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A CLASS OF THE QUASILINEAR PARABOLIC SYSTEMS ARISING
IN POPULATION DYNAMICS ∗

YANG WANLI†

Abstract. This paper,using the duality technique and Hölder’s inequality, proves the global ex-
istence of solutions for the quasilinear parabolic systems with Cross-diffusion effects and compectition
interaction on any smooth bounded domain in R

2.

1. Introduction. The purpose of the present paper is to study the existence
and uniqueness of W 2,1

p valued solutions for quasilinear parabolic systems arising in
population dynamics as























ut = △ (a1u + duv) + uF (u, v), (x, t) ∈ Ω × (0,∞).
vt = △ (a2v) + vG(u, v), (x, t) ∈ Ω × (0,∞).
δu + (1 − δ)uγ = 0, (x, t) ∈ ∂Ω × (0,∞).
δv + (1 − δ)vγ = 0, (x, t) ∈ ∂Ω × (0,∞).
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.1)

Here, Ω is a bounded domain in R2 with smooth boundary ∂Ω ; ai(i = 1, 2), d are
positive constants; F,G are given C1−functions;δ ∈ {0, 1}; γ denoting the outer unit
normal on ∂Ω; u0 and v0are initial functions which are assumed to satisfy

{

u0, v0 ∈ H1+ε(Ω) for some 0 < ε < 1;
u0(x), v0(x) ≥ 0, ∀x ∈ Ω;

(H0).

This systems has been introduced by Shigesada et al.[1] as a model of two com-
petitive species which are interacting each other and migrating under self and cross-
diffusion effects. The unknown functions u and v denote the population densities of
the two species at time t and position x ∈ Ω. The two boundary conditions show that
the flow of an individual is tangential on the boundary ∂Ω.

Masuda and Mimura (cf. [2]) proved, for the first time, global existence of a
solution in the case that Φ ≡ 0 and Ω ⊂ R 1.

Yagi [3] studied the following systems.































ut = div{∇[(α1 + α11u + α12v)u]
+β1u∇Φ} + c1u − γ11u

2 − γ12uv, in Ω × (0,∞),
vt = div{∇[(α2 + α21u + α22v)v]

+β2v∇Φ} + c2v − γ21uv − γ22v
2, in Ω × (0,∞),

[(α1 + α11u + α12v)u]γ + β1uΦγ = 0, on ∂Ω × (0,∞),
[(α2 + α21u + α22v)v]γ + β2vΦγ = 0, on ∂Ω × (0,∞),

(1.2)

where αi(i = 1, 2) are positive constants,αij ,γij and βi ,ci(i, j = 1, 2) are non-
negative constants . Φ is the C1−function; In the case, global existence results are
shown when one of the following conditions holds:
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(1) 0 < α21 < 8α11 and 0 < α12 < 8α22;
(2) α11 > 0, α21 = α22 = 0.

We should note that the situation is quite different from our problem where
α11 = α21 = 0.

In [4], Redinger given the global existence of the solution for the system (1.1)
under the following assumption conditions















(1)F (u, v) ≡ e1 − h(u) − d1v, G(u, v) ≡ e2 − d2u − b2v;
(2)h ∈ C2(R,R), and, lim inf h(s)�sν > 0.

for some ν > 1.

where the ei, di and b2 are positive constants .

(1.3)

In this present paper, our main result can be stated as following

Theorem. Assume u0 and v0 satisfy (H0),and, F (u, v), G(u, v) to have the fol-
lowing properties:







(1)F (u, v) ≡ e1 − h(u) − d1v, G(u, v) ≡ e2 − d2u − b2v;
(2)h ∈ C2(R,R), and, h(s) ≥ A0s.

where the ei, di ,A0and b2 are positive constants .
(1.4)

Then, systems (1.1) has a unique global solution.

To prove this result , we will work in the framework of Lp and W 2,1
p and employ

the Lp-requarity theory for the linear parabolic equations. Our basic tools, which help
us to derive some a priori estimates, are the duality technique and the Gronwall’s
inequality.

Notation: (see [5][8])
QT = Ω × [0, T ].

Lp(Ω) is the Banach space consisting of all measurable functions on Ω that are p

th-power(p ≥ 1) summable on Ω. The norm in it is defined by the equations

‖u‖p,Ω = (

∫

Ω

|u(x)|
p
dx)

1
p and ‖u‖∞,Ω = vrimax |u| .

W 2,1
p (QT )(p ≥ 1) is the Banach space consisting of the elements of Lp(QT ) having

generalized derivatives of the form Dr
t D

s
x with r and s satisfying the inequality 2r+s ≤

2. The norm in it is defined by the equality

‖u‖
(2)
p,QT

=
∑

2r+s≤2

‖Dr
t D

s
xu‖p,QT

.
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2. Preliminaries.

2.1. Existence and uniqueness of local solutions. A local existence result
for (1.1) is given by the following theorem (see Amann [6],Yagi [7]).

Lemma 2.1. Suppose that u0 and v0 satisfy (H0), then, there exists a positive
constant T ∗ such that (1.1) has a unique nonnegative solution (u, v), s.t.: ∀ 0 < T <

T ∗,

u, v ∈ C((0, T ];H2(Ω)) ∩ C1((0, T ];L2(Ω)).

2.2. The (backward) adjoint equation. In order to use a duality technique
to obtain estimates on (u, v) in W 2,1

p (QT )(p ≥ 1), we need estimates on the solution
χ of the (backward) adjoint equation







χt + a0△χ + θ = 0 , in QT ,

χγ = 0, on ∂Ω × (0, T ),
χ(·, T ) = 0, in Ω.

(2.1)

where θ ∈ Lp(QT )(q = p
p−1 ), θ ≥ 0; a0 ∈ C0,λ(QT ) for some λ > 0,and, there

exists a constant µ0,s.t.:

a0(x, t) ≥ µ0, for all (x, t) ∈ QT (2.2)

We now state some well-known Lp-regularity results for (2.1).

Lemma 2.2. The adjoint equation (2.1) has a unique solution χ ∈ W 2,1
p (QT )

with χ ≥ 0. If ‖θ‖q,QT
= 1, then there exists a constant C = C(p, T ) independent of

θ, and, is continue to T , such that ‖χ‖
(2)
q,QT

≤ C. Furthermore, C can be chosen so
that

{

(i) If p > 2, then ‖χ‖4q�(4−q),QT
≤ C, and, ‖∇χ‖4q�(4−q),QT

≤ C,

(ii) ‖χ(·, 0)‖q,Ω ≤ C.
(2.3)

Proof. From [4](Theorem IV.9.1), there is a constant C0(p) independent T, such
that

‖χ‖
(2)
q,QT

≤ C0(p)‖θ‖q,QT
= C0(p).

Furthermore, there is a constant C1(p) independent T. such that

‖divχ‖
q∗,QT

≤ C1(p)‖χ‖
(2)
q,QT

,

where q∗ = 4q�(4 − q)(see [4] lemma II 3.3).
Therefore, it follows that (2.3)(i) holds.
The same is true for (2.3)(ii) due again to [4] (lemma II 3.4).
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3. The estimates for u and v. We note the nonnegativity of u, v follows from
theorem 2.1, and ,denote by T ∗ a maximal existence time of the solution (u, v) to
(1.1)

Lemma 3.1. If T ∗ < ∞, then, under the assumptions (H0) and (1.4), we have
the following estimates

‖v‖∞,QT∗
≤ Const. ‖u‖4,QT∗

≤ Const.

Proof. From the system (1.1),we see that v satisfies







vt ≤ △ (a2v) + e2v − b2v
2, (x, t) ∈ Ω × (0, T ∗).

δv + (1 − δ)vγ = 0, (x, t) ∈ ∂Ω × (0, T ∗).
v(x, 0) = v0(x), x ∈ Ω.

Hence, it follows from the comparison principle that v is bounded from above by
a constant M0.i.e.

‖v‖∞,QT∗
≤ M0 ≡ const. (3.1)

Integrating (1.1)-u equation over QT (0 < T < T ∗), results in

∫

Ω

u(T )dx ≤

∫

Ω

u0(x)dx +

∫ T

0

∫

∂Ω

(a1u + duv)γ (3.2)

+

∫

QT

[e1u − h(u)u]dxdt

≤

∫

Ω

u0(x)dx +

∫ T

0

∫

∂Ω

[(a1 + dv)uγ + duvγ ]

+

∫

QT

(e1u − A0u
2)dxdt,

From the boundary condition of the system (1.1), we have that

∫ T

0

∫

∂Ω

[(a1 + dv)uγ + duvγ ] ≤ 0, (3.3)

Thus, (3.2) becomes that
∫

Ω

u(T )dx +

∫

QT

A0u
2dxdt ≤

∫

Ω

u0(x)dx +

∫

QT

e1udxdt, (3.4)

≤

∫

Ω

u0(x)dx +

∫

QT

e1u
2dxdt,

By use of Gronwall’s inequality, (3.4) implies that

‖u‖2,QT∗

≤ C(u0, T
∗). (3.5)

Thus,

g1(x, t) = v(e2 − d2u − b2v) ∈ L2(QT∗) (3.6)
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and, v solves the following equation







vt = △ (a2v) + g1(x, t), (x, t) ∈ Ω × (0, T ∗);
δv + (1 − δ)vγ = 0, (x, t) ∈ ∂Ω × (0, T ∗);
v(x, 0) = v0(x), x ∈ Ω.

(3.7)

From [4], we have that

v ∈ W
2,1
2 (QT∗),∇v ∈ L4(QT∗), (3.8)

From system (1.1), (3.1),(3.3) and (3.7),we known that u solves the following
equation















ut = h1(x, t)△u + h2(x, t)∇u

+h3(x, t)u + h4(x, t), (x, t) ∈ Ω × (0, T ∗);
δv + (1 − δ)vγ = 0, (x, t) ∈ ∂Ω × (0, T ∗);
u(x, 0) = u0(x), x ∈ Ω.

(3.9)

where,















h1(x, t) ≡ (a1 + dv) ∈ L∞(QT∗)
h2(x, t) ≡ 2d(∇v) ∈ L4(QT∗)
h3(x, t) ≡ d△v + e1 ∈ L2(QT∗)
h4(x, t) ≡ −h(u)u − d1vu ∈ L1(QT∗)

(3.10)

Set,

h∗
4(x, t) ≡ 0.

then,

h4(x, t) ≤ h∗
4(x, t), ∀(x, t) ∈ QT∗

Let u∗ solves the following equation















u∗
t = h1(x, t)△u∗ + h2(x, t)∇u∗

+h3(x, t)u∗ + h∗
4(x, t), ∀(x, t) ∈ Ω × (0, T ∗);

δu∗ + (1 − δ)u∗
γ = 0, (x, t) ∈ ∂Ω × (0, T ∗);

u∗(x, 0) = u0(x), x ∈ Ω.

(3.11)

By use of the comparison principle, we known that

0 ≤ u ≤ u∗, ∀(x, t) ∈ QT∗

From [4] and (3.11),we have that,∀ǫ ∈ (0, 1)

u∗ ∈ W
2,1
2−ǫ(QT∗) ⊂ W 1

2−ǫ(QT∗) ⊂ L3(2−ǫ)/(1+ǫ)(QT∗), (3.12)
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Thus, taking ǫ = 2
7 , we have that

u∗ ∈ L4(QT∗) ⇒ u ∈ L4(QT∗)

Furthermore ,we can also obtain the following estimate for v.

Lemma 3.2. If T ∗ < ∞, then, under the assumptions (H0) and (1.4), there exists
a positive constant λ(T ∗) > 0, s.t.

v ∈ C0,λ(T∗)(QT∗)

Proof. From the Lemma 3.1, we have that

g1(x, t) ≡ e2v − d2uv − b2v
2 ∈ L4(QT∗). (3.13)

Hence, v also solves the following parabolic equation






vt = a2△v + g1(x, t), in QT∗

δv + (1 − δ)vγ = 0, on ∂Ω × (o, T ∗)
v(x, 0) = v0(x), in Ω

(3.14)

From [4] , we have that

v ∈ W
2,1
4 (QT∗) ⊂ W 1

4 (QT∗)

By use the embedding theorem (see [4]), there exists a positive constant λ(T ∗) > 0
(Notice that 4 > N + 1 = 3), s.t.

W 1
4 (QT∗) ⊂ C0,λ(T∗)(QT∗)

We have completed the proof of lemma 3.2

We are now ready to derive an important estimate for u. Our main methods are
the duality technique and the Hölder inequality.

We first give two lemmas.

Lemma 3.3. Under the hypotheses (H0) and (1.4), if T ∗ < ∞, then, for all p > 1,
we have

‖u‖p,QT∗

≤ C(p, T ∗).

Proof. Let ϕ satisfy the following backward equation






ϕt + (a1 + dv)△ϕ + θ = 0 in QT ,

ϕγ = 0 on ∂Ω × (0, T ),
ϕ(·, T ) = 0 in Ω,

(3.15)
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Where, θ ∈ Lq(QT )(q = p
p+1 , p > 2) with θ ≥ 0 and ‖θ‖q,QT

= 1, (u, v) is the

local solution of (1.1) in Ω × [0, T ∗), 0 < T < T ∗.

Multiplying u− equation of (1.1) by ϕ and integrating the product in QT , we
have

∫

QT

ϕutdxdt =

∫

QT

ϕ△[(a1 + dv)u]dxdt +

∫

QT

ϕu[e1 − h(u) − d1v]dxdt, (3.16)

i.e.

−

∫

QT

uϕtdxdt −

∫

Ω

ϕ(·, 0)u0dx (3.17)

≤

∫

∂Ω×(0,.T )

{ϕ[(a1 + dv)u]γ − (a1 + dv)uϕγ}

+

∫

QT

(a1 + dv)u△ϕdxdt +

∫

QT

e1ϕudxdt,

From the lemma 3.2, and the boundary condition of the system (1.1),and (3.15),
we obtain that

∫

QT

θudxdt ≤

∫

Ω

ϕ(·, 0)u0dx +

∫

QT

e1ϕudxdt (3.18)

By lemma 3.1, (3.18) becomes that

∫

QT

θudxdt ≤ C(u0, p, T ) + C(M0, p, T ) ‖u‖4p/(4+p),QT
. (3.19)

We write

H(λ) =
1

1 − λ
[

4p

4 + p
− λp], λ ∈ (0,

4

4 + p
), (3.20)

then

dH(λ)

dλ
=

1

(1 − λ)2
·
−p2

4 + p
< 0,

and

H(
4

4 + p
) = 0, (3.21)

Therefore, there exists λ0, s.t.

H(λ0) ≤ 1, λ0 ∈ (0,
4

4 + p
). (3.22)
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‖u‖4p/(4+p),QT
=

∥

∥

∥
u

4p

4+p
−λ0p+λ0p

∥

∥

∥

(4+p)/4p

1,QT

(3.23)

=
∥

∥

∥
u(1−λ0)H(λ0)uλ0p

∥

∥

∥

(4+p)/4p

1,QT

=
∥

∥

∥
uH(λ0)

∥

∥

∥

(1−λ0)(4+p)/4p

1,QT

‖up‖
λ0(4+p)/4p
1,QT

,

while by lemma 3.1 and (3.23) it is seen that
∥

∥

∥
uH(λ0)

∥

∥

∥

(1−λ0)(4+p)/4p

1,QT

≤ Cp(T
∗), 0 < T < T ∗, (3.24)

where Cp(T
∗) is a positive constant depending on T ∗ and p.

Hence, (3.23) becomes

‖u‖4p/(4+p),QT
≤ Cp(T

∗) ‖up‖
λ0(4+p)/4p
1,QT

, (3.25)

this then shows, in view of (3.25), that we can conclude from (3.19) that
∫

QT

θudxdt ≤ C(u0, p, T ) + C(M0, p, T ) ‖u‖4p/(4+p),QT
(3.26)

≤ C(u0, p, T ) + C(M0, p, T ∗) ‖u‖
λ0(4+p)/4
p,QT

.

From the process of the proof, it is easy to see that we can choose C(u0, p, T )
and C(M0, p, T ∗) are continuous functions depending on T . Therefore, (3.26) can be
written that

∫

QT

θudxdt ≤ C(u0, p, T ∗) + C(M0, p, T ∗) ‖u‖
λ0(4+p)/4
p,QT

. (3.27)

Noting that λ0 ∈ (0, 4
4+p ), θ ∈ Lq(QT ) is arbitrary and θ ≥ 0, then, (3.24) implies

that

‖u‖p,QT
≤ C(u0, p, T ∗),∀0 < T < T ∗. (3.28)

Thus, we can obtain the following estimates for u

‖u‖p,QT∗

≤ C(u0, p, T ∗). (3.29)

We complete the proof.

We now establish the a priori estimates in W 2,1
p (QT∗).

Lemma 3.4. Under the hypotheses of lemma 3.3, we have

u, v ∈ W 2,1
p (QT∗),∀p > 1.

Proof. Because of lemma 3.3, we have that g1(x, t) ∈ Lp(QT∗) (p > 1), and , v

solves the equation (3.14). From [5], we have that

v ∈ W 2,1
p (QT∗),∀p > 1. (3.30)

From u−equation of systems (1.1), we known that u solves equation (3.10). By
use of the lemma 3.3, we have also that

u ∈ W 2,1
p (QT∗), ∀p > 1 (3.31)
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4. The existence of global solutions. Now, we can begin to prove the exis-
tence theorem of global solutions.

Theorem 4.1. Assume that (H0) and (1.4) are satisfied, then, (1.1) has a unique
solution in Ω × (0,∞).

Proof. The proof consists of four steps.

Step 1:
Suppose for contradiction that T ∗ ¡ ∞, from lemma 3.4, it follows that

u, v ∈ W 2,1
p (QT∗),∀p > 1. (4.1)

Now, let us differentiate the u−equation of (1.1) in t, and take the product with
(a1 + dv)ut. Integrating the product on Ω × [δ0,t] with a fixed δ0(0 < δ0 < t < T ∗),
we obtain that

1

2

∫

Ω×[δ0,t]

(a1 + dv) (u2
t )t (4.2)

=

∫

Ω×[δ0,t]

(a1 + dv)ut{∆[(a1 + dv)u]}t

+

∫

Ω×[δ0,t]

(a1 + dv)ut(e1ut − uh′(u)ut − d1vut − duvt).

From (4.1), the last term of (4.2) has the following estimate
∫

Ω×[δ0,t]

(a1 + dv)ut(e1ut − uh′(u)ut − d1vut − duvt) ≤ C(p, T ∗, δ0). (4.3)

We have that the (4.2) becomes that

1

2

∫

Ω×[δ0,t]

(a1 + dv) (u2
t )t (4.4)

≤ C(p, T ∗, δ0) +

∫

∂Ω×[δ0,t]

(a1 + dv)ut[(a1 + dv)uγ + duvγ ]t

−

∫

Ω×[δ0,t]

∇[(a1 + dv)ut]∇[(a1 + dv)u]t

= C(p, T ∗, δ0) +

∫

∂Ω×[δ0,t]

(a1 + dv)ut{(a1 + dv) (uγ)t + dvtuγ + dutvγ + du(vγ)t}

−

∫

Ω×[δ0,t]

[(a1 + dv)∇ut + dut∇v][(a1 + dv)∇ut + dvt∇u + dut∇v + du∇vt].

Next, let us differentiate the second equation in (1.1) in t, and, multiplying by
(1 + u2)vt, and integrating the product in Ω × [δ0, t], we can obtain that

1

2

∫

Ω

(

1 + u2
)

v2
t (t) (4.5)

≤

∫

Ω×[δ0,t]

a2(1 + u2)vt∆vt +

∫

Ω×[δ0,t]

(1 + u2)vt(e2vt − d2uvt − d2vut − 2b2vvt)

≤ C(p, T ∗, δ0) +

∫

∂Ω×[δ0,t]

a2(1 + u2)vt(vγ)t −

∫

Ω×[δ0,t]

a2∇[(1 + u2)vt]∇vt.
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From the boundary conditions of systems (1.1), we have that

{

(1) δ = 1 : u = v = 0 ⇒ ut = vt = 0,∀(x, t) ∈ ∂Ω × [δ0,t]
(2) δ = 0 : uγ = vγ = 0 ⇒ (uγ)t = (vγ)t = 0,∀(x, t) ∈ ∂Ω × [δ0,t]

(4.6)

Then, (4.4) (4.5) become that

1

2

∫

Ω×[δ0,t]

(a1 + dv) (u2
t )t ≤ C(p, T ∗, δ0) − (4.7)

−

∫

Ω×[δ0,t]

[(a1 + dv)∇ut + dut∇v][(a1 + dv)∇ut + dvt∇u + dut∇v + du∇vt],

1

2

∫

Ω

(

1 + u2
)

v2
t (t) ≤ C(p, T ∗, δ0) −

∫

Ω×[δ0,t]

a2∇[(1 + u2)vt]∇vt, (4.8)

we known that

−

∫

Ω×[δ0,t]

[(a1 + dv)∇ut + dut∇v][(a1 + dv)∇ut + dvt∇u + dut∇v + du∇vt]

= −

∫

Ω×[δ0,t]

{(a1 + dv)
2
|∇ut|

2
+ (a1 + dv) [dvt∇u + 2dut∇v (4.9)

+d (a1 + dv)u∇vt∇ut + d2ut∇vu∇vt},

≤ −

∫

Ω×[δ0,t]

(1 − ε) (a1 + dv)
2
|∇ut|

2
−

−d (a1 + dv)u∇ut∇vt − ε

∫

Ω×[δ0,t]

|∇(vt)|
2

+ C(p, T ∗, δ0, ε). (4.10)

here, ε ∈ (0, 1) is arbitrary.

For (4.7), we have the similar estimates

−

∫

Ω×[δ0,t]

a2∇[(1 + u2)vt]∇vt (4.11)

≤ −a2(1 − ε)

∫

Ω×[δ0,t]

[(1 + u2) |∇vt|
2

+ C(p, T ∗, δ0, ε).

From, (4.7)-(4.11), we obtain that, for any δ0 < t < T ∗, ε ∈ (0, 1), k > 0

1

2

∫

Ω

(a1 + dv)u2
t (t) +

k

2

∫

Ω

(

1 + u2
)

v2
t (t) (4.12)

≤ −

∫

Ω×[δ0,t]

{(1 − ε) (a1 + dv)
2
|∇ut|

2
+ d (a1 + dv)u∇ut∇vt + ε

∫

Ω×[δ0,t]

|∇(vt)|
2

−ka2(1 − ε)

∫

Ω×[δ0,t]

[(1 + u2) |∇vt|
2

+ C(p, T ∗, δ0).

= −

∫

Ω×[δ0,t]

{(1 − ε) (a1 + dv)
2
|∇ut|

2
+ d (a1 + dv)u∇ut∇vt

+[ka2(1 − ε) − ε](1 + u2) |∇vt|
2
} + C(p, T ∗, δ0).
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Taking ε = min{ 1
2 , d2

2 }, k = 4d2

a2
,we have that

1

2

∫

Ω

(a1 + dv)u2
t (t) +

d2

a2

∫

Ω

(

1 + u2
)

v2
t (t) ≤ −

∫

Ω×[δ0,t]

1

2
(a1 + dv)

2
|∇ut|

2

−

∫

Ω×[δ0,t]

d (a1 + dv)u∇ut∇vt + d2(1 + u2) |∇vt|
2

+ C(p, T ∗, δ0). (4.13)

i.e.

1

2

∫

Ω

(a1 + dv)u2
t (t) +

d2

a2

∫

Ω

(

1 + u2
)

v2
t (t) (4.14)

+

∫

Ω×[δ0,t]

{
1

16
(a1 + dv)

2
|∇ut|

2
+

∫

Ω×[δ0,t]

d2

8
(1 + u2) |∇vt|

2
≤ C(p, T ∗, δ0).

Step 2:
Multiplying the first equation of (1.1) by up and integrating the product in Qt(0 <

t < T ∗), we have

1

p + 1

∫

Ω

up+1(t) =
1

p + 1

∫

Ω

u
p+1
0 +

∫

Qt

up
△ [(a1 + dv)u] (4.15)

+

∫

Qt

up+1{e1 − h(u) − d1v}

(from lemma 3.4) ≤ C(u0, v0, p, T ∗)

From the second equation of (1.1), a similar inequality for v is obtained

1

p + 1

∫

Ω

vp+1(t) ≤ C(u0, v0, p, T ∗). (4.16)

Hence, from the systems (1.1) and the above estimates, we have, for all 0 < t < T ∗,

‖ {∆[(a2 + dv)u]}(t) ‖2,Ω + ‖ (∆v)(t) ‖2,Ω≤ C(u0, T
∗). (4.17)

Furthermore, differentiating the v−equation in (1.1) in t, and take the scalar
product with v

2p+1
t (p ≥ 1). Then integration of the product on [0,t]( 0 < t < T ∗)

yields that

‖ (vt)(t) ‖2p+2,Ω≤ C(u0, p, T ∗), for all 0 < t < T ∗, (4.18)

thus

‖ (△v)(t) ‖2p+2,Ω≤ C(u0, p, T ∗), for all 0 < t < T ∗. (4.19)

In view of the embedding theorem

H1(Ω) = W 1
2 (Ω) ⊂ L4(Ω).
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We have that
{

‖ {∇[(a2 + dv)u]}(t) ‖4,Ω≤ C(u0, v0, T
∗), for all 0 < t < T ∗,

‖ (∇v)(t) ‖p,Ω≤ C(u0, v0, T
∗), for all 0 < t < T ∗ (4.20)

Thus

‖ (∇u)(t) ‖p,Ω≤ C(u0, v0, T
∗), for all 0 < t < T ∗, (4.21)

Noting that
|∆u| ≤ |(a2 + dv)∆u| ≤ |∆[(a2 + dv)u]| + 2d |∇u∇v| + d |u △ v|

then

‖ ∆u ‖2
2,Ω≤‖ ∆[(a2 + dv)u ‖2

2,Ω +4d2(‖ ∇u ‖4
4,Ω + ‖ ∇v ‖4

4,Ω) (4.22)

+d2(‖ u ‖4
4,Ω + ‖ ∆v ‖4

4,Ω) ≤ C(u0, T
∗), for all 0 < t < T ∗,

Hence, the norms ‖ u(t) ‖H2(Ω)and ‖ v(t) ‖H2(Ω) remain bounds as t → T ∗.

Step 3:
From [8], then the solution u, v, can be extended to a nonnegative solution beyond

the T ∗. Hence, (1.1) has a global solution, we complete the proof.
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