boundary value prob-
lem, we assume that in a neighbourhood of u = 0, the boundary condition (1.7) on
the end x = 0 without control can be equivalently rewritten as

(2.9) x = 0 : vr = Ḡr(t, vm+1, . . . , vn) + H̄r(t) (r = 1, . . . ,m)

with

(2.10) Ḡr(t, 0, . . . , 0) ≡ 0 (r = 1, . . . ,m).

Similarly, we consider the backward mixed initial-boundary value problem for
system (1.1) with the final condition (2.1), the boundary condition (2.9) (namely,
(1.7)) on x = 0, and the following artificial boundary condition

(2.11) x = L : vs = gs(t) (s = m+ 1, . . . , n),

where gs(t) (s = m + 1, . . . , n) are any given functions of t with small C1[T − T2, T ]
norm, satisfying the conditions of C1 compatibility at the point (t, x) = (T, L). By
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Lemma 1.1, there exists a unique semi-global C1 solution u = ub(t, x) with small C1

norm on the domain Rb = {(t, x) | T −T2 ≤ t ≤ T, 0 ≤ x ≤ L}. In particular, we have

(2.12) |ub(t, x)| ≤ ε0, ∀(t, x) ∈ Rb.

Thus we can determine the value of u = ub(t, x) at x = 0 as

(2.13) x = 0 : ub = b(t), T − T2 ≤ t ≤ T

and the C1[T − T2, T ] norm of b(t) is suitably small (Figure 2).

(iii) Since both a(t) and b(t) satisfy the boundary condition (1.7) on x = 0, noting
T > T1 + T2, we can find a C1[0, T ] function c(t) with small C1 norm, such that

(2.14) c(t) =

{
a(t), 0 ≤ t ≤ T1,

b(t), T − T2 ≤ t ≤ T

and c(t) satisfies the boundary condition (1.7) on x = 0 for the whole interval [0, T ].

Now we change the role of the variables t and x, then system (1.1) is equivalently
rewritten as (1.19), namely,

∂u

∂x
+A−1(u)

∂u

∂t
= B̃(u)

def.
= A−1(u)B(u)

with

B̃(0) = 0.

We now consider the rightward mixed initial-boundary value problem (Figure 3)
for system (1.19) (namely, (1.1)) with the initial condition

(2.15) x = 0 : u = c(t), 0 ≤ t ≤ T

and the following boundary conditions reduced from the initial data ϕ(x) and the
final data Φ(x):

t = 0 : vs = ls(ϕ(x))ϕ(x) (s = m+ 1, . . . , n), 0 ≤ x ≤ L,(2.16)

t = T : vr = lr(Φ(x))Φ(x) (r = 1, . . . ,m), 0 ≤ x ≤ L.(2.17)

Still by Lemma 1.1, there exits a unique semi-global C1 solution u = u(t, x) with
small C1 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}. In particular,
we have

(2.18) |u(t, x)| ≤ ε0, ∀(t, x) ∈ R(T ).
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c(t)

T

t

L xO

T1

T

t

L xO

Fig. 3 Fig. 4

(iv) In order to finish the construction, it is only necessary to check that u = u(t, x)
verifies the initial condition (1.6) and the final condition (2.1).

In fact, the C1 solutions u = u(t, x) and u = uf(t, x) satisfy the same system
(1.19) (namely, (1.1)), the same initial condition

(2.19) x = 0 : u = a(t), 0 ≤ t ≤ T1

and the same boundary condition (2.16). By Lemma 1.3, i.e., the uniqueness of C1

solution for this kind of one-sided mixed initial-boundary value problem, and noting
the choice of T1 given by (2.4), it is easy to see that on the domain

(2.20) {(t, x) | 0 ≤ t ≤
T1

L
(L− x), 0 ≤ x ≤ L}

(Figure 4) we have

(2.21) u(t, x) ≡ uf(t, x).

In particular, we obtain (1.6). We can get (2.1) in a similar way.
Thus we realize the one-sided exact boundary controllability.

3. Exact boundary controllability of nodal profile. Recently, stimulated
by some practical applications, Gugat et al. [10] proposed another kind of exact
boundary controllability, called the nodal profile control. Different from the usual
exact boundary controllability, this kind of controllability does not ask to exactly
attain any given final state at a suitable time t = T by means of boundary controls,
instead it asks the state to exactly fit any given profile on one or some nodes after a
suitable time t = T by means of boundary controls. This kind of controllability which
will be certainly applicable in many practical situations is called the exact boundary
controllability of nodal profile in this paper.

More precisely, the exact boundary controllability of nodal profile on a boundary
node x = L can be defined as follows: For any given C1 initial data ϕ(x) and any
given C1 boundary functions Hr(t) (r = 1, · · · ,m), satisfying the conditions of C1

compatibility at the point (t, x) = (0, L), for any given C1 vector function ¯̄u(t), if
there exist T > 0 and C1 boundary controls Hs(t) (s = m + 1, · · · , n) such that
the C1 solution u = u(t, x) to the mixed initial-boundary value problem (1.1) and
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(1.6)–(1.8) fits exactly ¯̄u(t) on x = L for t ≥ T , then we have the exact boundary
controllability of nodal profile on the boundary node x = L.

In this definition, when t ≥ T , the value of solution u = ¯̄u(t) on x = L should

satisfy the boundary condition (1.8), in which vi = ¯̄vi(t)
def.
= li(¯̄u(t))¯̄u(t) (i = 1, · · · , n).

Hence, the requirement that the solution u = u(t, x) fits exactly the given value ¯̄u(t)
on x = L for t ≥ T is equivalent to ask that vs (s = m+1, · · · , n) fit exactly the given
values ¯̄vs(t) (s = m+1, · · · , n) on x = L for t ≥ T , then the value of vr (r = 1, · · · ,m)
on x = L for t ≥ T can be determined by the boundary condition (1.8) as follows:

(3.1) vr = ¯̄vr(t)
def.
= Gr(t, ¯̄vm+1(t), · · · , ¯̄vn(t)) + hr(t) (r = 1, · · · ,m).

Let

(3.2) T > L max
s=m+1,··· ,n

1

λs(0)

and T̄ be an arbitrarily given number such that

(3.3) T̄ > T.

For any given initial data ϕ(x) with small C1 norm ‖ϕ‖C1[0,L] and any given boundary
functions Hr(t) (r = 1, · · · ,m) with small C1 norms ‖Hr‖C1[0,T̄ ] (r = 1, · · · ,m),

satisfying the conditions of C1 compatibility at the point (t, x) = (0, L), suppose
that the given values ¯̄vs(t) (s = m + 1, · · · , n) on x = L for T ≤ t ≤ T̄ possess
small C1 norms ‖¯̄vs‖C1[T,T̄ ] (s = m + 1, · · · , n), then there exist boundary controls

Hs(t) (s = m+ 1, · · · , n) with small C1 norms ‖Hs‖C1[0,T̄ ] (s = m+ 1, · · · , n), such
that the mixed initial-boundary value problem (1.1) and (1.6)–(1.8) admits a unique
C1 solution u = u(t, x) with small C1 norm on the domain R(T̃ ) = {(t, x)| 0 ≤ t ≤
T̄ , 0 ≤ x ≤ L}, which fits exactly the given values vs = ¯̄vs(t) (s = m + 1, · · · , n),
namely, the given value u = ¯̄u(t), on the boundary node x = L for T ≤ t ≤ T̄ .

In order to realize this exact boundary controllability of nodal profile, it suffices to
construct a C1 solution u = u(t, x) to system (1.1) on the domain R(T̄ ) = {(t, x)| 0 ≤
t ≤ T̄ , 0 ≤ x ≤ L}, such that it satisfies the initial condition (1.6), the boundary
condition (1.8) on x = L for 0 ≤ t ≤ T̄ and the given values vs = ¯̄vs(t) (s =
m + 1, · · · , n) or u = ¯̄u(t) on x = L for T ≤ t ≤ T̄ . In fact, substituting this
solution into the boundary condition (1.7), we immediately get the boundary controls
Hs(t) (s = m + 1, · · · , n) on x = 0 for 0 ≤ t ≤ T̄ and then the exact boundary
controllability of nodal profile [17].

This C1 solution u = u(t, x) can be obtained through the following steps.
(i) Noting (3.2), there exists ε0 > 0 so small that

(3.4) T1 < T,

where

(3.5) T1 = max
|u|≤ε0

max
s=m+1,··· ,n

L

λs(u)
.

On the domain R(T1) = {(t, x)| 0 ≤ t ≤ T1, 0 ≤ x ≤ L} we solve a forward mixed
initial-boundary value problem for system (1.1) with the initial condition (1.6), the
boundary condition (1.8) on x = L and the following artificial boundary condition

(3.6) x = 0 : vs = gs(t) (s = m+ 1, · · · , n),
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where gs(t) (s = m+1, · · · , n) are any given C1 functions with small C1[0, T1] norm,
satisfying the conditions of C1 compatibility at the point (t, x) = (0, 0).

By Lemma 1.1, this forward mixed problem admits a unique semi-global C1 so-
lution u = uf (t, x) with small C1 norm on R(T1) (Figure 5). In particular,

(3.7) |uf(t, x)| ≤ ε0, ∀(t, x) ∈ R(T1).

Thus, we can determine the value ū(t) (0 ≤ t ≤ T1) of u = uf (t, x) on x = L and its
C1[0, T1] norm is small.

T

t

L xO

T1

T T

t

L xO

T1

T T

t

L xO

T1

T

Fig. 5 Fig. 6 Fig. 7

Noting (3.4), there exists u = u(t) on the interval 0 ≤ t ≤ T̄ with small C1[0, T̄ ]
norm, such that

(3.8) u(t) =

{
ū(t), 0 ≤ t ≤ T1,

¯̄u(t), T ≤ t ≤ T̄ ,

and on the whole interval 0 ≤ t ≤ T̄ it satisfies the boundary condition (1.8), in which

vi = vi(t)
def.
= li(u(t))u(t) (i = 1, · · · , n).

(ii) We change the role of t and x, and solve a leftward mixed initial-boundary
value problem on R(T̄ ) for system (1.1) with the initial condition

(3.9) x = L : u = u(t), 0 ≤ t ≤ T̄ ,

the boundary condition reduced from the original initial condition (1.6)

(3.10) t = 0 : vr = vr(x)
def.
= lr(ϕ(x))ϕ(x) (r = 1, · · · ,m), 0 ≤ x ≤ L

and the following artificial boundary condition

(3.11) t = T̄ : vs = vs(x) (s = m+ 1, · · · , n), 0 ≤ x ≤ L,

where vs(x) (s = m+ 1, · · · , n) are any given C1 functions with small C1[0, L] norm
and satisfy the conditions of C1 compatibility at the point (t, x) = (T̄ , L).

By Lemma 1.1, this leftward mixed problem admits a unique C1 solution u =
u(t, x) with small C1 norm on the domain R(T̄ ) (Figure 6). In particular,

(3.12) |u(t, x)| ≤ ε0, ∀(t, x) ∈ R(T̄ ).
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(iii) This C1 solution u = u(t, x) satisfies system (1.1) and the boundary condition
(1.8) on x = L. We now prove that u = u(t, x) satisfies also the initial condition (1.6)
at t = 0.

For this purpose, consider the following one-sided mixed initial-boundary value
problem for system (1.1) with the initial condition

(3.13) x = L : u = ū(t), 0 ≤ t ≤ T1

and the boundary condition (3.10). Both u = u(t, x) and u = uf (t, x) are C
1 solutions

to this one-sided mixed problem. Noting (3.5), (3.7) and (3.12), it is easy to see that
the interval 0 ≤ x ≤ L on the initial axis t = 0 is included in the maximum determinate
domain of this one-sided mixed problem (Figure 7), hence, by Lemma 1.3, i.e., the
uniqueness of C1 solution to the one-sided mixed problem, u = u(t, x) coincides with
u = uf (t, x) on this interval {t = 0, 0 ≤ x ≤ L}, then u = u(t, x) satisfies the initial
condition (1.6) at t = 0.

Thus, we get the desired exact boundary controllability of nodal profile.

4. Exact boundary observability. We still consider the forward mixed initial-
boundary value problem (1.1) and (1.6)–(1.8) under the hypotheses (1.3)–(1.4), (1.9)–
(1.10) and that the conditions of C1 compatibility are satisfied at the points (t, x) =
(0, 0) and (0, L), respectively.

For any preassigned T > 0, if ‖ϕ‖C1[0,L] and ‖H‖C1[0,T ] are small enough, then,
by Lemma 1.1, this forward mixed problem admits a unique semi-global C1 solution
u = u(t, x) with small C1 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}.

The exact boundary observability asks to find a suitably large T > 0 and certain
boundary observed values on the interval [0, T ], such that the initial data ϕ(x), then
the whole C1 solution u = u(t, x) on the domain R(T ), can be uniquely determined
by these boundary observed values on [0, T ]. When boundary observed values on both
ends x = 0 and x = L are used, we get the two-sided exact boundary observability,
while, when boundary observed values only on one end, for instance, only on the end
x = 0, are used, we get the one-sided exact boundary observability.

In what follows, for fixing the idea, we consider only the one-sided exact boundary
observability with the observation taken on the end x = 0. The two-sided exact
boundary observability can be similarly treated [12, 14, 16].

For getting the exact boundary observability, the essential principle of choosing
observed values on the boundary is that the observed values together with the bound-
ary conditions can uniquely determine the value u = (u1, . . . , un) on the boundary.

Following this principle, the observed value at x = 0 should be essentially the
diagonalized variables vr = v̄r(t) (r = 1, . . . ,m) corresponding to the departing char-
acteristics, then by means of the boundary condition (1.7), we get

(4.1) vs = v̄s(t)
def.
= Gs(t, v̄1(t), . . . , v̄m(t)) +Hs(t) (s = m+ 1, . . . , n)

and then, noting (1.9), we have

(4.2) ‖v̄s‖C1[0,T ] ≤ C
( m∑

r=1

‖v̄r‖C1[0,T ] + ‖Hs‖C1[0,T ]

)
(s = m+ 1, . . . , n).

Hence, the value of solution u = ū(t) on x = 0 satisfies

(4.3) ‖ū‖C1[0,T ] ≤ C
( m∑

r=1

‖v̄r‖C1[0,T ] +
n∑

s=m+1

‖Hs‖C1[0,T ]

)
.
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Here and hereafter C denotes a positive constant.

Let

(4.4) T > L
(

max
r=1,...,m

1

|λr(0)|
+ max

s=m+1,...,n

1

λs(0)

)
.

This requirement coincides with (2.2), the requirement for the one-sided exact bound-
ary controllability.

We will prove that the boundary observed values vr = v̄r(t) (r = 1, . . . ,m) at
x = 0 on the interval [0, T ] can be used to uniquely determine the initial data ϕ(x)
and we have the following observability inequality

(4.5) ‖ϕ‖C1[0,L] ≤ C
( m∑

r=1

‖v̄r‖C1[0,T ] + ‖H‖C1[0,T ]

)
.

By the constructive method, the whole proof is divided into the following steps.

(i) We change the role of t and x and consider the rightward Cauchy problem for
system (1.1) with the initial condition

(4.6) x = 0 : u = ū(t), 0 ≤ t ≤ T,

determined uniquely by the observed values vr = v̄r(t) (r = 1, . . . ,m) at x = 0 and
the boundary condition (1.7).

By Lemma 1.2, this Cauchy problem admits a unique global C1 solution u =
ũ(t, x) on the whole maximum determinate domain and

(4.7) ‖ũ‖C1 ≤ C
( m∑

r=1

‖v̄r‖C1[0,T ] +

n∑

s=m+1

‖Hs‖C1[0,T ]

)
.

We suppose that the observed values are accurate, i.e., there is no measuring error
in the observation. Thus, u = ũ(t, x) is the restriction of the solution u = u(t, x) to
the original mixed problem on the corresponding domain.

Noting (4.4) and the smallness of the data, this maximum determinate domain
must intersect x = L (Figure 8). Then, there exists T0 (0 < T0 < T ) such that
the value û(x) of the solution u = u(t, x) on t = T0 can be uniquely determined by
u = ũ(t, x) and

(4.8) ‖û‖C1[0,L] ≤ C
( m∑

r=1

‖v̄r‖C1[0,T ] +
n∑

s=m+1

‖Hs‖C1[0,T ]

)
.
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(ii) We now solve the backward mixed initial-boundary value problem (Figure 9)
for system (1.1) with the final condition

(4.9) t = T0 : u = û(x), 0 ≤ x ≤ L,

the boundary condition given by the observed values

(4.10) x = 0 : vr = v̄r(t) (r = 1, . . . ,m)

and the boundary condition (1.8) on x = L, which, corresponding to the backward
problem, should be supposed to be equivalently rewritten in a neighbourhood of u = 0
as

(4.11) x = L : vs = Ḡs(t, v1, . . . , vm) + H̄s(t) (s = m+ 1, . . . , n)

with

(4.12) Ḡs(t, 0, . . . , 0) ≡ 0 (s = m+ 1, . . . , n),

then

(4.13)

n∑

s=m+1

‖H̄s‖C1[0,T ] ≤ C

m∑

r=1

‖Hr‖C1[0,T ].

By Lemma 1.1, u = u(t, x) as the C1 solution to this mixed problem on the
domain R(T0) = {(t, x) | 0 ≤ t ≤ T0, 0 ≤ x ≤ L} satisfies

(4.14) ‖u‖C1[R(T0)] ≤ C
( m∑

r=1

‖v̄r‖C1[0,T ] + ‖H‖C1[0,T ]

)
.

In particular, we get the desired observability inequality (4.5).
Thus, we realize the one-sided exact boundary observability. In this constructive

way, the observability inequality (4.5) as an inverse inequality becomes a direct con-
sequence of several direct inequalities obtained by solving some well-posed problems.

Remark 1. The estimates on the controllability time (2.2), on the observability
time (4.4) and on the nodal controllability time (3.2) are all sharp (cf. [5–9]).
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Remark 2. The constructive method presented in this paper can be modified
and generalized to get the exact boundary controllability, the exact boundary control-
lability of nodal profile and the exact boundary observability on a tree-like network
with general topology [5–9].

Remark 3. It would be very useful and interesting to realize numerically the
constructive method suggested in this paper.
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Non Linéaire, 10 (1993), pp. 109–129.



84 T. LI


