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ANALYSIS OF A DISEASE TRANSMISSION MODEL WITH TWO

GROUPS OF INFECTIVES∗

M. R. RAZVAN†

Abstract. In this paper, we give a complete analysis of an SIS epidemiological model in a
population of varying size with two dissimilar groups of infective individuals. It is mainly based on
the discussion of the existence and stability of equilibria of the proportions system and the result is
in terms of a threshold parameter which governs the stability of the disease free equilibrium.

1. Introduction. The social mixing structure of a population or a group of
interacting populations plays a crucial role in the dynamics of an epidemic process.
In almost all attempts to combine epidemiological data with mathematical modelling,
there has been a recognition of the need to consider the structure of social interactions
among the individuals in the populations. (See [5, 20] and references therein.) Many
authors have considered the multigroup models in which heterogenous subpopulations
may participate in the epidemic process with different parameters [4]. For SIS type
models, a rather complete analysis of existence and global stability of a nontrivial
epidemic state has been carried out by Lajmanovich and Yorke [14]. In their work,
the size of each subpopulation is assumed to be constant. This assumption became
an important but limiting component in the modelling of disease transmission [9].

A famous example for these subpopulations is the core group, i.e. the highly
sexually active subgroups [8]. It has become increasingly clear that the transmis-
sion within and among core subgroups is an important factor in the transmission of
venereal diseases [9]. In order to consider the core group in an SIS epidemiological
model, we divide the population into two or more subgroups each of them consists of
susceptible and infective individuals. Among these subpopulations, those with higher
contact rates can be viewed as core groups [12, 13]. Another example for multigroup
models in epidemiology is the differential infectivity model introduced in [10, 11]. In
most of infectious diseases, the infection level varies widely among individuals and
this causes various levels of infectivity. In a differential infectivity model, the sus-
ceptible subpopulation is assumed to be homogeneous and the infective population is
subdivided into groups according to their infectiveness.

In this paper we examine an SIS model of disease transmission in a population
of varying size with a homogeneous susceptible group and two dissimilar groups of
infective individuals. We assume that a given fraction of new infected individuals
enter each of these two groups. This model is similar to the differential infectivity
model, but different from the core group model for the homogeneity of susceptible
individuals. In fact this model applies to another type of core group that is post-
infection core group, i.e. individuals that become part of the core group after being
infected. This hypothesis is relevant to the behavior of infected individuals in our
population. An example for post-infection core group is those individuals who are
careless about the other one’s health. They are infected like the other people, but
transmit the disease much more, hence they are members of core group after being
infected. In the case of contagious and fatal diseases, another example of post-infection
core group has been observed. After being infected by a fatal disease via a number of
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contacts, a very small group of infected individuals may deliberately spread the disease
to others because of anger or a desire to retaliate. Thus the post-infection core group
may consist of those who are superspreaders because of their personal characteristics
or psychological motivations. We analyze our model without any assumption on the
involved parameters so that it can be applied to different interpretations of the model.

First of all, in the next section, we introduce the model which is a three dimen-
sional ordinary differential equation homogeneous of degree one. For such a system
it is more appropriate to consider the proportions equations which gives a planar
system. In Section 3, we state a result concerning the nonexistence of certain types
of solutions [1, 2, 3] and show that every solution of the proportions system in the
feasibility region tends to an equilibrium point. This reduces our problem to the dis-
cussion of the existence and stability of equilibria of the proportions system. Finally
in Section 4, we give a complete global analysis of the proportions system in terms of
a threshold parameter which governs the stability of the disease free equilibrium.

2. The Model. In order to derive our model, we divide the population into
three groups: susceptibles, S, and two groups of infectives, I1 and I2, hence the total
size of the population is N = S + I1 + I2. In our model, the incidence function is of
proportionate mixing type [7, 17] and natural births and deaths are proportional to
the class numbers with all newborns susceptibles. We also assume that the birth rate
of susceptibles may be more than that of infectives. This is similar to the demographic
assumption in [15, 16]. The excess death due to the disease among infectives is also
considered. We use the following parameters which are positive unless otherwise
specified:

b : per capita birth rate of susceptibles,
b1 : per capita birth rate of infectives assumed to lie in [0, b].,
d : per capita disease free death rate,
ε : excess per capita death rate of infectives,

λ1 : effective per capita contact rate of I1,
λ2 : effective per capita contact rate of I2,
γ1 : per capita recovery rate of I1,
γ2 : per capita recovery rate of I2.

Therefore the reproduction term is bN +b1(I1+I2) = b1N +b2S where b2 = b−b1 ≥ 0

and the incidence function with group Ij is
λjIj

N
, j = 1, 2. Similar to the differential

infectivity model [10, 11], we assume that the susceptible individuals who have been
infected, enter the group I1 and I2 of proportions p and q respectively, hence p+q = 1.
In applications, we may assume that λ2 ≫ λ1 and q ≪ 1. Then I2 can be considered
as the highly infected group in the differential infectivity model or the post-infection
core group. But we analysis our system in the general case in order to see the effect
of each parameter more clearly.

The above hypotheses lead to the following system of differential equations in R
3
+,

where “′” denotes the derivatives with respect to t, the time.







S′ = b1N + (b2 − d)S + γ1I1 + γ2I2 − λ1
I1S
N

− λ2
I2S
N

, (2 − 1)
I ′1 = p

(

λ1
I1S
N

+ λ2
I2S
N

)

− (d + ε + γ1)I1, (2 − 2)
I ′2 = q

(

λ1
I1S
N

+ λ2
I2S
N

)

− (d + ε + γ2)I2. (2 − 3)

The total population equation is obtained by adding the above three equations:

N ′ = (b1 − d)N + b2S − ε(I1 + I2)
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The system (2-1)-(2-3) is homogeneous of degree one and the population equation is
linear. For such a system, it is more appropriate to consider proportions. If we set
s = S

N
, i1 = I1

N
and i2 = I2

N
, we arrive at the following system of equations:







s′ = b1(1 − s) + b2s(1 − s) + γ1i1 + γ2i2 + (ε − λ1)i1s + (ε − λ2)i2s, (2 − 1)′

i′1 = ps(λ1i1 + λ2i2) + εi1(i1 + i2) − (b1 + ε + γ1)i1 − b2si1, (2 − 2)′

i′2 = qs(λ1i1 + λ2i2) + εi2(i1 + i2) − (b1 + ε + γ2)i2 − b2si2. (2 − 3)′

In order to determine the asymptotic behavior of the solutions of this system
of equations, we need some concepts of ODE related to our system. Given an au-
tonomous system of ordinary differential equations in R

n,

dx

dt
= f(x), (2 − 5)

we will denote by x.t the value of the solution of this system at time t, that is x

initially. For V ⊆ R
n, J ⊆ R, we let V.J = {x.t : x ∈ V, t ∈ J}. The set V is called

positively invariant if V.R+ = V . For Y ⊆ R
n the ω-limit (resp. the α-limit) set of Y

is defined to be the maximal invariant set in the closure of Y.[0,∞) (resp. Y.(−∞, 0]).
An orbit γ is a heteroclinic orbit if limt→−∞ γ(t) = x and limt→+∞ γ(t) = y where
x and y are rest points and it is called a homoclinic orbit when x coincides with
y. A closed curve connecting several equilibria whose segments between successive
equilibria are heteroclinic orbits is called a phase polygon. By a sink we mean an
equilibrium at which all the eigenvalues of the linearized system have negative real
parts. Such a point is called a source if all of these eigenvalues have positive real
parts. If some of these eigenvalues have positive real parts and the others negative
real parts, then the equilibrium is called a saddle point and it is called nondegenerate
if all of these eigenvalues are nonzero.

3. Some Basic Results. We start our analysis with some basic results about
the system (2−1)′− (2−3)′. If we set

∑

= s+ i1 + i2, then
∑′

= (1−
∑

)(b1 + b2s−
εi1 − εi2). Therefore the plane

∑

= 1 is invariant. We consider the feasibility region

D = {(s, i1, i2) : s + i1 + i2 = 1, s ≥ 0, i1 ≥ 0, i2 ≥ 0}

which is a triangle and on its sides we have:






s = 0 =⇒ s′ = b1 + γ1i1 + γ2i2,

i1 = 0 =⇒ i′1 = pλ2si2,

i2 = 0 =⇒ i′2 = qλ1si1.

It follows that D is positively invariant and the disease free equilibrium (1, 0, 0) is the
only rest point on ∂D, the boundary of D. Indeed our vector field points inward on
∂D − {(1, 0, 0)}. So every solution of the system (2 − 1)′ − (2 − 3)′ which starts in

∂D−{(1, 0, 0)}, immediately gets into
◦

D, the interior of D. From now on, we examine
the dynamics of this system in the feasibility region D. The following theorem is a
result of [3] concerning the nonexistence of certain types of solutions.

Theorem 3.1. Let f be a smooth vector field in R
3 and γ(t) be a closed piecewise

smooth curve which is the boundary of an orientable smooth surface S ⊂ R
3. Suppose

g : U −→ R
3 is defined and is smooth in a neighborhood U of S. Moreover it satisfies

g(γ(t)).f(γ(t)) ≥ 0 and (curl g) ·n < 0, where n is the unit normal to S. Then γ is
not a finite union of the orbits of the system (2-5).
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In order to apply the above theorem, we define g = g1 + g2 + g3 where

g1(i1, i2) =

[

0,−
f3(i1, i2)

i1i2
,
f2(i1, i2)

i1i2

]

,

g2(s, i2) =

[

f3(s, i2)

si2
, 0,−

f1(s, i2)

si2

]

,

g3(s, i1) =

[

−
f2(s, i1)

si1
,−

f1(s, i1)

si1
, 0

]

,

and f1, f2 and f3 denote the right hand side of (2−1)′, (2−2)′ and (2−3)′ reduced to
functions of two variables by using

∑

= 1, respectively. Now after some computations
[2, 6], we get

(curl g).(1, 1, 1) = −

(

pλ2

i21
+

qλ1

i22
+

b1 + γ1

i2s2
+

b1 + γ2

i1s2

)

.

Corollary 3.2. The system (2−1)′− (2−3)′ has no periodic orbits, homoclinic

orbits or phase polygons in
◦

D.

Proof. We use Theorem 3.1 for f = (f1, f2, f3). Here we have g.f = 0 and

(curl g).(1, 1, 1) < 0 in
◦

D.

Lemma 3.3. The ω-limit set of any orbit of the system (2 − 1)′ − (2 − 3)′ with
initial point in D is a rest point.

Proof. Suppose the contrary, then the ω-limit set has a regular point in
◦

D. Let x

be such a point and h be its first return map. For a point y near x on the transversal,
let V be the region surrounded by the orbit γ from y to h(y) and the segment between
them. This region is known as Bendixson sack. (See Figure 1.)

Now by Stokes’ theorem

∫ ∫

V

(curl g).(1, 1, 1)dσ =

∫

γ

g.fdt +

∫ 1

0

g(ty + (1 − t)h(y)).(y − h(y))dt.

Since g.f = 0 and h(x) = x, the right hand side of the above equality tends to zero
as y tends to x. But the left hand side tends to the integral over the region bounded

by the ω-limit set. This is a contradiction since (curl g).(1, 1, 1) < 0 in
◦

D.

Remark 3.4. When the ω-limit set lies in
◦

D, the above result is easily concluded
by the generalized Poincaré-Bendixson theorem [18, 19] and Corollary 4.2. Similarly

if the α-limit set of an orbit of the system (2 − 1)′ − (2 − 3)′ lies in
◦

D, it must be a
single point.

4. The Planar System. Consider the proportions system (2− 1)′ − (2− 3)′ in
its feasibility region D. Using the equality s + i1 + i2 = 1, we see that this system
is essentially two dimensional. Thus we can eliminate one of the variables, say s, to
arrive at the following quadratic planar system
{

i′1 = (pλ1 − b − ε − γ1)i1 + pλ2i2 + (i1 + i2)((b2 + ε − pλ1)i1 − pλ2i2), (3 − 1)
i′2 = qλ1i1 + (qλ2 − b − ε − γ2)i2 + (i1 + i2)((b2 + ε − qλ2)i2 − qλ1i1). (3 − 2)
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Fig. 3.1. The Bendixson sack.

The dynamics of the system (2− 1)′ − (2− 3)′ on D is equivalent to the dynamics of
this planar system in the positively invariant region

D1 = {(i1, i2)|i1 ≥ 0, i2 ≥ 0, i1 + i2 ≤ 1}.

The matrix of the linearization of the system (3 − 1), (3 − 2) at the origin is:

C =

[

pλ1 − b − ε − γ1 pλ2

qλ1 qλ2 − b − ε − γ2

]

,

with detC = (b + ε + γ1)(b + ε + γ2) − pλ1(b + ε + γ2) − qλ1(b + ε + γ1). We set
R0 = pλ1

b+ε+γ1
+ qλ2

b+ε+γ2
. Hence if R0 < 1, then detC > 0 and traceC < 0 and if R0 > 1

then detC < 0. Thus we have proved the following lemma.

Lemma 4.1. Let R0 be the above threshold. Then the origin is a sink (resp. a
saddle) for the system (3 − 1), (3 − 2) whenever R0 < 1 (resp. R0 > 1).

Lemma 4.2. The trace of the linearization of the system (3− 1), (3− 2) at a rest

point in
◦

D1 is negative.

Proof. We compute the trace at a rest point in
◦

D1.

∂i′
1

∂i1
= pλ1 − b − ε − γ1 + (b2 + ε − pλ1 − pλ2)i2 + 2(b2 + ε − pλ1)i1,

∂i′
2

∂i2
= qλ2 − b − ε − γ2 + (b2 + ε − qλ2 − qλ1)i1 + 2(b2 + ε − qλ2)i2.

From i′1 = 0 and i′2 = 0, we get

∂i′
1

∂i1
= −pλ2

i2
i1

+ pλ2
i2
2

i1
+ (b2 + ε − pλ1)i1 = −pλ2

i2
i1

(1 − i2) + (b2 + ε − pλ1)i1,
∂i′

2

∂i2
= −qλ1

i1
i2

+ qλ1
i2
1

i2
+ (b2 + ε − qλ2)i2 = −qλ1

i1
i2

(1 − i1) + (b2 + ε − qλ2)i2.

Using the equality s + i1 + i2 = 1, we obtain

∂i′1
∂i1

+
∂i′2
∂i2

= (b2 + ε − λ1)i1 + (b2 + ε − λ2)i2 − pλ2

i2s

i1
− qλ1

i1s

i2
.

Now from (2 − 1)′ we have

s′ = b1(i1 + i2) + b2s(i1 + i2) + γ1i1 + γ2i2 + (ε − λ1)i1s + (ε − λ2)i2s = 0.
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Thus (b2 + ε − λ1)i1s + (b2 + ε − λ2)i2s < 0 and it follows that
∂i′

1

∂i1
+

∂i′
2

∂i2
< 0.

Corollary 4.3. The system (3 − 1), (3 − 2) has no source in
◦

D1.

Corollary 4.4. Every nondegenerate rest point of the system (3− 1), (3− 2) in
◦

D1 is hyperbolic.
The above two corollaries are immediate consequences of Lemma 4.2. Notice that

a nondegenerate rest point of the system (3 − 1), (3 − 2) is obtained by a transversal
intersection of the two conic sections i′1 = 0 and i′2 = 0.

Proposition 4.5. There is at most one rest point in
◦

D1 for the system (3 −
1), (3 − 2). Moreover such a rest point is always hyperbolic.

Proof. From the equilibrium conditions i′1 = i′2 = 0, we get the following equation
which is homogeneous with respect to i1 and i2 of second order.

((pλ1 − b − ε − γ1)i1 + pλ2i2)((b2 + ε − qλ2)i2 − qλ1i1)

=(qλ1i1 + (qλ2 − b − ε − γ2)i2)((b2 + ε − pλ1)i1 − pλ2i2).

This equality can be written as

qλ1(b1 + γ1)i
2
1 + (∗)i1i2 − pλ2(b1 + γ2)i

2
2 = 0

where (∗) is a statement in terms of the involved parameters. The set of all roots of
this quadratic equation consists of two lines through the origin in the (i1, i2) plane.
One of these lines has negative slope and meets D1 only at the origin. Thus the other
line contains all rest points of the system (3−1), (3−2) in D1. Since each line contains
at most two rest points of a quadratic planar system and this line contains the origin,

it follows that
◦

D1 contains at most one rest point. This rest point is obtained by a
transversal intersection of this line and each of the conic sections i′1 = 0 or i′2 = 0. It
is easy to see that at this rest point, these two conic sections intersect transversally.
Therefore this rest point is nondegenerate and by Corollary 4.4, it must be hyperbolic.

In the above argument, we have indeed shown that all rest points of the system
(3 − 1), (3 − 2) which are not more than three points, are nondegenerate, except the
origin in the case R0 = 1. Now we are ready to prove our main result concerning the
dynamics of the system (2 − 1)′ − (2 − 3)′ in D.

Theorem 4.6. (i) If R0 ≤ 1, then (1, 0, 0) is a global attractor in D.

(ii) If R0 > 1, then there exists a unique rest point (an endemic equilibrium) in
◦

D
which attracts D − {(1, 0, 0)}.

Proof. When R0 < 1, the origin is a sink for the planar system (3− 1), (3− 2). If

there exists another rest point in
◦

D1 for this system, it must be unique and hyperbolic.
By Corollary 4.3, it cannot be a source. If it is a sink, then we will have two sinks
in D1. The basins of attraction of these two points are open and by Lemma 3.3,
D1 is the union of these two open subsets. This contradicts the connectedness of
D1 and shows that it cannot be a sink. Now suppose that there is a saddle point in
◦

D1. By Corollary 3.2, there is no homoclinic orbit in
◦

D1. Hence the origin attracts
the unstable manifold of the saddle point. Now the region bounded by the unstable
manifold contains some part of the stable manifold of of the saddle point. Thus the
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α-limit set of this part of the stable manifold is a rest point in D1 by Remark 3.4.
This is a contradiction since this rest point can be neither the origin nor the saddle
point. Therefore the origin is the only rest point in D1 for the system (3− 1), (3− 2)
and by Lemma 2.3, it is the ω-limit set of all points of D1.

The above fact is still valid for the limiting case, R0 = 1. To see this, suppose
that there exists another rest point in D1, then it must be hyperbolic and belong to
◦

D1. Thus it remains in
◦

D1 when the involved parameters are slightly changed to get
R0 < 1 which contradicts the above result. This finishes the proof of (i).

Now suppose R0 > 1. Then the origin is a saddle point for the planar system

(3− 1), (3− 2). Thus by Lemma 2.3, there must be some rest point in
◦

D1. Since such
a rest point is unique and hyperbolic, it must be a sink and attract all points of D1

except the stable manifold of the origin. We claim that the stable manifold meets D1

only at the origin. To see this notice that some part of the unstable manifold of the
origin must be outside of D1 for its right angle. Since D1 is positively invariant, the

stable manifold does not intersect
◦

D1. Moreover, the vector field points inward on
∂D1−{(0, 0)}. Thus the stable manifold of the origin does not intersect ∂D1−{(0, 0)}
either. This shows that the origin cannot attract any point of D1 − {(0, 0)}. Thus

the unique sink attracts
◦

D1 −{(0, 0)}. It means that there is a unique rest point in
◦

D for the system (2 − 1)′ − (2 − 3)′ which attracts D − {(1, 0, 0)}.

Remark 4.7. In the above argument, in order to prove the global asymptotic

stability of the endemic equilibrium (i.e. the unique rest point in
◦

D1), we showed

that the stable manifold of the origin cannot intersect
◦

D1. It is a special case of
the following fact. Let X be a smooth vector field on a smooth manifold M and
D ⊂ M is a positively invariant region with a saddle point on ∂D. If the unstable
manifold of this saddle point contains a point of (M − D)◦, then its stable manifold

cannot intersect
◦

D. In order to prove it, one can follow our proof in the special
case and observe that this is a direct consequence of the Hartman-Grobman theorem.
However, it is obvious by the Inclination Lemma [18].

Conclusion. The threshold R0 = pλ1

b+ε+γ1
+ qλ2

b+ε+γ2
clearly shows the effect of

each group on the epidemics process. In the differential infectivity model, we have a
group of superspreaders, say I2 with λ2 ≫ λ1. This group may be very small with
q ≪ 1, but the fact λ2 ≫ λ1 causes the term qλ2 to be significant in R0 and it can
force R0 to be greater than one. In most of applications, the initial conditions of the
population is nearby the disease free equilibrium and in almost all epidemiological
models, the behavior of the system is known around the disease free equilibrium. In
our model, this equilibrium is unstable when R0 > 1 and our state which is close
to the disease free equilibrium initially, gets far from it and tends to the endemic
equilibrium. This proves the assertion of [11] that the disease is primarily spread by
a small, highly infectious, group of superspreaders.

Now suppose that I2 is the post-infection core group. Then we have again a small
group with q ≪ 1 and λ2 ≫ λ1. Similar to the above argument, this group also plays
a crucial role in the epidemic process. Now our analysis shows that psychological
parameters are also very important, yet often neglected, factors in the spread of
disease transmission. In the differential infectivity model, q is a biological parameter
and difficult to control, but in this case, it is a psychological parameter and there are
well-known methods in social psychology to reduce it.
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