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A BLOWUP CRITERION FOR THE FULL COMPRESSIBLE
NAVIER-STOKES EQUATIONS*

XIANGDI HUANGT

Abstract. In this paper, we establish a blow up criterion for strong solutions of the full com-
pressible Navier-Stokes equations just in terms of the gradient of the velocity. It shows that the
gradient of the velocity alone dominates the global existence of strong solutions.
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1. Introduction. This paper is devoted to study the following 3-dimensional
full compressible Navier — Stokes equations:
Op + div(pu) = 0,
O (pu) + div(pu @ u) — plAu — (p+ N)V(divu) + VP =0 (1.1)
01 (p0) + div(pbu)] — kA + Pdivu = g|Vu + VuT > + A(divu)?

where p > 0 denotes the density of the mass, u is the velocity.
P=Rpf (a>0,v>1) (1.2)

is the pressure. p,\,R,c, and & are the physical constants satisfying
2
>0+ 5“2 0,R>0,c, >0,k >0.

The global existence of classical solutions for the full compressible Navier-Stokes
equations was established by Matmusura and Nishida[7, 8] with initial data close to
an non-vacuum equilibrium. When the initial density is allowed to vanish, the local
existence of strong solutions is recently shown by Cho and Kim[1], which can be
described as follows.

Consider the following initial boundary value problem for a viscous heat-
conductive fluid:

pe + div(pu) = 0,in (0,T) x Q (1.3)

(pe)s + div(pew) — ke + Pdivu = Q(Vu),in (0,T) x Q (1.4)
(pu); + div(pu @ u) + Lu+ VP = 0,in (0,T) x Q (1.5)
(p e, u)|1—o0 = (po, €0, o), in Q2 (1.6)

(e,u) = (0,0),0n (0,T) x O (1.7)
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(p,e,u)(t,z) — (p>,0,0),as x| — oo, (t,z) € (0,T) x Q. (1.8)

Here, if Q is a bounded domain(or the whole space), then condition (1.8) at infinity
(or the boundary condition, respectively) is unnecessary and should be neglected.

THEOREM 1.1 (Cho and Kim[1]). Let p>™ € [0,00) and q € (3,6] be fized con-
stants, and define r by

r=2if p>* =0, andr=2o0r 3if p> >0. (1.9)
Assume that the data po,eq,ug satisfy the reqularity condition
0 >0, po—p>=eWh nWhe (e, ug) € D§N D?, (1.10)
and the compatibility condition
—kDey — Q(Vug) = pégl and Lug + VP = pégg (1.11)

for some (g1,92) € L?, where Py = (v — 1)poeo. Then there exist a small time Ty > 0
and a unique strong solution (p,e,u) to the initial boundary value problem such that

p—p< € CO, W NnWh), p, e C([0,T.]; L™ N L),
(e,u) € C([0,T.]; Dy N D?*) N L*(0, Ty; D*9), (1.12)
(et,ut) € L*(0,Ty; D§) and (p%et,p%et) € L>=(0,Ty; L?).

REMARK 1.1. We may translate the existence results in terms of the temperature.
It is essentially proved that in[1] if

inf pg > 0,p0 € WH9(Q)  for some §> N

L ) ) ) (1.13)
U € HO(Q) NH (Q),@o € H (Q),lnf90 >0
with the following boundary conditions
00
ulaq =0, 6—|asz =0 (1.14)
v

where v is the normal to 0N2.
Then there exist a Ty > 0 and a unique strong solution (p,0,u) on [0,T] to the
problem, such that for any qo € (N, q),
p € C([0,T.], Wh®),  p, € C([0,T.], L?),inf p > 0
u e C([0,T.], Hy N H?) N L0, T,; W)
ug € L°(0, Ty; L*) N L2(0, Ty; Hy) (1.15)
0 € C([0,T.]; H?) N L*(0, To; W2%), 0 > 0
0, € L>(0,Ty; L*) N L*(0, T,; HY)

where N = 2 or 3.

Concerning this local existence, roughly speaking, for large data, it is still an open
problem whether a global small solution exists or not. Even for weak solutions, we
mention that only a global ”variational solutions” have been obtained by Feiresil[4].
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However, it is shown in[2] that, with the density away from vacuum, a blow up criterion
for the heat-conductive gas is established in two dimensional bounded domain.

THEOREM 1.2 (Fan and Jiang[2]). Assume that the initial data satisfy (1.13) —
(1.14). Let (p,u, ) be a strong solution of the initial-boundary value problem for 1.1
and satisfy the reqularity (1.15). Then, if T* < oo is the mazimal time of existence,
then for some r > 2

T T or
sup (Il o lems 18le=) + [ (lellwsan + VoIt + [ fullfr2de = oc.
0<t<T 0 0
(1.16)
Furthermore, if 2 > A, then
T
sup (Il o em: 18=) + [ (lollwr + [Vpledt) =o0.  (117)
0<t<T 0

REMARK 1.2. The results of Fan and Jiang shows that the density and tempera-
ture dominates the reqular motion of the fluid.

REMARK 1.3. The main goal of this paper is to show that in fact the gradient of
the velocity alone plays a central role in the global existence of strong solutions.

2. Main results. In this paper, we show a certain regularity of Vu will be
enough to avoid the blow-up of strong solutions.

Basic assumptions: 4 and A are assumed to satisfy the physical restriction
3
u+§)\20,u>0 (2.1)
and without lose of generality,
¢y = 1. (2.2)

We shall consider the following initial boundary value problem

00
=0. = =0 2.3
ulao =0, aV|asz , (2.3)

(p,u, 0)|t=0 = (po,u0,00) in QCR" (2.4)

where n = 2,3, and v is the out normal of 9. Our main theorem is stated as follows.

THEOREM 2.1. Let Q C R? be a bounded domain. Qr = (0,T) x Q. Assume that
the initial data satisfy (1.13) and (1.14). Let (p,u) be a strong solution of the system
(1.1) — (1.2) with initial boundary conditions (2.3) and (2.4) satisfying the regularity
(1.15). If T* < oo is the mazimal time of existence, then

T
. 2 o

REMARK 2.1. The blow up criterion (2.5) is both sufficient and necessary.
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REMARK 2.2. There is something new in the blowup criteria contrast to [5, 6]
in the isentropic case. One don’t require any restrictions on the viscous coefficients
w and X. The main difficulty is to bound |Vp||pwr2 at first. In fact, we can derive
a L™(Qr) bound of 6 by using the energy equation. The result will be adopted to
deduce that the L*(Qr) norm of the convection term F = pu; + pu - Vu is bounded
by that of Vp as in the isentropic case. This, in turn gives the L°L? bound of Vp.
Combining the above estimates, one can derive the desired bound for |Vp||p=r2. The
higher estimates on the space and time derivatives of the temperature 6 are also more
involved than the non-isentropic case.

REMARK 2.3. More recently, Fan[3] told me they obtained a new criteria for the
heat-conductive flow, motivated by [5, 6], if Tpn > A, then

(Jim 0]z~ @r) + [ Vullzr 2 (@r) = oo. (2.6)

In this paper, we denote
Lu = pAu+ (p+ A)Vdivu

the elliptic operator in the momentum equations.

3. Proof of Theorem 2.1. Let (p, u) be a strong solution described in Theorem
2.1. We assume that the opposite holds, i.e

T
. 2
TILHII’*/O [VullZeodt < C < oo. (3.1)

By assumption (3.1) and the conservation of mass, the upper and lower bounds
of the density follows immediately.

LEMMA 3.1. Assume that
T
/ ldivu||p~dt < C, 0<T < T, (3.2)
0
then

I o lmn SC. 0T < T (3.3)

Proof. Tt follows from the conservation of mass that for Vg > 1,
O (p?) + div(pu) 4+ (¢ — 1)p?divu = 0. (3.4)
Integrating (3.4) over 2 to obtain
d q q
a7 ].° dr < (q — )| Vullp=(o) | pdz, (3.5)
Q Q
i.e

d qg—1
—||p < ——||Vul| ollLa, 3.6
i lolee < S IVl o (36)
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which implies immediately

lpllza(t) < C, (3.7)
with C' independent of ¢, so our lemma follows. The same hold for ||p™!| L. O

LEMMA 3.2. Assume that

T
/O |[Vul|2.dt <C, 0<T < T%, (3.8)

one has

10l (@) < C. (3.9)

Proof. Multiplying 97! in the energy equation and integrating gives

1
1 4 01 2de —k [ NG -0 4 / Rp69 2 divudx
q+2dt Jo Q ) (3.10)
= / [%|Vu + Va2 + \(divu)?)97H da.
Q
Set f(t) = [, p99+2dzx, one has
/QRqu”divudm < C||\Vul|L=f(t) (3.11)

1 a+1
[ M1V v e < OVl £ < COVUlEa 410 (312)

Substituting (3.11)-(3.12) into (3.10), one gets
Of < Cla+2)(|Vulli~ +1)f. (3.13)
Hence,
FO) T < f(0)7 eC o (IVullioc +1)dz (3.14)
Letting ¢ — oo, make use of (3.3) yields
10l (@) < C. (3.15)

|

Next, we have 8 > 0 in [0,T] x . The proof is standard, one can refer to([4]) for
more detail.

LEMMA 3.3. Under the condition (3.1), it holds that, for 0 <t <T <T*,

/ |Vu|? + |VO2dxdt < C. (3.16)
T

Proof. Recalling the entropy estimate, one has

1
Bu(ps) + div(psu) — div(gvo) > 5[%|VU + VT2 4 A(diva)?] + 9%|v9|2. (3.17)
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One can conclude by lemma 3.2 that

/ |Vu|? + |VO2dxdt < C. (3.18)

LEMMA 3.4. Under the condition (3.1), the following energy estimate holds

sup / plu|?dz(t) +/ |Vu|?*dzdt <C, 0<T < T*. (3.19)
0<t<T JQ Qr

Proof. Multiplying u on both sides of the momentum equations, one gets

4
at

= / Pdivudz (3.20)
Q

< ﬁ/ |Vu|2+C(u)/ P2dz.
2 Q Q

This finishes the proof. O

2
| | d:c—|—/u|Vu|2—|—(,u—|—)\)(divu)2d:c
Q

The next lemma shows a connection between a convection term and the gradient
of the density.

LeEmMA 3.5. Let F' = puy + pu - Vu. Then it holds that

/ F?dzdt < C | |VplPdadt+C, 0<T <T*
Qr Qr

Proof. Note that

/ F2dzdt < C*(||p||Loo(QT))/ putda:dt+2/ lpu - Vu|*dxdt. (3.21)
Qr Qr Qr

It follows from lemma 3.1 and 3.4 that

/ FdedtSC'*(HpHLao(QT))/ putdzdt+/ ||Vu||%oo/p2u2d:1:dt
Qr Qr ¢ (3.22)

<C putdacdt + C.
QT

Multiplying the momentum equation by wu; and integrating show that
/ pudx + / pu - Vu - ugdr + 5@ / |Vul|?dr = / Pdivu,dz, (3.23)
Q
the righthand side of (3.23) can be rewritten as

d
/Pdivutd:v: —/ Pdivudx—/Ptdivud:v. (3.24)
Q dt Jo %
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One obtain from the mass equation that
P, + div(Pu) — ReAG + RPdivu = R[%|Vu + Va2 + A(divu)?].

Consequently

Po=—(A1 + Ay + A3 + Ay), (3.25)
which can be estimated separately as follows.
/ Ardivudr = / P(divu)? + Rpu - VOdivu + ROu - V pdivudz
Q Q

< Clldivul|Zz + Cllpull 12|V L2 [Vl Lo + Cllull 2]Vl 2 | V] o
< C(IVulZ + IVolZe + IVOlI72 + [ Vul ).

(3.26)
Note that
VP2 = RV (p0)|[12 < CIVO| L2 + C||Vp| 2 (3.27)
it follows from the elliptic regularity for Lu = F' + VP that
lullgz < C([Fl[2 + VPl L2), (3.28)
Asdivudr = / RkVO - Vdivudx
o ° (3.29)
< e/ F2d:c—|—C'/ |V9|2d17+0/ |Vp|?d,
Q Q Q
/ Azdivudr = / RP(divu)?dz < C / |Vu|?dz, (3.30)
Q Q Q
/ Aydivudr < C/ |Vul>dx
Q Q
< C||Vu||%oo/ |Vu|dx (3.31)
Q
<C suwp (/ Vul2dr)t V.
0<t<T JQ
Direct estimates show that
1
/ Pdivudz(T) < 1 |Vu|?dz(T) + C, (3.32)
Q Q
1
/ pu - Vu - ugdxdt < —/ pu? —|—/ plu - Vu|*dzdt
QT 2 T T
1 T
< / pu + C'/ N / plu*dzdt (3.33)
Q 0 Q

2 Jaox
1

—/ pui + C.
2 JQr
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On the other hand, using F' = Lu — VP again, one obtain

/ Pu - Vdivudzdt < C / |Vp|?dxdt + € / F2dzdt + C, (3.34)

T T T

which in turn gives

1
/ pufda:dt—k—/ |Vul2dz(T)
Qr 2 Ja

(3.35)
<C |V p|?dzdt + 26/ F?dxdt + C sup (/ \Vul?dz)? + C.
Qr Qr 0<t<T JQ
Choosing € as 2C*e < 1, one may conclude
F?dzdt < C | |Vp|*dzdt + C, (3.36)

Qr Qr
which completes the proof of lemma 3.5. O
The next lemma will derive the first order spatial derivatives of the density.

LEMMA 3.6. Under the condition (3.1), it holds that

sup / |Vp|?de < C,0<T < T*, (3.37)
0<t<T Ja
/ puidrdt + sup |Vul?de < C ,0<T <T*, (3.38)
Qr o<t<t Jo
T
/ Jullfeqydt <C, 0<T <T* (3.39)
0

Proof. Differentiating the mass equation in (1.1) with respect to z; and multiply-
ing the resulting equation by 20;p yield

O] 0ip? + div(|0ip|*u) + 10 p|2divu + 20;ppd;divu + 20;pd;u - Vp = 0. (3.40)

Integrating over 2 to show that

d
—/ |0;p|?da = —/ |8ip|2divudx—2/ paipaidivudx—/ 20;p0;u - V pdx
dt Jo Q Q Q

(3.41)
= —(A1 + Az + 43).
Each term on the right hand side of (3.41) can be estimated as follows:
Ax(0)] < divul =(0) [ |PipPde < divul0) [ [VoPde, (342
Q Q

[Ax(0)] < CIVplla (9Pl + |Fll12) < O [ (VP +[V6Pds+ [ Fda), (343)
Q Q
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A3(t)] < C||Vul g (1) / Vp|2dz.
Q

Consequently,

d
G [ 1Volds < COVulin®) + 1) [ [Voldo+C [ (2 + V0P do.
Q Q Q

This, together with Gronwall’s inequality yields

/Q Vp2da(t) < CeCJollVulles ()+Dds( /Q IV po|2da

t
+ [ ([ (F20) + VO (dye O 9l gy
0

Q
t
§C’//F2d:1:ds+0
0 Ja

t
< c/ |Vp|2dzds + C.
o Ja
Hence

sup /|Vp|2d:17§C.
0<t<T JQ

Next, it follows from (3.35) and (3.36) that

/ puZdrdt + sup /|Vu|2d:17§C.
Qr o<t<1 Jo

This, together with Lu = pu; + pu - Vu + VP yield

lull 20,7512 () < lpucllz@r) + lpw - Vullr2(@r) + IV Pl L2(r)
< C+ Cl|VullL2@r) + ClIVPllL2(@r) < C.

Next, we show an improved regularity of the temperature.
LEMMA 3.7.

T
sup [|6(t)]|% +/ 1641122 +110]|32dt < C, 0<T < T*.
0<t<T 0

Proof. Multiplying the energy equation by #; and integrating, one may get

499

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

/pﬁfdx—i—fi/ |VO|>dx = —/ Petdivudm+/[H|Vu+VuT|2+A(divu)2]etdx
Q dt Jo Q o2

2

IN

1
: / p02dz + C||divul|% + C||Val L.
Q

IN

2

IN

1
: / p02dz + C||divul|% + C|| V| n.
Q

1
—/ p02dz + Cl|divu|2 +C||Vu||2Lm/ Vul2da
Q Q

(3.50)
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Recall that
KOG = pb, + pu - VO + Pdivy — %HVU + Va2 — (divu)?) € L*(Qr). (3.51)

This finishes the proof of lemma 3.7. O

LEMMA 3.8. Under the condition (3.1), it holds that

sup ||p"/2us (t)]|25 —|—/ |Vu|*dedt < C, 0<T <T* (3.52)
0<t<T Qr
sup lullgz2 <C, 0<T <T™ (3.53)
0<t<T

Proof. Differentiating the momentum equations in (1.1) with respect to time ¢
yields

pus + pu - Vuy — Aug + Vpr = —pi(up + u - Vu) — puy - Vu. (3.54)

Taking the inner product of the above equation with u; in L?(£2) and integrating by
parts, one gets

4
dt Jo

== /Q(PU -V(ug +u - Vu)ug] + p(ug - V) - ug)de.

1
Epufd:c—k/ |Vut|2dar—/ P divuydz
@ @ (3.55)

The last term on the left-hand side of (3.55) can be rewritten as (using (2.33)):
It follows from (3.56) and (3.57) that

% A %pufd:c + /Q |V |*de — /QPtdivutd:v
< /0(2P|u||ut||vut| + plul[ue[Vul? + plulue|[V2ul + plul?|[Vul[Vue]
+ plue?|Vu| + [V P||u||Vue| + v Plul|Vu||VZu| + +* P|Vul*)dz (3.56)
= iFi'
i=0
Recall Lemmas 3.6-3.7 that
1Pill2(@r) = [1Rpib + Rpbi]l2(qr) < C (3.57)
which gives
/QPtdivutdx < G/Q |Vug|*dz + C(e). (3.58)

Now, we estimate each F; separately.
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7| =/2p|u||ut||Vut|dx
Q
< Cllul|po]| p" 2y || £3|| Vg || .2

1 3
< Cllp" P 72 Va1 2
< el Vuel 7z + Cllp'Puel 72

501

(3.59)

Thus, it follows from Holder inequality, Sobolev imbedding and interpolation

inequality that

Py = / plulue] [ Va2
Q

< Cllull o llutll s [Vl 75

< OVue 2|Vl 2] Vul| s
< Ol Vugl[ 2| Vul e

< el|Vug|72 + CllullF

\Fy| = / pluf? ][V e
Q

<l s llue ]l 2ol V20 e

< ellVuelZe + Cllullze

Pl = / plul2|Vul[Var|da
Q

< O V| 2|Vl o flu? | s
< ClIVullge[[Vuel| L2
< ellVuelZe + Cllulfe

sl = | plua’(ulds
Q
< Cllpud 1|Vl o
< Ol 2w 2
< ellurliZe + Cllo 2udl 2

|| :/ IV P[] Vg d
Q

< OIIVP| 2 ||ull o< [V 22
< Cllull g2l Ve 2
< el[VuelZe + Cllullz:

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)
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|| :/7P|u||Vu||V2u|dx
Q

< C|V?ul 2|Vl Loful| (3.65)
< C|IV2ull a|ull 1
< Clulf +C

|Fs| = / Y2 P|Vul|*dx
Q

<C | |VulPdz
Q (3.66)
< [Vl [ [VuPds
Q
< ClVull=(e)-
Collecting all the estimates for F;, we conclude that
d 1
pr / (Epuf + %p(divu)z)dx —|—/ |V, |*dx
@ @ (3.67)
< 56/9 VuePdz + C(|p" 2uel 22 + ullF + I Vpll72 + [ Vull o).
Therefore, taking e small enough in (3.67) yields
sup ||p" 2w (t)]22 +/ |Vug|?daedt < C, 0<T <T* (3.68)
0<t<T Qr
Moreover,
lull iz < CllpZusllzz + lull o[ Vull s + | VP 2) (3.69)
3 1 :
< Clllp2uel e + | Vull 2 lullZe + VP 12).
Therefore,
sup lul|3= < C. (3.70)
0<T<T*
O

Furthermore, the following lemma gives bounds of spatial derivatives of the den-
sity and the second spatial derivatives of the velocity.

LEMMA 3.9. Under the condition (3.1), let qo be as the same in Theorem 1.1.
Then it holds that

sup ([lpe()|[zoo + llpllwra) <C, 0T <T7,
0<t<T

T
/ w(t) 32 dt <C, 0<T <T* go=min(6,q).
0
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Proof. Tt follows from (3.68) and (3.69) that

uy € L*(0,T; L°(9)), Vu € L(Qr),

F e L*(0,T;L5(Q)),VP € L*(0,T; L°(Q)).

Differentiating the mass equation in (1.1) with respect to x;, and multiplying the
resulting identity by qo|d;p|9%° ~20;p, one gets after integration that

d
& [ 1orplmds =~ =) [ 10ipimdivade - a0 [ loiptn-20ip0udivada
dt Jo Q Q

- QO/ |0ip| % 0;pOiu - V pdx (871)
Q
= —(B;1 + B2 + Bs3).
Each quantity in the righthand side of (3.71) can bounded as follows.
Bu(O] < CIVule~(t) [ osplvde < CIVuln(t) [ [Vpimde . (372)
Q Q
1B2(t)] < OVl oo (IVPLoo + [[Fllzo) (3.73)
Ba(0)] < CIVulli=) [ [Vl do. (3.74)
Q
Substituting (3.71)-(3.73) into (3.74), one has
d
S IVollze < C(IVullz= () + DIV pll o0 + Ol F oo (3.75)
Hence,
sup [|Vpllrew <C
0<t<T
Therefore, due to this, (3.71) and interpolation inequality, one has
pt = —(u-Vp+ pdivu) € LLP . (3.76)
Finally, taking into account that
Lu=F+VPeL*L%
one has
T
[ el oyt < . (3.77)

This finishes the proof of lemma 3.9.
We will improve the regularity of the temperature 6.
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LEMMA 3.10.

sup [|0:]|72 + [VOil|72 00y <C, 0<T < T
0<t<T

Proof. Differentiating the energy equation with the time ¢, one gets

1d
§E/Qpefdx+n/g|vet|2dx

< / Pldivug||0:] + R|pe||0divul|6] + Rp|divul|6, >
Q

+ 20| Vu|[Vue||0:] + |pel|ul[VO]10:] + pluel [VO][6:] + |pe]|0:]* d
7
Y,
i=1

We can estimate each B; as follows

|B1] < ClIVull 2|0l 2 < CUIVuellZs + 10:]172),

|Ba| < [lpellzzlldive] L ]|0]| 2 < C(IVullz~ + [16:]]72),

|Bs| < Clldivullza[10:]|7s < CllOclL2[10llze < el V0172 + C(e) 0],

|Ba| < Cl[Vug|[L2|0c]| e < Cl[Vuel[2|04] 22 + C||Vuel L2 || VO] L2,

Bs| < Cllpell2 VOl La[|0c| s,

|Bs| < ClluellLs[[ VOl L2110 e,

|Br| < Cllpellz2]|0cl7s < ClIOIZs < CllO: L2102 zo-

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

Collecting all the estimates (3.80-3.86) and applying Lemmas 3.6-3.10, we easily

obtain

T
sup (10425 + / 1002+ [0]20dt < C.
o<T<T* 0

(3.87)

Finally, the following lemma gives the desired estimated for the temperature.
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LEMMA 3.11. Under the condition (3.1), it holds that

sup [|0|lgz <C, 0<T <T™ (3.88)
0<t<T

Proof. We may rewrite the energy equation as
KOO = ¢, [01(p0) + div(pbu)] + Pdivu — (%|Vu + V|2 + M(divu)?). (3.89)

Based on the lemmas (3.6-3.10), one immediately has (3.88) by noticing that the
righthand side of (3.89) is bounded in L*°L?. O

We are now ready to extend the strong solutions beyond the time T*.

In fact, Lemmas 3.6-3.8 and Lemma 3.11, the functions (p,u,0)|i=r« =
lim; 7= (p, u, 0) satisfy the conditions imposed on the initial data (1.13) — (1.14) at
the time ¢t = T*. Therefore, one can take (p,u,0)|t=7r~ as the initial data and apply
the local existence Theorem 1.1 to extend our local strong solution beyond 7. This
contradicts the assumption on T*. O
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