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WELL-POSEDNESS OF SCALAR CONSERVATION LAWS WITH

SINGULAR SOURCES ∗

ALEXIS VASSEUR†

Abstract. We consider scalar conservation laws with nonlinear singular sources with a concen-
tration effect at the origin. We assume that the flux A is not degenerated and we study whether it
is possible to define a well-posed limit problem. We prove that when A is strictly monotonic then
the limit problem is well-defined and has a unique solution. The definition of this limit problem
involves a layer which is shown to be very stable. But when A is not monotonic this problem can
be unstable. Indeed we can construct two sequences of approximate solutions which converge to two
different functions although their initial values coincide in the limit.

1. Introduction. This work is motivated by the lost of well-posedness which
can appear in hyperbolic conservation laws with low regularity singular source terms.
Especially, the Saint-Venant model of shallow water develops such a singular term
when the bottom is discontinuous, a situation that occurs naturally in numerical
analysis.

As a simplified model we consider the following scalar conservation law:

∂uǫ
∂t

+
∂A(uǫ)

∂x
+ Zǫ(x)B(uǫ) = 0, x ∈ R, t ≥ 0, (1)

uǫ(x, t = 0) = u0
ǫ(x), u0

ǫ(x) ∈ L1 ∩ L∞(R), (2)

where the unknown functions uǫ ∈ L∞(R×]0,+∞[) belongs to R, A and B are smooth
functions, and Zǫ ∈ L1(R) converges to a Dirac mass:

{

Zǫ is supported in [0, ǫ]

ǫZǫ(ǫy) −→ K(y) in L1(R).
(3)

For future reference we also introduce the notations:

a(ξ) = A′(ξ),

λ =

∫ 1

0

K(y) dy,

a0 = sup|B′/A′| < +∞,

b0 = sup|B/A′| < +∞,

Φ(u) =

∫ u

0

A′

B
(v) dv (not always defined).

As usual, we consider only solutions of (1) which fulfill the entropy conditions:

∂S(uǫ)

∂t
+
∂η(uǫ)

∂x
+ Zǫ(x)S

′(uǫ)B(uǫ) ≤ 0, x ∈ R, t ≥ 0, (4)

for all convex entropy functions S and flux of entropy η related by:

η′ = A′S′. (5)
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We show in this paper the following result:

Theorem 1.1. (Main Theorem) Assume A′, A′′ > 0 and that u0
ǫ → u0 ∈ L1∩L∞

in L1(R). Then the full familly uǫ converges to a function u ∈ C([0,∞[, L1(R)) which
is characterized below. This limit does not depend on the details of Zǫ but only on
λ =

∫

K(y) dy. The result is wrong if A′ changes sign.

The limit problem was first studied by Greenberg, Leroux, Baraille, and Noussair
in [9] in the case B = Cste. In [6], Gosse proposed a construction of the limit solutions
for BV initial datas when Φ is one-to-one. This result uses the nonconservative
products defined by Lefloch and Tzavaras in [11] and Raymond in [16]. Notice that
even in this case, the uniqueness for the limit problem was not proved.

Since Zǫ(x) → λδ(x), the solution u exhibits a jump at x = 0, and the limit of
the product ZǫB(uǫ) can be defined in various ways depending of the microscopic
structure of Zǫ and uǫ.

Our aim is to define in a proper way the limit equation when ǫ = 0 in order
to have a well-posed problem which is consistant with the problem (1), namely such
that uǫ converges to the solution of this limit problem. Especially, a very remarkable
point here is that the limit u is the same for all profiles Zǫ, even when they are not

monotonic. The limit only depends on λ =
∫ 1

0
K(y) dy. We have made this choice in

order to mimic the Saint-Venant system where the source term is of the form z′(x)h
where z is the bottom topography of the river and h is the unknown depth of the
water. Indeed when the bottom has a discontinuity, the related source term has a
Dirac behaviour. The result of Theorem 1.1 is quite pessimistic for this problem.
Indeed it seems to indicate that for subsonic flow (which corresponds to the case A
non monotonic) the problem will be ill-posed.

Seguin and Vovelle have some related results in [17] when a conservation law with
a discontinuous flux modeling oil in porous media is studied, and a similar problem
has been studied by Lewicka in [12] where well-posedness of a system of balance laws
is considered.

Finally, notice that several numerical schemes have been recently proposed to
solve conservation laws with sources since the work of Greenberg and Leroux [8] (see
for instance [1, 4, 7, 10]).

The paper is organised as follows:

In section 2 we state two characterisations of the limit problem. The first one
deals with a layer problem, and the second one use the Φ function. Notice that the
latest one needs that Φ is one-to-one and hence is more restrictive. Then we state the
precise theorem about convergence to the limit problem, uniqueness and stability of
this limit problem, and equivalence of its two characterisations. We end this section
providing a counter-example when A is not monotonic.

In Section 3 we study the layer characterisation. The main tools are the kinetic
formulation of scalar conservation laws first studied by Brenier in [2] and Giga and
Miyakawa in [5] and developped by Lions Perthame and Tadmor in [13], and the
existence of strong traces for scalar conservation laws [18] (see [19] and the works of
Chen and Rascle [3] for strong traces in time). The uniqueness proof is based on
methods introduced by Perthame in [14].

Section 4 is devoted to the proof of the equivalence of the two characterisation
when Φ is one-to-one.

Finally we give the proof of the ill-posedness when A′ is not monotonic in the last
section.



SCALAR CONSERVATION LAWS WITH SINGULAR SOURCES 293

2. Assumptions and main results. Although the source term B(uǫ)Zǫ(x) is
a bounded measure, and therefore converges in D′ to a Dirac mass, this information is
too weak to describe the limiting process. In fact microscopic information is needed.
We propose two ways to achieve it. The first characterisation of the limit problem
reads:

Problem 2.1. (Layer Problem) We say that u ∈ L∞(R×]0,+∞[) is solution of
Problem 2.1 with initial value u0 ∈ L1 ∩ L∞(R) and layer profile K ∈ L1(]0, 1[) if it
exists u ∈ L∞(]0, 1[×]0,+∞[) such that

∂u

∂t
+
∂A(u)

∂x
= 0, x ∈] −∞, 0[, t ∈]0,+∞[, (6)

∂u

∂t
+
∂A(u)

∂x
= 0, x ∈]0,+∞[, t ∈]0,+∞[, (7)

∂A(u)

∂y
+K(y)B(u) = 0, y ∈]0, 1[, t ∈]0,+∞[, (8)

u(0+, t) = u(0−, t), t ∈]0,+∞[, (9)

u(1−, t) = u(0+, t), t ∈]0,+∞[, (10)

u(x, 0+) = u0(x), x ∈ R, (11)

where (6), (7), and (8) are endowed with the entropy conditions:

∂S(u)

∂t
+
∂η(u)

∂x
≤ 0, x ∈] −∞, 0[, t ∈]0,+∞[, (12)

∂S(u)

∂t
+
∂η(u)

∂x
≤ 0, x ∈]0,+∞[, t ∈]0,+∞[, (13)

∂η(u)

∂y
+K(y)S′(u)B(u) ≤ 0, y ∈]0, 1[, t ∈]0,+∞[. (14)

We introduce the function Φ:

Φ(u) =

∫ u

0

A′(v)/B(v) dv

when it is well defined. When Φ is one-to-one, we can define the limit problem as
two equations of conservation laws defined on the domains {x < 0} and {x > 0} and
coupled by the trace values at x = 0, thus eliminating u in the layer.

Problem 2.2. (Gap problem) Fix λ ∈ R. We say that the function u ∈
L∞(R×]0,+∞[) is solution of Problem 2.2 with initial value u0 ∈ L∞ ∩ L1(R) and
gap λ if it verifies:

∂u

∂t
+
∂A(u)

∂x
= 0, x ∈] −∞, 0[, t ∈]0,+∞[, (15)

∂u

∂t
+
∂A(u)

∂x
= 0, x ∈]0,+∞[, t ∈]0,+∞[, (16)

Φ(u(0+, t)) = Φ(u(0−, t)) − λ, t ∈]0,+∞[, (17)

u(x, 0) = u0(x), x ∈ R, (18)

where (15) and (16) are endowed with the entropy inequalities:

∂S(u)

∂t
+
∂η(u)

∂x
≤ 0, x ∈] −∞, 0[, t ∈]0,+∞[, (19)

∂S(u)

∂t
+
∂η(u)

∂x
≤ 0, x ∈]0,+∞[, t ∈]0,+∞[, (20)
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for S convex function and η related to S by (5).

The paper is devoted to the proof of the following theorem.

Theorem 2.1. We assume that A ∈ C3(R), A′′ > 0, A′ ≥ 0 and we fix
K ∈ L1(R) supported in [0, 1].

(i) Then there exists a unique u ∈ L∞(R×]0,+∞[) solution of Problem 2.1. We
have:

‖u‖L∞ ≤ ‖u0‖L∞ + b0

∫ 1

0

|K(y)| dy.

(ii) Denote by HK the Heavyside type function:

HK(x) = exp
(

a0

∫

|K(y)| dy
)

for x < 0
1 for x > 0.

(21)

Then two solutions of Problem 2.1, for the same layer profile K, satisfy for every
t ≥ 0:

∫ +∞

−∞

HK(x)|u(t, x) − v(t, x)| dx ≤

∫ +∞

−∞

HK(x)|u0(x) − v0(x)| dx.

(iii) Fix the layer profile K and consider a sequence u0
n uniformly bounded in

L1 ∩L∞(R) which converges weakly to u0 ∈ L1 ∩L∞(R), then the associated solution
un of the Problem 2.1 converges strongly in L1

loc(R×]0,+∞[) to the solution u of
Problem 2.1 with initial value u0.

(iv) Assume that u0
ǫ is uniformly bounded in L1 ∩ L∞(R), that u0

ǫ converges
strongly to u0 in L1(R) and that Zǫ ∈ L1(R) satisfies (3), then the solution uǫ of
(1)(2) (4) converges strongly in L1(R×]0,+∞[) to the solution u of Problem 2.1.

(v) Assume that Φ is one-to-one. Then Problem 2.1 with layer profile K is equiv-
alent to Problem 2.2 with gap λ =

∫

K(y) dy.

Remarks.

1: The weak stability stated in (iii) means that the layer is very stable. That is
why the limit problem can be defined by a non-linear expression on the trace of u at
x = 0− and x = 0+ in Problem 2.2 when Φ is defined and one-to-one. In particular
this shows that the solution does not depend on the shape of the profile K but only
on λ =

∫

K(y) dy.

2: We can precise somewhat the notion of traces used here. Equations (15)(19)
(respectively (16)(20)) are in the sense of distribution in ] − ∞, 0[×]0,+∞[ (respec-
tively in ]0,+∞[×]0,+∞[), namely using regular test functions compactly supported
in those domains. In [18], it has been shown that for such solution there exists a unique
trace reached by L1

loc convergence at the boundary of the domain. Here we have de-
noted u(0−, t) the trace on the boundary x = 0 of the domain ] − ∞, 0[×]0,+∞[,
u(0+, t) the trace on the boundary x = 0 of the domain ]0,+∞[×]0,+∞[, and u(x, 0)
the trace on the the boundary t = 0. We recall here this result in our framework:

Theorem 2.2. Let I be an interval of R and assume that A ∈ C3(R), A′′ > 0.
Then for every solution u ∈ L∞(I×]0,+∞[) to (15)(19) in I×]0,+∞[, and every
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end-point α of I there exists a function u(α, ·) in L∞(]0,+∞[) and a function u(·, 0)
in L∞(I) such that, for every R > 0, T > 0:

ess lim
x→α, x∈I

∫ T

0

|u(x, t) − u(α, t)| dt = 0, (22)

esslim
t→0

∫

I∩]−R,R[

|u(x, t) − u(x, 0)| dx = 0. (23)

3: We consider a convex flux A in order to use this trace theorem. In fact,
the proof of this theorem use the averaging lemmas where only the following relaxed
condition is needed:

for every (τ, ζ) ∈ R × R, (τ, ζ) 6= (0, 0) :
L({ξ | τ + ζ.A′(ξ) = 0}) = 0,

(24)

where L is the Lebesgue measure. All the results of this paper can be extended to
this case.

4: The condition A′ ≥ 0 is not only technical. Indeed it can be impossible to
define a well-posed limit problem if A is not one-to-one. We show in section 5 the
following result:

Theorem 2.3. (Non monotonic A(·)) Consider the equation

∂uǫ
∂t

+
∂A(uǫ)

∂x
− Zǫ,λ(x)B(uǫ) = 0, x ∈ R, t ≥ 0, (25)

where Zǫ,λ ≥ 0 vanishes out of ]0, ǫ[,
∫ ǫ

0
Zǫ,λ(x) dx = λ. We assume that there is

u0 ∈ R, η > 0 and C > 0 such that

A′(v) < 0 on ]u0 − η, u0[, (26)

A′(v) > 0 on ]u0, u0 + η[, (27)

and 0 ≤ (A′/B)(u) ≤ C for u ∈]u0 − η, u0 + η[. Then for λ > 0 small enough there
exists u0

ǫ(x) and v0
ǫ (x) such that u0

ǫ and v0
ǫ converge strongly in L1

loc to the same limit,
but the corresponding solutions uǫ, vǫ ∈ L∞(R×]0,+∞[) to (25) converge strongly in
L1

loc to two different functions. In other words, the limit problem is unstable for strong
topology.

We can take, for instance, A(u) = u2/2, B(u) = u, u0 = 0.

3. Study of the layer problem. As mentioned in the introduction, we use the
following kinetic formulation of scalar conservation laws. We define a(ξ) = A′(ξ) and
for v ∈ R:

χ(v, ξ) =







1 if 0 ≤ ξ ≤ v
0 if ξ is not between 0 and v
−1 if v ≤ ξ ≤ 0.

In the following, we say that a function f ∈ L∞(I × R) is a χ-function if there exists
a function u ∈ L∞(I) such that f = χ(u, ξ). We first recall the following equivalence
(see the result of Lions Perthame and Tadmor in [13]).
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Theorem 3.1. Let I1, I2 be two open intervals of R, κ = 0 or 1, and Z ∈ L1(I1).
Then u ∈ L∞(I1 × I2) is solution of

κ∂tu+ ∂xA(u) + Z(x)B(u) = 0, (28)

κ∂tS(u) + ∂xη(u) + Z(x)S′(u)B(u) ≤ 0, (29)

for every convex function S and entropy flux η (η′ = S′a) if and only if there exists a
nonnegative measure m ∈ M(I1 × I2 × R) such that the kinetic function f(x, t, ξ) =
χ(u(x, t), ξ) is solution in I1 × I2 × R of:

κ∂tf + a(ξ)∂xf − Z(x)B(ξ) [∂ξf − δ0(ξ)] = ∂ξm. (30)

We can also give a weak kinetic formulation to Problem 2.1 in this framework:

Problem 3.1. (Kinetic layer Problem) Let K ∈ L1(]0, 1[) and u0 ∈ L∞ ∩
L1(R). Consider a function f ∈ L∞(R×]0,+∞[×R) supported in a strip of the
form R×]0,+∞[×[−L,L] with L > 0. Then we say that f is solution to Prob-
lem 3.1 with layer profile K if there exist m1 ∈ M(] − ∞, 0[×]0,+∞[×R), m2 ∈
M(]0,+∞[×]0,+∞[×R), m ∈ M(]0, 1[×]0,+∞[×R), ml and
mr ∈ M(]0,+∞[×R) nonnegative measures, f ∈ L∞(]0, 1[×]0,+∞[×R) supported in
[−L,L] with respect to ξ, and ν, ν nonnegative measures with

∫

ν(x, t, ξ) dξ = 1 and
∫

ν(x, t, ξ) dξ = 1, such that:






































∂f

∂t
+ a(ξ)

∂f

∂x
=
∂m1

∂ξ
, x ∈] −∞, 0[, t ∈]0,+∞[, ξ ∈ R,

∂f

∂t
+ a(ξ)

∂f

∂x
=
∂m2

∂ξ
, x ∈]0,+∞[, t ∈]0,+∞[, ξ ∈ R,

0 ≤ sign(ξ)f(x, t, ξ) ≤ 1,

∂f

∂ξ
(x, t, ξ) = δ0(ξ) − ν(x, t, ξ),

(31)



























a(ξ)
∂f

∂y
−K(y)B(ξ)

[

∂f

∂ξ
− δ0(ξ)

]

=
∂m

∂ξ
, y ∈]0, 1[, t ∈]0,+∞[, ξ ∈ R,

0 ≤ sign(ξ)f(y, t, ξ) ≤ 1,

∂f

∂ξ
(y, t, ξ) = δ0(ξ) − ν(y, t, ξ),

(32)















a(ξ)f(0+, t, ξ) = a(ξ)f(0−, t, ξ) + ∂ξml, t ∈]0,+∞[, ξ ∈ R,

a(ξ)f(0+, t, ξ) = a(ξ)f(1−, t, ξ) + ∂ξmr, t ∈]0,+∞[, ξ ∈ R,

f(x, 0+, ξ) = χ(u0(x), ξ) x ∈ R, ξ ∈ R.

(33)

This statement uses the trace of f at x = 0+, x = 0− and t = 0+. Hence, we first
verify the existence of such traces. Moreover, since we will study non-linear terms
of f , we are interesting in characterizing whether those traces are reached by L1

loc

convergence.

Lemma 3.1. Let I1, I2 be two intervals of R and f ∈ L∞(I1 × I2 × R) with
0 ≤ sign(ξ)f ≤ 1 solution to:

b(ξ)
∂f

∂y1
=
∂m

∂ξ
+
∂g1
∂y2

+ g2, (34)
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where m, g1, g2 are locally bounded measures on I1 × I2 ×R, and b is regular such that
b(ξ) 6= 0 for almost every ξ ∈ R. Then there is a distributional limit f(α, ·, ·) for a
end point α of I1, namely:

ess lim
y1→α

∫

I2

∫

R

f(y1, y2, ξ)φ(y2, ξ) dξ dy2 =

∫

I2

∫

R

f(α, y2, ξ)φ(y2, ξ) dξ dy2,

for every functions φ ∈ L1(I2 × R).
When f(α, y2, ξ) = χ(u(α, y2), ξ) a.e. for some function u(α, ·) ∈ L∞(I2), then

f(α, ·, ·) is reached by L1
loc convergence, namely

ess lim
y1→α

∫

K

∫

R

|f(y1, y2, ξ) − f(α, y2, ξ)| dξ dy2 = 0

for every bounded interval K ⊂ I2.

We choose I1 =] −∞, 0[, I2 =]0,+∞[, (y1, y2) = (x, t), g2 = 0, g1 = −f , b(ξ) =
a(ξ) then this lemma ensures the existence of a space trace f(0−, ·, ·). Taking I1 =
]0,+∞[, we can also define f(0+, ·, ·). Now if we choose I1 =]0, 1[, I2 =]0,+∞[,
(y1, y2) = (y, t), f = f , b(ξ) = a(ξ), g1 = 0, g2 = −K(y)B′(ξ)f − K(y)B(0)δ0(ξ)
and m = m + K(y)B(ξ)f we can define f(0+, ·, ·) and f(1−, ·, ·). Finally if we
choose I1 =]0,+∞[, I2 =]0,+∞[ (or ] − ∞, 0[), (y1, y2) = (t, x), b(ξ) = 1, g2 = 0,
g1 = −a(ξ)f , m = m1 (or m2) we can define f(·, 0+, ·), and since by hypothesis this
value is a χ- function, we see that the initial value is reached by L1

loc convergence.
We postpone the proof of this lemma in the appendix. We show now the following

theorem:

Theorem 3.2. We assume that A ∈ C3(R) A′′ > 0 and A′ ≥ 0.
(i) For u0 ∈ L∞ ∩ L1(R) and K ∈ L1(]0, 1[) we denote

L0 = ‖u0‖L∞ + b0

∫ 1

0

|K(y)| dy.

Then there exists a unique f ∈ L∞(R×]0,+∞[×R) solution to Problem 3.1. The
function f is supported in [−L0, L0] with respect to ξ, f = χ(u, ξ) for some u ∈
L∞(R×]0,+∞[), and u is the unique solution to Problem 2.1.

(ii) Consider u1, u2 solutions to Problem 2.1 with initial values u0
1, u

0
2 and with

the same layer profile K. We have for every t ∈]0,+∞[ (see Theorem 2.1)

∫ +∞

−∞

HK(x)|u1(x, t) − u2(x, t)| dx ≤

∫ +∞

−∞

HK(x)|u0
1(x) − u0

2(x)| dx

where HK is defined by (21).
(iii) Consider un solution of Problem 2.1 with initial value u0

n and same layer
profile K such that u0

n converges weakly to u0 in L∞∗, then un converges strongly in
L1

loc to u solution of Problem 2.1 with initial value u0 and profile K.
(iv) Finally let uǫ be solution of (1)(2)(4), where Zǫ satisfies (3), and assume

that u0
ǫ converges strongly to u0 in L1

loc, then uǫ converges strongly to u, solution of
Problem 2.1 with initial value u0 and layer profile K.

Remark. Point (i) implies that the unique solution to Problem 2.1 verifies:

‖u‖L∞ ≤ ‖u0‖L∞ + b0

∫ 1

0

|K(y)| dy.
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Indeed, from the definition to χ, we have

|u(x, t)| =

∣

∣

∣

∣

∣

∫ u(x,t)

0

f(x, t, ξ) dξ

∣

∣

∣

∣

∣

≤ L0,

since f is supported in [−L0, L0] with respect to ξ and ‖f‖L∞ = 1.

The proof of this theorem uses the kinetic formulation and is based on Perthame’s
methods in [14]. Except for the initial condition, the kinetic formulation of Prob-
lem 3.1 is linear and so stable by weak compactness. This allows to pass to the weak
limit. The only difficulty is to see that the conditions on the traces are stable by weak
convergence which is not obvious in the formulation to Problem 2.1. This result is
proved in Lemma 3.2 whose proof is posponed to the apendix.

Lemma 3.2. (Kinetic weak stability of traces) Let I be an open interval of R and
let fn ∈ L∞(I×]0,+∞[×R), ‖fn‖L∞ ≤ 1, solutions to:

a(ξ)
∂fn
∂x

=
∂mn

∂ξ
+
∂g1

n

∂t
+ g2

n, (35)

where mn are locally uniformly bounded measures on I×]0,+∞[×R and g1
n, g

2
n are

uniformly bounded in L∞(I×]0,+∞[×R). Consider a end point α of I. We assume
that fn, g

1
n, g

2
n converge weakly in L∞∗ to f, g1, g2 and that mn converges to m ∈

M((I ∪{α})×]0,+∞[×R) in the sense of measure in (I ∪{α})×]0,+∞[×R, namely,
for every φ ∈ C0 compactly supported in (I ∪ {α})×]0,+∞[×R (notice that we may
have φ(α, ·, ·) 6= 0):

lim
n→+∞

∫

(I∪{α})

∫ +∞

0

∫

R

φ(x, t, ξ)mn(dx, dt, dξ)

=

∫

(I∪{α})

∫ +∞

0

∫

R

φ(x, t, ξ)m(dx, dt, dξ).

Then there exists mα ∈ M(]0,+∞[×R) such that (m − δα(x)mα)⊥δα(x), fn(α, ·, ·)
converges to a function L∞(]0,+∞[×R) in L∞ w∗ and the trace of f defined in
Lemma 3.1 satisfies for α left end point (respectively right end point)

a(ξ)f(α, ·, ·) = lim
n→+∞

a(ξ)fn(α, ·, ·) + ∂ξmα (respectively − ∂ξmα).

We are now ready to show Theorem 3.2.

Proof of Theorem 3.2. We divide the proof in several steps.
(i) Uniqueness of the solution.
We define

J(f1, f2) = |f1 − f2|
2 + (|f1| − f2

1 ) + (|f2| − f2
2 ). (36)

It verifies the following property:

Lemma 3.3. Let f1, f2 ∈ L1(R) be such that:

∂ξf1 = δ0(ξ) − ν1,

∂ξf2 = δ0(ξ) − ν2,
(37)
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with ν1, ν2 nonnegative measure,
∫

ν1 dξ =
∫

ν2 dξ = 1. Then J(f1, f2) = 0 if and
only if there exists u ∈ R such that f1 = f2 = χ(u, ·).

This means that J(f1, f2) specifies the distance between f1 and f2 and whether
those functions are χ-functions.

Proof. If J(f1, f2) = 0, since f1, f2 are valued in [−1, 1], f1 = f2 and |f1| = f2
1 .

Hence f1 = f2 is valued in {−1, 0, 1}, and there exists u ∈ R such that ν1 = ν2 = δu(ξ).
Since f1 ∈ L1(R), we have f1(ξ) = 0 for |ξ| > |u|. Therefore, integrating (37) leads to
f1 = f2 = χ(u, ·). Conversely, if f1 = f2 = χ(u, ·), then f1 = f2 is valued in {−1, 0, 1}
so J(f1, f2) = 0.

We introduce two solutions f1 and f2 of Problem 3.1 with initial values u0
1, u

0
2

and same layer profile.
Since f1 and f2 are valued in [−1, 1], J(f1, f2) is the sum of three nonnegative

terms. Notice that, since sign(f1) = sign(f2) = sign(ξ), we have the equality:

J(f1, f2) = −2f1f2 + (f1 + f2)sign(ξ). (38)

Let us first show the following proposition which state the equations satisfied by
J(f1, f2) and J(f1, f2).

Proposition 3.1. we have in the sense of distribution:

∂t

∫

HK(x)J(f1, f2) dξ + ∂x

∫

a(ξ)HK(x)J(f1, f2) dξ ≤ 0 (39)

on ] −∞, 0[×]0,+∞[ and on ]0,+∞[×]0,+∞[,

∂y

∫

a(ξ)J(f1, f2) dξ ≤ a0|K(y)|

∫

a(ξ)J(f1, f2) dξ (40)

on ]0, 1[, and:
∫

a(ξ)J(f1(0+), f2(0+)) dξ ≤

∫

a(ξ)J(f1(1−), f2(1−)) dξ
∫

a(ξ)J(f1(0−), f2(0−)) dξ ≥

∫

a(ξ)J(f1(0+), f2(0+)) dξ.

(41)

for t ∈]0,+∞[.

Proof. We can write from (38) (see [14] for a justification):

∂tJ(f1, f2) = (sign(ξ) − 2f1)∂tf2 + (sign(ξ) − 2f2)∂tf1,

∂xJ(f1, f2) = (sign(ξ) − 2f1)∂xf2 + (sign(ξ) − 2f2)∂xf1.

Since HK(x) is constant on ]0,+∞[ and on ] −∞, 0[, from (31) we find:

∂

∂t
{HK(x)J(f1, f2)} + a(ξ)

∂

∂x
{HK(x)J(f1, f2)}

= HK(x) [(sign(ξ) − 2f1)∂ξm2 + (sign(ξ) − 2f2)∂ξm1] ,

on ]0,+∞[×]0,+∞[×R and on ]−∞, 0[×]0,+∞[×R. Then, integrating with respect
to ξ and noticing that ∂ξ(sign(ξ) − 2f) = 2ν ≥ 0, it follows:

∂t
∫

HK(x)J(f1, f2) dξ + ∂x
∫

a(ξ)HK(x)J(f1, f2) dξ
= −2HK(x)

∫

(ν1m2 + ν2m1) dξ ≤ 0
(42)



300 A. VASSEUR

on ] − ∞, 0[×]0,+∞[×R and on ]0,+∞[×]0,+∞[×R in the sense of distribution.
Notice that this inequality can be rigourously obtained using regularization as in [14].
In the same way, we write:

∂yJ(f1, f2) = (sign(ξ) − 2f1)∂yf2 + (sign(ξ) − 2f2)∂yf1

∂ξJ(f1, f2) = (sign(ξ) − 2f1)
[

∂ξf2 − δ0(ξ)
]

+(sign(ξ) − 2f2)
[

∂ξf1 − δ0(ξ)
]

since ∂ξJ(f1, f2) = −(1/2)∂ξ
[

(2f1 − sign(ξ))(2f2 − sign(ξ))
]

. And so, we find on
]0, 1[×]0,+∞[:

∂y

∫

a(ξ)J(f1, f2) dξ +K(y)

∫

B′(ξ)J(f1, f2) dξ

= −2

∫

(ν1m2 + ν2m1) dξ ≤ 0.

Since a(ξ) ≥ 0 and a0 = Sup|B′/a| this leads to:

∂y

∫

a(ξ)J(f1, f2) dξ ≤ a0|K(y)|

∫

a(ξ)J(f1, f2) dξ.

We set f(0−) for f(0−, ·, ·) and f(0+) for f(0+, ·, ·). The expression (38) of
J(f1, f2) leads to:

J(f1(0−), f2(0−)) − J(f1(0+), f2(0+))

= [sign(ξ) − 2f1(0−)][f2(0−) − f2(0+)]

+[sign(ξ) − 2f2(0+)][f1(0−) − f1(0+)].

So, from (33) we get:

∫

a(ξ)J(f1(0−), f2(0−)) dξ −

∫

a(ξ)J(f1(0+), f2(0+)) dξ

= 2

∫

(ν1(0+)m2l + ν2(0−)m1l) dξ

≥ 0.

Doing the same thing at the interface y = 1 − /x = 0+, we find:

∫

a(ξ)J(f1(0+), f2(0+)) dξ ≤

∫

a(ξ)J(f1(1−), f2(1−)) dξ.

Since J is nonlinear, we need to show that the traces at x = 0+, 0−, y = 0+, 1− are
strongly reached by L1

loc convergence. Assume at this stage the following proposition
(proved in (ii)).

Proposition 3.2. Let f be solution of Problem 3.1. Then f(0+, ·, ·), f(0−, ·, ·),
f(0+, ·, ·) and f(1−, ·, ·) are strongly reached by L1

loc convergence.
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Then integrating (39) on ]0,+∞[ and ] −∞, 0[ and (40) on ]0, 1[ gives:

d

dt

∫ 0

−∞

∫

R

HK(x)J(f1, f2) dξ dx ≤ −HK(0−)

∫

R

a(ξ)J(f1(0−), f2(0−)) dξ,

d

dt

∫ +∞

0

∫

R

HK(x)J(f1, f2) dξ dx ≤ HK(0+)

∫

R

a(ξ)J(f1(0+), f2(0+)) dξ,

∫

a(ξ)J(f1(1−), f2(1−)) dξ ≤ exp(a0

∫ 1

0

|K(z)| dz)

∫

a(ξ)J(f1(0+), f2(0+)).

Notice that HK(0−) = exp(a0

∫ 1

0
|K(z)| dz), HK(0+) = 1. So, summing the two first

inqualities and using the third one with (41) leads to:

d

dt

∫ +∞

−∞

∫

R

HK(x)J(f1, f2) dξ dx ≤ 0. (43)

Since f1(x, 0+, ξ) = f2(x, 0+, ξ) are χ-function, thanks to Lemma 3.1, the initial
values are strongly reached by L1 convergence. So, for almost every t ≥ 0:

[
∫

HK(x)J(f1, f2) dξ dx

]

(t) ≤

∫

HK(x)J(χ(u0
1, ·), χ(u0

2, ·)) dξ dx.

If u0
1 = u0

2 then Lemma 3.3 ensures that J(f1, f2) = 0 almost everywhere, and so
f1(t, x, ξ) = f2(t, x, ξ) = χ(u(t, x), ξ). Theorem 3.1 implies that u is the unique
solution of Problem 2.1 with initial value u0 and layer profile K. Now if u0

1 6= u0
2,

since f1 and f2 are χ-functions we have:

J(f1, f2) = |f1 − f2| = 1{v betweenu1 and u2}

and so:
∫

J(f1, f2) dξ = |u1(t, x) − u2(t, x)|.

Then equation (43) is equivalent to:

d

dt

∫

R

HK(x)|u1(x, t) − u2(x, t)| dx ≤ 0, (44)

for every u1, u2 solution of Problem 2.1.
(ii) Proof of Proposition 3.2.
Study on x ∈] −∞, 0[.

We choose nonincreasing functions φη(x), φη(x) = 1 for x < −η, φη(x) = 0 for
x > −η/2. We find from (39) (with f1 = f2 = f):

d

dt

∫

HK(x)φη(x)J(f, f) dξ dx

≤

∫

a(ξ)HK(x)φ′η(x)J(f, f) dx dξ ≤ 0,

since a(ξ) ≥ 0. So passing to the limit when η goes to 0 we find:

d

dt

∫ 0

−∞

∫

R

HK(x)J(f, f) dξ dx ≤ 0. (45)
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Thanks to Lemma 3.1 and (33), the initial data is reached by L1
loc convergence. So

using (45), we find that J(f, f) = 2(|f | − f2) = 0 for almost every (x, t, ξ) ∈] −
∞, 0[×]0,+∞[×R (since J(f(x, 0+, t), f(x, 0+, t)) = 0). Lemma 3.3 ensures that
there exists a function u ∈ L∞(] −∞, 0[×]0,+∞[) such that f(x, t, ξ) = χ(u(x, t), ξ).
So, from Theorem 3.1 and (31), u is solution of (6),(12) and thanks to Theorem 2.2,
u(0−, t) is strongly reached by L1

loc convergence and so it is the same for f(0−, t, ξ).
In particular J(f(0−), f(0−)) = 0.
Study at the interface x = 0 − /y = 0+.

From (41) we find:

∫

a(ξ)J(f(0+), f(0+)) dξ ≤

∫

a(ξ)J(f(0−), f(0−)) dξ = 0.

But a(ξ) > 0, so J(f(0+, t, ξ), f(0+, t, ξ)) = 0 for almost every (t, ξ) ∈]0,+∞[×R.
As before we conclude that f(0+, ·, ·) is a χ-function thanks to Lemma 3.3 and from
Lemma 3.1, that f(0+, ·, ·) is reached by L1

loc convergence.
Study on ]0, 1[.

Since f(0+, ·, ·) is reached by L1
loc convergence, from (40), we get for almost every

y:

∫

a(ξ)J(f, f) dξ

∣

∣

∣

∣

y

≤ exp(a0

∫ y

0

|K(z)| dz)

∫

a(ξ)J(f, f) dξ

∣

∣

∣

∣

y=0

≤ 0. (46)

So thanks to Lemma 3.3 there exists u ∈ L∞(]0, 1[×]0,+∞[) such that f(y, t, ξ) =
χ(u(y, t), ξ). So, from Theorem 3.1 and (32), u is solution of (8), (14). From (8) we
see that the trace of A(u) at y = 1− is strongly reached in L1

loc. This implies that
u(1−, t) is strongly reached by L1

loc convergence since A is one-to-one (A′ > 0). Hence
the same holds true for f(1−, t, ξ). In particular J(f(1−), f(1−)) = 0.
Study at the interface x = 0 + /y = 1−.

From (41) we find:

∫

a(ξ)J(f(0+), f(0+)) dξ ≤ 0. (47)

As above we conclude that f(0+, t, ξ) is reached by L1 convergence.

(iii) Existence of the solution
Let us consider uǫ solution of (1) (2)(4) with Zǫ satisfying (3). We assume in

addition that u0
ǫ converges strongly to u0 in L∞(R). We set:

χǫ(x, t, ξ) = χ(uǫ(x, t), ξ), x ∈ R, t ≥ 0, ξ ∈ R.

From Theorem 3.1 and equations (1) (4), there exists a nonnegative measure mǫ such
that:

∂tχǫ + a(ξ)∂xχǫ − Zǫ(x)B(ξ) [∂ξχǫ − δ0(ξ)] = ∂ξmǫ. (48)

We denote

Lǫ = ‖u0
ǫ‖L∞ + b0

∫

R

|Zǫ(y)| dy.



SCALAR CONSERVATION LAWS WITH SINGULAR SOURCES 303

Notice that Lǫ converges to

L0 = ‖u0‖L∞ + b0

∫ 1

0

|K(y)| dy.

Let us show that χǫ is supported in [−Lǫ, Lǫ] with respect to ξ. Consider

ψǫ(x, ξ) = 1{ξ≥‖u0
ǫ‖L∞} for x ≤ 0,

= 1{ξ≥‖u0
ǫ‖L∞+b0

∫

x

0
|Zǫ(y)| dy} for x ≥ 0.

We have

∂ξψǫ ≥ 0

∂xψǫ + b0|Zǫ(x)|∂ξψǫ = 0.

By definition to b0:

A′(ξ)b0|Zǫ(x)| ≥ −B′(ξ)Zǫ(x),

so

a(ξ)∂xψǫ −B′(ξ)Zǫ(x)∂ξψǫ ≤ 0.

Notice that ψǫχǫ ≥ 0 since χǫ ≥ 0 for ξ ≥ 0. So

∂t(ψǫχǫ) + a(ξ)∂x(ψǫχǫ) −B(ξ)Zǫ(x)∂ξ(ψǫχǫ) − ∂ξ(ψǫmǫ) + (∂ξψǫ)mǫ

= [a(ξ)∂xψǫ −B(ξ)Zǫ(x)∂ξψǫ]χǫ

≤ 0.

Notice that −
∫

∂ξψǫ dmǫ ≤ 0, so Gronwall Lemma yields:
∫

ψǫ(x, ξ)χǫ(x, t, ξ) dx dξ ≤

(
∫

ψǫ(x, ξ)χ(u0
ǫ(x), ξ) dx dξ

)

exp(‖B′Zǫ‖L∞t) = 0,

which leads to χǫ(x, t, ξ) = 0 for ξ ≥ sup
(

‖u0
ǫ‖L∞ , ‖u

0
ǫ‖L∞ +

∫ x

0
|Zǫ(y)| dy

)

. In the
same way we find that −ψǫ(x,−ξ)χǫ ≥ 0 and

∫

−ψǫ(x,−ξ)χǫ(t, x, ξ) dx dξ ≤ 0.

Hence χǫ(x, t, ξ) = 0 for ξ ≤ inf
(

−‖u0
ǫ‖L∞ ,−‖u0

ǫ‖L∞ −
∫ x

0
|Zǫ(y)| dy

)

. Finally χǫ is
supported in [−Lǫ, Lǫ] with respect to ξ.

For every nonnegative regular function φ compactly supported in R×R
+ we have:

∫

φ(x, t) dmǫ(x, t, ξ) =

∫

∂tφ(x, t)χǫ dt dx dξ

+

∫

∂xφ(x, t)ξa(ξ)χǫ dt dx dξ

−

∫

φ(x, t)∂ξ(ξB(ξ))Zǫ(x)χǫ dt dx dξ

≤ 2|Lǫ|‖φ‖W 1,1(R+×R) sup
[−Lǫ,Lǫ]

(|ξ| + |ξa(ξ)|)

+2|Lǫ|‖φ‖L∞

∫ 1

0

|Zǫ(x)| dx sup
[−Lǫ,Lǫ]

|∂ξ(ξB(ξ))|

≤ C(φ).
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Therefore mǫ is locally bounded, uniformly with respect to ǫ.
We set:

fǫ(x, t, ξ) = χ(uǫ(x, t), ξ) for x ∈] −∞, 0[, t ≥ 0, ξ ∈ R

fǫ(x, t, ξ) = χ(uǫ(x+ ǫ, t), ξ) for x ∈]0,+∞[, t ≥ 0, ξ ∈ R

f ǫ(y, t, ξ) = χ(uǫ(ǫy, t), ξ) fory ∈]0, 1[, t ≥ 0, ξ ∈ R.

Since Zǫ(x) = 0 for x /∈]0, ǫ[ we have:

∂fǫ
∂t

+ a(ξ)
∂fǫ
∂x

=
∂m1ǫ

∂ξ
x ∈] −∞, 0[, t ∈]0,+∞[, ξ ∈ R (49)

∂fǫ
∂t

+ a(ξ)
∂fǫ
∂x

=
∂m2ǫ

∂ξ
x ∈]0,+∞[, t ∈]0,+∞[, ξ ∈ R, (50)

and:

ǫ∂tf ǫ+a(ξ)∂yf ǫ−ǫZǫ(ǫy)B(ξ)
[

∂ξf ǫ − δ0(ξ)
]

= ∂ξmǫ, y ∈]0, 1[, t ≥ 0, ξ ∈ R, (51)

where m1ǫ (respectively m2ǫ mǫ) is the restriction of mǫ to x ∈]−∞, 0[ (respectively
]ǫ,+∞[, ]0, ǫ[). Since fǫ, f ǫ are χ-functions, there exist nonnegative measures, νǫ, νǫ
such that:

∫

νǫ(x, t, ξ) dξ = 1, (52)

∫

νǫ(y, t, ξ) dξ = 1, (53)

∂f ǫ
∂ξ

(y, t, ξ) = δ0(ξ) − νǫ(y, t, ξ), (54)

∂fǫ
∂ξ

(x, t, ξ) = δ0(ξ) − νǫ(x, t, ξ). (55)

Thanks to Theorem 2.2, uǫ(x, 0+) is reached by L1
loc convergence so:

fǫ(x, 0+, ξ) = χ(uǫ(x, 0+), ξ) x ∈ R, ξ ∈ R. (56)

Finally we have:

a(ξ)f ǫ(0+, t, ξ) = a(ξ)fǫ(0−, t, ξ) + ∂ξmlǫ t ∈]0,+∞[ ξ ∈ R, (57)

a(ξ)fǫ(0+, t, ξ) = a(ξ)f ǫ(1−, t, ξ) + ∂ξmrǫ t ∈]0,+∞[ ξ ∈ R, (58)

where for every T,R > 0:

mlǫ([0, T ] × [−R,R]) = mǫ({0} × [0, T ] × [−R,R]),

mrǫ([0, T ] × [−R,R]) = mǫ({ǫ} × [0, T ] × [−R,R]).

Equation (57) can be obtained multiplying equation (48) by θη(x) and letting η going
to 0 where θ′(x) is an odd function and for x ≥ 0 θ′η(x) = ρη(x) with ρη is a classical
mollifier. We obtain equation (58) in the same way.

There exist a sequence ǫn → 0 functions f ∈ L∞(R×]0,+∞[×R), f ∈
(]0, 1[×]0,+∞[×R), supported in [−L0, L0] with respect to ξ. nonnegative measures
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m1 ∈ M(] −∞, 0[× ]0,+∞[×R), m2 ∈ M(]0,+∞[×]0,+∞[×R), and m ∈ M]0, 1[×
]0,+∞[×R) such that:

lim
n→+∞

fǫn = f in L∞W∗,

lim
n→+∞

f ǫn = f in L∞W∗,

lim
n→+∞

m1ǫn = m1 in M(] −∞, 0[×]0,+∞[×R),

lim
n→+∞

m2ǫn = m2 in M(]0,+∞[×]0,+∞[×R),

lim
n→+∞

mǫn = m in M(]0, 1[×]0,+∞[×R).

So there exists two nonnegative measures ν, ν limit of νǫn , νǫn such that:
∫

ν(x, t, ξ) dξ = 1, (59)

∫

ν(y, t, ξ) dξ = 1, (60)

∂f

∂ξ
(y, t, ξ) = δ0(ξ) − ν(y, t, ξ), (61)

∂f

∂ξ
(x, t, ξ) = δ0(ξ) − ν(x, t, ξ). (62)

Since ǫZǫ(ǫ·) converges strongly to K, passing to the limit in (49)(50)(51) gives:

∂f

∂t
+ a(ξ)

∂f

∂x
=
∂m1

∂ξ
x ∈] −∞, 0[, t ∈]0,+∞[, ξ ∈ R, (63)

∂f

∂t
+ a(ξ)

∂f

∂x
=
∂m2

∂ξ
x ∈]0,+∞[, t ∈]0,+∞[, ξ ∈ R, (64)

a(ξ)∂yf −K(y)B(ξ)
[

∂ξf − δ0(ξ)
]

= ∂ξm, y ∈]0, 1[, t ≥ 0, ξ ∈ R. (65)

Thanks to Lemma 3.2 passing to the limit in (57)(58) gives that there exists ml,mr

nonnegative measures such that:

a(ξ)f(0+, t, ξ) = a(ξ)f(0−, t, ξ) + ∂ξml, t ∈]0,+∞[, ξ ∈ R, (66)

a(ξ)f(0+, t, ξ) = a(ξ)f(1−, t, ξ) + ∂ξmr, t ∈]0,+∞[, ξ ∈ R. (67)

Since u0
ǫ converges strongly to u0, χ(u0

ǫ(x), ξ) converges strongly to χ(u0(x), ξ). Using
Lemma 3.2, we find that f(x, 0+, ξ)− χ(u0(x), ξ) = ∂ξm0 where m0 is a nonnegative
measure. So:

∫

ξ
[

f(x, 0+, ξ) − χ(u0(x), ξ)
]

dx dξ = −

∫

m0(dx, dξ) ≤ 0,

−

∫

u0(x)
[

f(x, 0+, ξ) − χ(u0(x), ξ)
]

dx dξ = 0.

(68)

Since

∂ξ(f(x, 0+, ξ) − χ(u0(x), ξ)) = δu0(x)(ξ) − ν(x, 0+, ξ),

summing the two terms of (68) and integrating by parts lead to:

1

2

∫

(ξ − u0(x))2 dν(dx, 0+, dξ) ≤ 0,
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so ν(x, 0+, ξ) = δu0(x)(ξ). Hence f(x, 0+, ·) = χ(u0(x), ·). So f is the unique solution
of Problem 3.1 with initial value u0 and layer profile K. So f(x, t, ξ) = χ(u(x, t), ξ)
where u(x, t) is the unique solution of Problem 2.1 with initial value u0 and layer
profile K. Since the values of sign(ξ)f are 0 or 1, in fact the convergence is strong in
L1

loc. So, since the limit is unique, the entire family fǫ converges to f when ǫ converges
to 0. Finally, since uǫ =

∫

fǫ dξ and u =
∫

f dξ, uǫ converges strongly to u in L1
loc.

(iv) Weak stability.
Consider a sequence u0

n ∈ L∞(R) and u0 ∈ L∞(R) such that u0
n converges weakly

to u0 in L∞∗. We consider fn the solution of Problem 3.1 with a fixed profile K
and initial value u0

n. By weak compactness there exists f ∈ L∞(R×]0,+∞[×R),
f ∈ L∞(]0, 1[×]0,+∞[×R) and a subsequence np such that fnp

and fnp
converge

weakly to f and f in L∞∗ and f ,f are solutions of (31) (32) (33). To ensure that f is
the solution to Problem 3.1 with layer profile K and initial value u0 we have to show
that:

f(x, 0+, ξ) = χ(u0(x), ξ).

We denote u(x, t) =
∫

f(x, t, ξ) dξ and un(x, t) =
∫

fn(x, t, ξ) dξ. Thanks to
Lemma 3.2,

∫

f(x, 0+, ξ) dξ = u0(x). So we have u(x, 0+) = u0(x). Using the
averaging lemmas (see [15]) on (]−∞, 0[×]0,+∞[×R) and on (]0,+∞[×]0,+∞[×R),
we find that un converges strongly to u in L1

loc. But un verifies (6)(12) on
(]−∞, 0[×]0,+∞[×R) and on (]0,+∞[×]0,+∞[×R). So passing to the limit u verifies
the same equation and thanks to Theorem 2.2 u(x, 0+) is reached by L1

loc convergence.
Moreover f(x, t, ξ) = χ(u(x, t), ξ) and so f(x, 0+, ξ) = χ(u0(x), ξ).

4. Equivalence between gap and layer problems. We show in this sec-
tion the following proposition which implies the equivalence between gap and layer
problems.

Proposition 4.1. We assume that A ∈ C3(R) A′′ > 0, A′ ≥ 0 and Φ is
one-to-one. For u0 ∈ L∞ ∩ L1(R) and λ ∈ R there exists a unique solution to
Problem 2.2. Moreover it coincides with the solution to the Problem 2.1 with layer

profile K whenever
∫ 1

0
K(y) dy = λ. In particular, two solutions u1, u2 verify for

every t ∈]0,+∞[ and every such layer profile K
∫ +∞

−∞

HK(x)|u1(x, t) − u2(x, t)| dx ≤

∫ +∞

−∞

HK(x)|u0
1(x) − u0

2(x)| dx.

This proposition is a consequence of the following Lemma:

Lemma 4.1. Assume that A′ > 0 and Φ is one-to-one. For every u0 ∈ R and
K ∈ L1(]0, 1[) we define u ∈ L∞(]0, 1[) by:

Φ(u(y)) +

∫ y

0

K(z) dz = Φ(u0).

Then χ(u(y), ξ) is the unique function f ∈ L∞(]0, 1[×R) such that there exists a
nonnegative measure ν with

∫

ν dξ = 1 and a nonnegative measure m such that

f(0+, ξ) = χ(u0, ξ) (69)

0 ≤ sign(ξ)f(y, ξ) ≤ 1 (70)

∂ξf = δ0(ξ) − ν(y, ξ) (71)

a(ξ)∂yf −K(y)B(ξ)
[

∂ξf − δ0(ξ)
]

= ∂ξm on ]0, 1[×R. (72)
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We first prove this Lemma:

Proof. The function χ(u(y), ξ) is constant on the characteristics Φ(ξ) +
∫ y

0
K(z) dz = Cst, so it is solution of the Problem with m = 0. Next, assume that

there are two solutions of this problem f1, f2. As in the proof of Theorem 3.2 we show
that

∂y

∫

R

a(ξ)J(f1, f2) dξ +K(y)

∫

R

B′(ξ)J(f1, f2) dξ ≤ 0.

Since the initial value is a χ-function, thanks to Lemma 3.1 the initial value is reached
by L1

loc convergence so for every y ∈]0, 1[:

∫

R

a(ξ)J(f1, f2) dξ

∣

∣

∣

∣

y

≤ exp(a0

∫ y

0

|K|(z) dz)

∫

R

a(ξ)J(f1, f2) dξ

∣

∣

∣

∣

0

= 0.

So χ(u(y, ξ) is the unique solution.

Now we can show the Proposition 4.1:

Proof. Consider the solution of Problem 2.1 with initial value u0 and layer Profile

K such that
∫ 1

0
K(y) dy = λ. Thanks to Theorem 3.2, f(x, t, ξ) = χ(u(x, t), ξ) is

solution of the Problem 3.1 and we have seen in its demonstration that f(0+, t, ξ) =
χ(u(0−, t), ξ) for almost every t ∈]0,+∞[. So using the above lemma we find that for
almost every t,

f(y, t, ξ) = χ(u(y, t), ξ),

where

Φ(u(y, t)) +

∫ y

0

K(z) dz = Φ(u(0−, t)).

Finally u(1−, t) = u(0+, t), so u is solution of Problem 2.2.
Conversely, if u is solution of Problem 2.2 then we introduce f(x, t, ξ) =

χ(u(x, t), ξ), f(y, t, ξ) = χ(u(y, t), ξ), with

Φ(u(y, t)) +

∫ y

0

K(z) dz = Φ(u(0−, t)).

It is easy to see that f is solution of Problem 3.1 and so u is solution of Problem 2.1.

5. Ill-posedness when A is not monotonic. In this section we give the proof
of Theorem 2.3. This result shows that if the sign of a(ξ) is not constant then we
cannot define a well-posed limit problem considering only the limit initial value since
the result depends on the value of the initial value in the layer x ∈]0, ǫ[.

Proof. Since 0 < A′/B ≤ C we can define the function Φ on ]u0 − η, u0 + η[ by:

Φ(u) =

∫ u

u0

A′

B
(v) dv, (73)
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and this function is increasing (and so one-to-one). Hence, for every 0 < λ <
inf(|Φ(u0 + η)|; |Φ(u0 − η)|) we can define u0

ǫ , v
0
ǫ ∈ L∞(R):

u0
ǫ(x) =











u0 on R\]0, ǫ[

Φ−1(Φ(u0) +

∫ x

0

Zǫ,λ(y) dy) on ]0, ǫ[,

v0
ǫ (x) =











u0 on R\]0, ǫ[

Φ−1(Φ(u0) +

∫ x

0

Zǫ,λ(y) dy − λ) on ]0, ǫ[.

Notice that u0
ǫ > u0 and v0

ǫ < u0 on ]0, ǫ[. So u1 = u0
ǫ(ǫ−) = Φ−1(Φ(u0)+λ) > u0 and

v1 = v0
ǫ (0+) = Φ−1(Φ(u0)− λ) < u0. The function u0

ǫ is regular on ]−∞, ǫ[∪]ǫ,+∞[
and verifies on those intervals:

A′(u0
ǫ)∂xu

0
ǫ − Zǫ,λ(x)B(u0

ǫ) = 0.

It has a discontinuity at x = ǫ with:

u0
ǫ(ǫ−) = u1 > u0

σ1 =
A(u1) −A(u0)

u1 − u0
> 0.

So the solution uǫ(x, t) of (25) with initial value u0
ǫ has a shock with speed σ1 and is

defined by:

uǫ(x, t) = u0
ǫ(x) on ] −∞, ǫ[

= u1 on ]ǫ, σ1t[

= u0 on ]σ1t,+∞[.

In the same way we see that v0
ǫ is regular on ] − ∞, 0[∪]0,+∞[ and is a stationary

solution on those two intervals. It has a discontinuity at x = 0 with:

v0
ǫ (0+) = v1 < u0

σ2 =
A(v1) −A(u0)

v1 − u0
< 0.

So the solution vǫ(x, t) of (25) with initial value v0
ǫ has a shock with speed σ2 and is

defined by :

vǫ(x, t) = v0
ǫ (x) on ]0,+∞[

= v1 on ]σ2t, 0[

= u0 on ] −∞, σ2t[.

Passing to the limit when ǫ goes to 0, we find that u0
ǫ and v0

ǫ converge strongly in
L1 to the constant function equal to u0 and that vǫ and uǫ converge strongly in L1

respectively to the function u and v defined by:

u(x, t) = u0 on ] −∞, 0[∪]σ1t,+∞[

= u1 on ]0, σ1t[

v(x, t) = u0 on ] −∞, σ2t[∪]0,+∞[

= v1 on ]σ2t, 0[.
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It is clear that u 6= v.

Appendix A. Proof of Lemma 3.1.

Proof. Since b is regular, b(ξ)f ∈ L∞
loc. For every φ ∈ L1(I2 × R) with compact

support we set:

Fφ(y1) =

∫

I2

∫

R

b(ξ)f(y1, y2, ξ)φ(y2, ξ) dξ dy2.

Let {φn} be a dense countable collection of regular compactly supported functions in
L1

loc(I2 ×R). From (34), Fφn
lies in BVloc(I1) for every n and so has a left-hand-side

limit and a right-hand-side limit at every point. At the endpoint α, we denote this
(right or left) limit by:

Fφn
(α±).

Since {φn} is countable, there exists a measurable set Ω ⊂ I1 such that L(I1 \Ω) = 0
and such that:

lim
y1→α,y1∈Ω

Fφn
(y1) = Fφn

(α±), for every n.

We now consider a sequence yk → α, yk ∈ Ω. Since we have |f(yk, ·, ·)| ≤ 1, there
exists a subsequence still denoted yk and a function h ∈ L∞(I2×R) such that f(yk, ·, ·)
converges weakly to h in L∞∗, namely, for every φ ∈ L1(I2 × R):

lim
yk→y1

∫

f(yk, y2, ξ)φ(y2, ξ) dy2 dξ =

∫

h(y2, ξ)φ(y2, ξ) dy2 dξ.

Especially for every n we deduce that:
∫

b(ξ)h(y2, ξ)φn(y2, ξ) dy2 dξ = Fφn
(α±).

Since {φn} is dense in L1
loc(I2 × R) and b(ξ) 6= 0 for almost every ξ, this defines a

unique function h, |h| ≤ 1, which we denote f(α, ·, ·) and which does not depend on
the sequence yk. This proves the first statement of the Lemma. Next, assume there
exists a function u(α, ·) ∈ L∞(I2) such that f(α, y2, ξ) = χ(u(α, y2), ξ). First we have:

f2(y1, ·, ·) − f2(α, ·, ·) = (f(y1) − f(α))2 + 2f(α)(f(y1) − f(α)),

and since f(y1, ·, ·) converges weakly to f(α, ·, ·) we have for every R > 0:

lim
y1→0

∫ R

−R

∫ R

−R

f2(y1, y2, ξ) dy2 dξ

≥

∫ R

−R

∫ R

−R

f2(α, y2, ξ) dy2 dξ.

but the first term is less that
∫

sign(ξ)f(y1, y2, ξ) dy1 dξ since 0 ≤ sign(ξ)f ≤ 1. This
converges to

∫

sign(ξ)f(α) dy2 dξ which is equal to the second term since f(α, ·, ·) is
a χ-function. So finally,

lim
y1→0

‖f(y1, ·, ·)‖L2
loc

= ‖f(α, ·, ·)‖L2
loc
.
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and since f(y1, ·, ·) converges to f(α, ·, ·) weakly in L2
loc, the convergence is also strong.

Appendix B. Proof of Lemma 3.2.

Proof. Consider the case when α is a left end point of I (the proof is similar for
right end point). Choose β > α such that ]α, β[⊂ I. First, since ‖fn(α, ·, ·)‖L∞ ≤ 1,
there exists a subsequence (still denoted fn) and a function h ∈ L∞(]0,+∞[×R) such
that fn(α, ·, ·) converges to h in L∞ w∗. For every regular function ψ(x) with support
in [α, β[ and every regular function φ(t, ξ) compactly supported we set:

λφ,ψn = ψ(α)

∫ +∞

0

∫ +∞

−∞

a(ξ)φ(t, ξ)fn(α, t, ξ) dξ dt

λφ,ψ = ψ(α)

∫ +∞

0

∫ +∞

−∞

a(ξ)φ(t, ξ)h(t, ξ) dξ dt.

The sequence λφ,ψn converges to λφ,ψ when n tends to +∞. Moreover we have from
(35):

λφ,ψn = −

∫ β

α

∫ +∞

0

∫

R

ψ′(x)φ(t, ξ)a(ξ)fn(x, t, ξ) dξ dt dx

+

∫

ψ(x)∂ξφ(t, ξ)mn(dt, dx, dξ)

+

∫

ψ(x)∂tφ(t, ξ)g1
n(x, t, ξ) dx dt dξ

−

∫

ψ(x)φ(t, ξ)g2
n(x, t, ξ) dx dt dξ.

Passing to the limit we find:

λφ,ψ = −

∫ β

α

∫ +∞

0

∫

R

ψ′(x)φ(t, ξ)a(ξ)f(x, t, ξ) dξ dt dx

+

∫

ψ(x)∂ξφ(t, ξ)m(dt, dx, dξ)

+

∫

ψ(x)∂tφ(t, ξ)g1(x, t, ξ) dx dt dξ

−

∫

ψ(x)φ(t, ξ)g2(x, t, ξ) dx dt dξ.

This expression characterize h in a unique way independently of the subsequence.
So the limit is unique and the entire sequence fn converges. By Radon-Nikodým
Theorem we can split m = m̃+ δα(x)mα with m̃⊥δα(x) where mα ∈ M(]0,+∞[×R)
and m̃ can be seen has a measure on I×]0,+∞[×R. Passing to the limit in (35) we
find:

a(ξ)∂xf = ∂ξm̃+ ∂tg1 + g2, x ∈ I, t > 0, ξ ∈ R.
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Then multiplying by φ(t, ξ)ψ(x) and integrating we have:
∫

a(ξ)f(α, t, ξ)φ(t, ξ)ψ(α) dt dξ

= −

∫ β

α

∫ +∞

0

∫

R

ψ′(x)φ(t, ξ)a(ξ)f(x, t, ξ) dx dt dξ

+

∫

ψ(x)∂ξφ(t, ξ)m̃(dt, dx, dξ)

+

∫

ψ(x)∂tφ(t, ξ)g1(x, t, ξ) dx dt dξ

−

∫

ψ(x)φ(t, ξ)g2(x, t, ξ) dx dt dξ.

This leads to:
∫

a(ξ)f(α, t, ξ)φ(t, ξ) dt dξ

=

∫

a(ξ)h(t, ξ)φ(t, ξ) dt dξ −

∫

∂ξφ(t, ξ)mα(dt, dξ).
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