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RANDOM WORDS, QUANTUM STATISTICS, CENTRAL LIMITS,
RANDOM MATRICES∗

GREG KUPERBERG†

Abstract. Recently Tracy and Widom conjectured [29] and Johansson proved [17] that the
expected shape λ of the semi-standard tableau produced by a random word in k letters is asymptoti-
cally the spectrum of a random traceless k×k GUE matrix. In this article we give two arguments for
this fact. In the first argument, we realize the random matrix itself as a quantum random variable
on the space of random words, if this space is viewed as a quantum state space. In the second ar-
gument, we show that the distribution of λ is asymptotically given by the usual local limit theorem,
but the resulting Gaussian is disguised by an extra polynomial weight and by reflecting walls. Both
arguments more generally apply to an arbitrary finite-dimensional representation V of an arbitrary
simple Lie algebra g. In the original question, V is the defining representation of g = su(k).

What is the longest weakly increasing subsequence of a long, random
string of letters? In the previous sentence, one such longest subsequence is
“AEEEEEEEFLNNOSTTT”. In randomly chosen English text, the longest subse-
quences are dominated by the letter ’E’, since this letter is the most common one.
This implies that the length of the longest subsequence has a Gaussian distribution.
But if the letters in the string are independent with the uniform distribution, a longest
subsequence will use all of them roughly equally. In this case Tracy and Widom es-
tablished a non-Gaussian distribution for the length of a longest subsequence [29, 16].
Their result was motivated by recent progress in the study of the longest increas-
ing subsequence of a random permutation, in particular the relations among longest
subsequences, random matrices, and representation theory [1, 3, 2, 30, 9, 8, 4, 25].

Tracy and Widom conjectured a generalization which was proved by Johansson
[17, Th. 1.6]:

Theorem 1 (Johansson). The distribution of the shape of a random word as
given by the Robinson-Schensted-Knuth (RSK) algorithm converges locally to the dis-
tribution of the spectrum of a random traceless k × k GUE matrix.

It is a generalization because the first row of the RSK shape is the length of
the longest weakly increasing subsequence. “Traceless GUE” refers to the traceless
Gaussian unitary ensemble, defined up to normalization as the Gaussian measure on
traceless k × k Hermitian matrices which is invariant under conjugation by unitary
matrices.

In this article we give two arguments for Theorem 1. The first argument (Sec-
tion 1) is based on quantum statistics: it identifies the random matrix itself as a
quantum random variable on the space of random words viewed as a quantum state
space. The GUE ensemble then appears in the limit by a quantum central limit the-
orem. The second argument (Section 2) is based on classical statistics: it identifies
the density formula
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100 G. KUPERBERG

for the distribution of the spectrum λ of a GUE matrix [23] as a disguised classical cen-
tral limit. (Here C is a constant that depends on k but not λ.) The classical argument
is rigorous and it establishes a precise estimate. The quantum argument can be read
rigorously or non-rigorously, depending on whether the reader accepts Conjecture 2;
either way it is less precise than the statement of Theorem 1. Non-rigorously, it es-
tablishes convergence in distribution. Rigorously it establishes convergence of certain
moments, but not enough moments to imply convergence in distribution. Nonetheless
we prefer the quantum argument since it is less traditional. (But see Biane [6, 5, 7]
for closely related results.)

In both arguments, it is important to identify the vector space of traceless Her-
mitian matrices with the Lie algebra su(k) and an alphabet with k letters with the
standard basis of the defining representation V = C

k. Both arguments then general-
ize to an arbitrary finite-dimensional unitary representation of V of a compact simple
Lie algebra g. The conclusion is a relation between random words in a weight basis
of V and a natural Gaussian measure on g∗, the vector space dual of g.

Acknowledgement: The author would like to thank Greg Lawler, Marc van
Leeuwen, Bruno Nachtergaele, Philippe Biane, and Marc Rieffel for informative dis-
cussions, and especially Craig Tracy for introducing him to the topics discussed in
this article.

1. Quantum statistics. In this section we will express certain classical random
variables in terms of simpler quantum random variables. The main object in our
argument was also considered from the converse view by Biane [5, 6].

We refer the reader to Sakurai [27, §3] for basic notions of quantum statistics, in
particular mixed states, which are also commonly called density matrices or density
operators. In the context of operator algebras, mixed states are called states [18] or
normal states [19], depending on the desired strength of the formalism.

The RSK algorithm is (in one version) a function that takes as input a word of
length N in the alphabet [k] = {1, ..., k} and produces as output a pair of tableaux
(P,Q) of shape λ, where

λ = (λ1, λ2, . . . , λk) ⊢ N

is a partition of N into non-increasing, non-negative integers [28, §7.11]. The partition
is considered synonymous with its Young diagram, meaning its horizontal histogram.
The tableau P is semi-standard and is called the insertion tableau, while the tableau
Q is standard and is called the recording tableau. Given the uniform distribution on
the set of words [k]N , we can view the shape λ as a random variable λRSK. Finally,
given a partition λ, it will sometimes be convenient to subtract the mean from each
part to form a “partition of 0”:

λ̂ = (λ1 −
N

k
, λ2 −

N

k
, . . . , λk − N

k
).

We do not need the precise definition of the RSK algorithm in this section, merely
one of its important properties: It is a combinatorial model for the direct sum decom-
position of the representation V ⊗N of the Lie algebra u(k) (or the Lie group U(k) or
GL(k,C)), where V = C

k is the defining representation [28, §A2]. This representation
decomposes as

(2) V ⊗N ∼=
⊕

λ⊢N

Rλ ⊗ Vλ,
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where Vλ̂ is the irreducible representation of u(k) of shape λ and Rλ is the irreducible
representation of the symmetric group SN of shape λ. For any given λ = λRSK, the
set of associated insertion tableaux P indexes a basis of Vλ, while the set of recording
tableaux Q indexes a basis of Rλ. In particular,

dimRλ ⊗ Vλ = nλ,

where nλ is the number of words that have shape λ = λRSK. Finally, as a repre-
sentation of the Lie subalgebra su(k), Vλ is unchanged if we add a constant to each
component of λ. The convention is to call it Vλ̂, the representation of highest weight

is λ̂.
We can view the vector space V ⊗N as a quantum state space H of some quantum

system Q with [k]N as an orthonormal basis. The maximum-entropy state (or tracial
state) ρ of Q is then realized by the uniform distribution on [k]N , as well as by the
uniform distribution on any other orthonormal basis. At the same time, an arbitrary
orthogonal direct sum decomposition

H ∼= H1 ⊕H2 ⊕ . . .⊕Ht

of H can be interpreted as a random variable taking values in the set of sum-
mands. Relative to the state ρ, the probability of a given summand Hi is the ra-
tio (dimHi)/(dimH). In particular, the direct sum decomposition in equation (2)

expresses a random variable λQM = λ̂. The previous paragraph tells us that

λQM
d
= λ̂RSK, meaning that they have the same distribution.

1.1. The case k = 2 and spin 1/2 particles. As a concrete example, we
consider the physically realizable case k = 2. In this case V is the familiar state space
of a spin 1/2 particle, and the action of SU(2) is the projective action of the spatial
rotation group SO(3). We will use the alphabet {↑, ↓} rather than {1, 2} as a basis
of V . The space V admits angular momentum operators Jx, Jy, and Jz which satisfy
the commutation relations

(3) [Jx, Jy] = iJz [Jy, Jz] = iJx [Jz, Jx] = iJy.

The operators Jx, Jy, and Jz are a basis of i · su(2), by which we mean the image of
su(2) in sl(2,C) under multiplication by i. Thus these are just the usual commutation
relations in the Lie algebra su(2) up to a factor of i. The tracial state on V is the
mixture

(4) ρ =
|↑ 〉〈 ↑ | + |↓ 〉〈 ↓ |

2
.

Note that probabilistic mixtures of states should not be confused with quantum su-
perpositions. A superposition of | ↑ 〉 and | ↓ 〉 is another vector in V and cannot be
invariant under rotations. By contrast the mixed state ρ is SU(2)-invariant.

The vector space V ⊗N is then the state space of N such particles. The tth

particle has angular momentum operators J
(t)
x , J

(t)
y , and J

(t)
z . By equation (4) and

the isotropy of ρ, each of these operators is a centered Bernoulli random variable
with equally likely values 1

2 and − 1
2 . Since the three operators for any fixed t do not

commute, the corresponding random variables cannot be simultaneously observed.
The sums of these operators form the total angular momentum,

(5) Jα = J (1)
α + J (2)

α + . . .+ J (N)
α ,
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for each α ∈ {x, y, z}. Each operator Jα is a centered binomial random variable be-
cause the terms are independent commuting Bernoulli variables. The three operators
Jx, Jy, and Jz do not commute either, but rather satisfy the same commutation re-
lations in equation (3), since they express the natural (diagonal) action of su(2) on
V ⊗N . Finally, the total angular momentum

J2 = J2
x + J2

y + J2
z

is diagonalized by the direct sum decomposition in equation (2). In a summand with

weight λ̂, its eigenvalue is

J2|ψ〉 = λ̂1(λ̂1 + 1)|ψ〉.

Thus if L = (L1, L2) is the shape-valued operator that measures λQM, it is related to
J2 by

J2 = L1(L1 + 1).

If we define the scaled angular momentum operators

J̃α =
Jα√
N

with α ∈ {x, y, z}, then by the above reasoning, these three operators become com-
muting Gaussian random variables in the limit N → ∞. By rotational symmetry
they are also independent and identically distributed (i.i.d.). This behavior of the
total angular momentum of independent random spins can be witnessed in nuclear
magnetic resonance experiments, among other places. Using these operators we may
form a matrix

M̃ =

(
J̃z J̃x + iJ̃y

J̃x − iJ̃y −J̃z

)
.

In the limit N → ∞, M̃ becomes a traceless GUE matrix! (The normalization

is also consistent with Mehta [23].) For finite N , the determinant of M̃ must be
interpreted carefully because its entries do not commute. If we define it by averaging
over orderings of the entries,

det M̃ =
1

2
(M̃11M̃22 + M̃22M̃11 − M̃12M̃21 − M̃21M̃12),

then it turns out that

det M̃ = −J̃2.

It follows that

lim
N→∞

λQM√
N

d
= λGUE,

where λGUE is a random variable representing the spectrum λ of a traceless GUE
matrix. This is precisely Theorem 1 for k = 2.
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1.2. The general case. The argument in Section 1.1 generalizes with only nat-
ural changes to all values of k. The defining representation V of su(k) has a basis of
states

|1〉, |2〉, . . . , |k〉.

The elements of i · su(k) may be viewed as generalized angular momentum operators.
We define two matrices of operators A and B whose entries linearly span i · su(k).
(Note that the diagonal entries are not linearly independent.) Let Eab ∈ sl(k,C) be
the elementary matrix whose non-zero entry is

(Eab)ab = 1.

Then the entries of A and B are

Aab =
1

2
(Eab + Eba) Bab =

i

2
(Eba − Eab) (a 6= b)

Aaa = Eaa − 1

k
I Baa = 0.

Let M be the matrix of operators

Mab = Aab + iBab.

Each entry Aab and Bab is a real-valued measurement operator. Relative to the
tracial state on V , Aab for a 6= b takes each of the values 1/2 and −1/2 with probability
1/k and otherwise has the value 0. The same is true of Bab. The measurement Aaa

takes the value (k − 1)/k with probability 1/k and otherwise takes the value −1/k.
The operator Mab may appear to be a complex-valued measurement whose real and
imaginary parts have these distributions, but this is not quite true. An operator
can only be interpreted as a complex-valued measurement if it is a normal operator,
defined as an operator that commutes with its adjoint, or equivalently an operator
whose self-adjoint and anti-self-adjoint parts commute. When a 6= b, Mab is not a
normal operator; it represents a complex random variable whose real and imaginary
parts are not simultaneously observable.

For words in [k]N , we consider the standard (additive) action of su(k) on V ⊗N .

Equation (2) gives us a shape-valued operator L which has the eigenvalue λQM = λ̂
on the summand Vλ ⊗ Rλ. The operator L can be realized algebraically using the
characteristic polynomial of M , thought of as a polynomial-valued operator:

C(x) = det (xI −M)

= (x− L1)(x− L2) . . . (x− Lk) + c(x,L),(6)

where c(x,L) is a polynomial of total degree at most k − 1. As before, each term of
the determinant is defined by averaging over the k! orderings of its factors. The left
side of equation (6) is a disguised version of the composition ψ ◦ π in the proof of
Harish-Chandra’s Theorem given by Humphreys [15, §23.3], while the leading term
on the right side is a disguised version of the map θ. Here we are applying both maps
to the coefficients of the ordinary characteristic polynomial of an element in su(k); in
the context of Humphreys, each coefficient is a particular SU(k)-invariant polynomial
on su(k). As Humphreys explains, the maps ψ ◦ π and θ agree in the top degree,
which is exactly what equation (6) asserts. (See Okounkov and Olshanski [26] for an
analysis of the correction term c(x,L).)
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Each coefficient of C(x) lies in the center of U(su(k)) and is a natural general-
ization of the Casimir operator J2 in the case k = 2. The coefficients are sometimes
called elementary generalized Casimir operators.

Assuming the tracial state on V ⊗N , each measurement Aab and Bab is a sum of
bounded, centered i.i.d. random variables. If we define

M̃ = Ã+ iB̃ =

√
k

2N
M,

then the entries commute in the limit N → ∞ and M̃ becomes a traceless GUE matrix
with standard normalization. The term c(x,L) in equation (6) also disappears in this
limit because its degree is too low. The equation thus tells us that

lim
N→∞

√
k

2N
λQM

d
= λGUE.

1.3. What did we prove?. One important step in the argument of this section
is not completely rigorous. Unquestionably each scaled angular momentum operator
J̃α, Ãab, or B̃ab converges to a Gaussian random variable by the classical central
limit theorem. But we do not know that a polynomial in these variables, for example
J̃2 or J̃xJ̃yJ̃z, converges in distribution to the corresponding polynomial of Gaussian
variables. We cannot appeal to the classical multivariate central limit theorem for non-
commuting variables, even if they do commute in the limit. There are also several
quantum limit theorems in the literature; one of the most general ones is due to
Goderis, Verbeure, and Vets [11]. But these results are apparently not sufficiently
strong either.

As a stop-gap we will conjecture the quantum central limit theorem that we need,
and we will prove a weak version of the conjecture. The conjecture is naturally stated
in terms of C∗-algebras and von Neumann algebras [18, 19], which provide a rigorous
language for quantum statistics. In this language, a non-commutative probability
space is defined as a von Neumann algebra M with a normal state ρ. A state is defined
as a dual vector on M, continuous in the norm topology, with the interpretation that
for a self-adjoint element A, ρ(A) is the expected value of the random variable given
by A; the state is normal if it is continuous in the weak topology as well. The reader
who is uninterested in operator algebras can take

M = Mk = gl(k,C),

the vector space of k× k matrices. A normal state ρ on Mk is any dual vector whose
matrix is Hermitian and positive semi-definite and has trace 1; this is exactly the
definition in physics of a finite density matrix [27, §3]. In particular, the tracial state
is defined by

ρ(A) =
1

k
TrA.

Given two quantum systems with von Neumann algebras M and N , the joint
system has the algebra M ⊗ N , using the tensor product in the category of von
Neumann algebras. Two normal states ρ and ω on M and N form an independent
joint state ρ ⊗ ω. Given self-adjoint operators A ∈ M and B ∈ N , the operators
A⊗ I and I ⊗B represent independent measurements in the joint system. If A ∈ M
is self-adjoint, let

A(t) = I⊗t−1 ⊗A⊗ I⊗N−t−1 ∈ M⊗N ,
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and let

Ã =
1√
N

N∑

t=1

A(t).

Thus Ã expresses the scaled sum of N i.i.d. random variables.
In formulating a multivariate quantum central limit theorem, three issues arise

because of non-commutativity. First, the theorem must be a statement about the
distribution of non-commutative polynomials p ∈ C〈A1, . . . , Ak〉, but a Gaussian cen-
tral limit would describe the distribution of commuting variables. Second, a general
polynomial expression p(A1, . . . , Ak) need not be a self-adjoint operator, even if the
variables are self-adjoint. Thus we will assume that p is a self-adjoint polynomial,
meaning that it is invariant under the anti-linear anti-involution

∗ : C〈A1, . . . , Ak〉 → C〈A1, . . . , Ak〉

that conjugates each coefficient and reverses the order of each term. Third, if we
define the covariance matrix of the variables A1, . . . , Ak as

κab = ρ(AaAb),

it may not be symmetric. When this happens the behavior of the central limit is
genuinely different from the classical case; it has been studied in Reference [11]. But
in the case that we need (namely, when ρ is tracial), the covariance matrix is sym-
metric. In this case we expect that the limiting distribution of p only depends on its
commutative image p̂ ∈ C[A1, . . . , Ak], thereby resolving the first issue.

Conjecture 2. Let (M, ρ) be a quantum probability space, and let A1, . . . , Ak

be self-adjoint elements with mean 0 and a symmetric covariance matrix. Let p ∈
C〈A1, . . . , Ak〉 be a self-adjoint non-commutative polynomial in k variables. Then

lim
N→∞

p(Ã1, . . . , Ãk)
d
= p̂(X1, . . . ,Xk),

where X1, . . . ,Xk are classical Gaussian random variables with covariance matrix

E[XaXb] = ρ(AaAb).

If we let p be a coefficient of the polynomial C(x) from Section 1, Conjecture 2
then implies Theorem 1. It may be possible to be reverse this reasoning and use
Theorem 1 to prove Conjecture 2 for arbitrary p, at least when M is a matrix algebra
and ρ is the tracial state. But a satisfactory proof would hold for arbitrary quantum
probability spaces.

Our Theorem 3 below establishes convergence of moments in the context of Con-
jecture 2. Since this theorem is almost entirely algebraic, we do not need the full
structure of a von Neumann algebra. Rather we let M be an arbitrary ∗-algebra,
meaning a unital ring over the complex numbers with an anti-linear anti-involution ∗.
A state ρ on a ∗-algebra is a ∗-invariant dual vector such that ρ(I) = 1 and ρ(A2) ≥ 0
for every self-adjoint A ∈ M. Finally the nth moment

γn(A) = ρ(An)
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is defined whether or not A is self-adjoint. (Recall that a non-self-adjoint operator
may be written as A + iB, where A and B are self-adjoint. Consequently it may be
interpreted as a complex-valued quantum random variable whose real and imaginary
parts are not simultaneously observable. Our definition of moments is consistent with
this interpretation.)

Theorem 3. Suppose that M a ∗-algebra with a state ρ. Let A1, . . . , Ak be
self-adjoint elements with mean 0. Suppose that for all a and b,

ρ(AaAb) = ρ(AbAa).

If p ∈ C〈A1, . . . , Ak〉 is a non-commutative polynomial, then

lim
N→∞

γn(p(Ã1, . . . , Ãk)) = γn(p̂(X1, . . . ,Xk)),

where X1, . . . ,Xk are classical centered Gaussian random variables with covariance
matrix

E[XaXb] = ρ(AaAb),

and γn(A) is the nth moment of A.

Proof. Since the assertion is claimed for every polynomial, it suffices to prove that
the expectation

ρ⊗N (p(Ã1, . . . , Ãk))

converges. To show convergence of expectation we may let p be a monomial. Indeed
the monomial

p(A1, . . . , Ak) = A1A2 . . . Ak

will do, since some of the factors may be equal.
Expanding the expression

γ = ρ⊗N (Ã1, . . . , Ãk)

using the definition of Ãa, it has a term for each function φ from [k] to [N ]:

γ = N−k/2
∑

φ:[k]→[N ]

ρ⊗N (
∏

a

A(φ(a))
a ).

Let

γφ = N−k/2ρ⊗N (
∏

a

A(φ(a))
a )

be an individual term in this expansion. Since we are computing the expectation with
respect to the product state, we can arrange the factors with respect to [N ] rather
than [k]:

γφ = N−k/2
∏

t∈[N ]

ρ(
∏

φ(a)=t

A(t)
a ).
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In this form it is clear that

γφ = 0

if there is a t such that φ−1(t) has one element. At the same time, if S is the set of
those functions φ whose images have fewer than k/2 elements, then

lim
N→∞

∑

φ∈S

γφ = 0

because

|S| = o(Nk/2).

In other words, there are sufficiently few such functions φ that they are negligible in
the limit. What is left is the set of functions that are exactly 2-to-1, which only exist
when k is even. Thus if M is the set of perfect matchings of [k], then

γ = N−k/2

(
N

k/2

)
(k − 1)!!(k/2)!

∑

m∈M

∏

(a,b)∈m

ρ(AaAb)

+ o(1)

= (k − 1)!!
∑

m∈M

∏

(a,b)∈m

ρ(AaAb) + o(1),

where

(k − 1)!! = (k − 1)(k − 3) · · · 5 · 3 · 1

is the odd factorial function. In the limit γ exactly matches the corresponding expec-
tation

E[X1 . . . Xk] = (k − 1)!!
∑

m∈M

∏

(a,b)∈m

E[XaXb]

of the classical variables X1, . . . ,Xk.
In relation to Theorem 1, Theorem 3 says that if

Cλ(x) = (x− λ1)(x− λ2) . . . (x− λk)

for a partition λ, then the moments of Cλ̂RSK
(x) converge to the moments of CλGUE

(x).
In other words, the “moments of the moments” of λRSK converge after scaling to those
of λGUE. Unfortunately, when k > 2 the tail of the distribution of CλGUE

(x) is too
thick for convergence of moments to imply convergence in distribution.

2. Local limits. The argument of this section and its generalization below (The-
orem 6) are very similar to a result of Biane [7]. It was also found by Grinstead [14]
in the case k = 2, and it is related to some results of Grabiner [12].

The idea of the argument is that, if we name the dimensions appearing in equa-
tion (2),

fλ = dimRλ dλ = dimVλ nλ = fλdλ,
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the quantity fλ can be considered in the context of the k-ballot problem. Suppose N
voters vote sequentially for an ordered list of k candidates. In how many ways can
they cast their votes so that the ath candidate is never ahead of the bth candidate for
a > b, and at the end the ath candidate has λa votes for every a? Such a sequence of
votes is a ballot sequence of shape λ and there are fλ of them [28, Prop. 7.10.3]. In
this context of the RSK algorithm, fλ is the number of standard tableaux of shape
λ. If the tth entry of such a tableau is in row a, we can say that the tth voter votes
for candidate a. This establishes a bijection between standard tableaux and ballot
sequences. That fλ is the number of standard tableaux of shape λ can also be seen
directly from the representation theory of gl(k): The generalized Clebsch-Gordan rule
states that

V ⊗ Vλ =
⊕

λ′=λ+2

Vλ′ ,

where the sum is over shapes λ′ that are obtained from λ by adding a single box.
Thus the multiplicity of Vλ in V ⊗N is the number of increasing chains of partitions
from the empty partition to the partition λ. Such a chain is equivalent to a standard
tableau of λ by assigning t to a box if it appears at step t.

In this formulation, the number fλ may be computed by the reflection principle
[10], which is also a disguised version of the Weyl character formula [13]. Recognizing
the set of partitions as a subset of Z

k, there is an action of the symmetric group Sk

on Z
k given by permuting coordinates. A chain of partitions is then a lattice path

in Z
k that happens to stay in the cone of partitions. Here a valid lattice path is one

which increases one coordinate by one at each step. Consider the partition

δ = (k − 1, k − 2, k − 3 . . . , 2, 1, 0)

and let mλ for any λ ∈ Z
k be the number of lattice paths from the origin to λ. The

reflection principle shows that

(7) fλ =
∑

σ∈Sk

(−1)σmλ+δ−σ(δ)

Equation (7) says that the number of ballot sequences from 0 to λ is the alternating
sum of unrestricted lattice paths from a set of image points of the form σ(δ) − δ to
λ. Figure 1 shows an example of the principle when k = 3; in the figure, partitions λ
are replaced by λ̂ to obtain walks in a 2-dimensional lattice.

Since the numbers mλ are defined by walks with the same k possible steps at each
time t, they can be approximated by the local central limit theorem:

(8) mλ ∼ Ce−kλ̂2/2N

Here and below we assume that C is a constant depending only on N and k, and we
use the notation

λ2 =

k∑

a=1

λ2
a.

If the approximation (8) were robust with respect to local finite differences, then by
the reflection principle it would give us an estimate for fλ. If it were also robust under
amplification by a polynomial in λ, it would give us an estimate for

nλ = fλdλ,
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λ̂

+

−−

+ +

−

Figure 1. Paths from λ̂ to 0 and an image point in the weight lattice of su(3).

since the Weyl dimension formula [15, §24.3] says that

(9) dλ =
∏

a>b

λa − λb + a− b

a− b

is a polynomial in λ. Both of these refinements of the local central limit theorem are
true for arbitrary bounded lattice walks. To state the theorem, we introduce a few
definitions.

A finite difference operator D is a linear operator on functions

p : R
k → R

defined by a finite sum

Dp(v) =
∑

t

ctf(v + vt)

for some constants {ct} and some vectors {vt}. The degree a of D is the minimum
degree of a polynomial p such that Dp 6= 0. If L ⊂ R

k is a lattice, the determinant

detL = Vol R
k/L

is defined as the volume of the quotient space, or equivalently as the determinant of
a positive basis for L.

Theorem 4. Let X be a bounded, mean 0 random variable taking values in z+L
for some lattice L ⊂ R

k and some vector z ∈ R
k. Assume that L is the thinnest such

lattice for the given X. Let

X ′ =

N∑

t=1

X(t)

denote the sum of N independent copies of X. Let

p(v) = P [X ′ = v]

q(v) =
detL

(2π)k/2
√

detκ
e−κ−1(v,v)/2N ,
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where κ is the covariance form of X. Then for every finite difference operator D of
degree a and for every integer b ≥ 0,

lim
N→∞

N (k−b+a)/2|v|bD(p− q)(v) = 0

uniformly for v ∈ Nz + L.

Lawler [21, Th. 1.2.1] proves a special case of Theorem 4 in which a and b are 0
or 2, X has the uniform distribution among nearest-neighbor steps in Z

k, and D has
a restricted form. However, the proof actually establishes Theorem 4 in its almost
its full generality, requiring only that b be even. The conclusion for b odd follows by
taking the geometric mean of the formulas for b− 1 and b+ 1.

Since fλ is given by the hook-length formula [28, Cor. 7.21.6], we can also prove
Theorem 4 in this special case using Stirling’s approximation [17, §4]. Such a special
argument is analogous to the special argument for the Laplace-de Moivre theorem,
which is the simplest case of the usual central limit theorem. But it is not enough for
our later generalization, Theorem 6.

Corollary 5. If λ ⊢ N , then

lim
N→∞

Nk/2(k−Nnλ − C
∏

a<b

(λa − λb)
2e−kλ̂2/2N ) = 0

uniformly in λ.

Proof. We apply Theorem 4. First, we change λ from a subscript to an argument
in certain quantities that depend on it (and implicitly on N):

f(λ̂) = fλ m(λ̂) = mλ n(λ̂) = nλ,

where dependence on N is implicit in the notation. Let L = Λ be the set of all
centered partitions λ̂ (the weight lattice). Define a finite difference operator D by

Dp(λ̂) =
∑

σ∈Sk

(−1)σp(λ̂+ δ̂ − σ(δ̂))

so that

Dm(λ̂) = f(λ̂)

by equation (7). The two important properties of the operator D are first, that it is

antisymmetric under the Weyl group Sk after translation by δ̂, and second, that it
has degree k(k − 1)/2. The degree of D follows from a factorization that appears in
proofs of the Weyl dimension formula [15, §24.3]:

D =
∏

α∈Φ+

Dα,

where Φ+ is the set of positive roots of su(k) and

Dα(λ̂) = p(λ̂) − p(λ̂+ α).

Each Dα has degree 1 and there are k(k− 1)/2 of them. Note that the only antisym-
metric polynomial of degree k(k − 1)/2 is

∆ =
∏

a<b

(λ̂a − λ̂b) =
∏

a<b

(λa − λb),
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When N is large,

De−kλ̂2/2N ∼ C∆e−kλ̂2/2N

because in the limit D becomes an antisymmetric differential operator of degree
k(k − 1)/2. When applied to a symmetric Gaussian, it produces an anti-symmetric
polynomial factor of degree k(k − 1)/2. The polynomial ∆ is the only choice for this
factor up to scale. Thus the operator D explains one factor of ∆ in the statement of
the corollary. The other factor is given by dλ, which is also proportional to ∆ in the
limit as λ ⊢ N goes to ∞. Theorem 4 then establishes the stated approximation for
nλ, where D and dλ each contribute a factor of ∆.

Corollary 5 is evidently the precise statement of Theorem 1.

3. Generalizations. The first way that we can generalize Theorem 1 that is
that we can replace the representation V of su(k) by some other finite-dimensional
representation W . In general a tensor power of such a representation decomposes as

(10) W⊗N ∼=
⊕

λ⊢0

Tλ,N ⊗ Vλ,

where each Tλ,N is a vector space on which su(k) acts trivially. (In this generality it
does not make sense to make λ a partition of N or any other particular integer, so we
take it to be a highest weight, or a partition of 0.) The space Tλ,N is a representation
of the symmetric group SN , but it is not usually irreducible, not even when W is.
Assuming the a state on W⊗N which is invariant under the action of su(k), we may
as before use equation (10) to define a quantum random variable λQM.

It is less trivial to define a classical counterpart λRSK, or even the space of words
on which it is defined. If W is irreducible, we can model it as a summand of V ⊗ℓ

for some ℓ. More precisely, we choose a partition µ ⊢ ℓ such that W ∼= Vµ̂, and we
choose a specific standard tableau QW of shape µ. Then the set S ⊂ [k]ℓ of words
with recording tableau QW indexes a basis of W . The set S can be interpreted as
a “syllabic alphabet”, in the sense that a word w of length N over the alphabet S
is simultaneously a word of length ℓN over the alphabet [k]. Remarkably, the RSK
algorithm is compatible with this dual interpretation: If we define the shape λ of
w ∈ SN by spelling it out in [k]ℓN and taking the usual shape, then once again

dimTλ,N ⊗ Vλ = nλ,

where nλ is the number of words w with shape λ. (One way to argue this fact is
with the theory of Littelmann paths; see below. Syllabic expansion corresponds to
concatenation of paths.)

For example, if k = 2, then V ⊗2 has a summand W = V2 isomorphic to the
adjoint representation of su(2). As it happens, this summand occurs only once. If
we take left and right parentheses { ) , ( } as the alphabet for the basis of V rather

than {1, 2}, then the first component λ̂1 of the centered shape of a string is half the

number of unmatched parentheses. For example, λ̂1 = 1 for the string

) ( ) ( ( ) )

The alphabet S for the representation W is the set of three pairs of parentheses
{ (( , )( , )) } other than the two that match each other. If we rename this alphabet
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{ 〈 , | , 〉 }, then one can check that the only words that match completely are those
that form nested complete “bra-kets”:

〈 | | 〈 | 〉 | 〉
A general string will have a maximal substring of this form, as well as fragments
consisting of unmatched “bras”, unmatched “kets”, and unbracketed separators:

〈 | | | | | | 〉 | | | |
The statistic λ̂1 is then the number of these fragments. For example, λ̂1 = 2 for the
string

| | 〈 | | 〉 〈 | |
since there are four unmatched parentheses if the bra-kets are expanded into paren-
theses:

) ( ) ( ( ( ) ( ) ( ) ) ( ( ) ( ) (

More generally still, we can let W be any non-trivial, finite-dimensional, unitary
representation of any compact simple Lie algebra g. (We say that a Lie algebra is
compact if it integrates to a compact Lie group.) Once again there is a direct sum
decomposition

W⊗N ∼=
⊕

λ∈Λ

Tλ,N ⊗ Vλ,

where Λ is the weight lattice of g and Vλ is the irreducible representation of highest
weight λ. As before this decomposition defines a quantum random variable λQM if
we assume the tracial state ρ on W .

If W is irreducible, the theory of Littelmann paths then provides a satisfactory
combinatorial counterpart λLP with the same distribution as λQM [22]. If W ∼= Vµ,
then we can apply the Littelmann lowering operators to some fixed dominant path pµ

from the origin to µ. There is a natural bijection between the resulting set of paths
P (W ) and a basis of Vµ. Moreover, a word w in Pµ forms a longer path γ(w) given
by concatenating letters. If we apply Littelmann raising operators as many times as
possible to γ(w), the result is a highest weight λ. Assuming the uniform distribution
on Pµ, this weight defines a random variable random variable λLP = λ. Note that
λLP depends on pµ, although its distribution does not.

Although the abstract setting of Littelmann paths looks quite different from the
Robinson-Schensted-Knuth algorithm, it is in fact a strict generalization [31]. Briefly,
if W = V is the defining representation of su(k) and pµ is a straight line segment,
then every element of Pµ is a straight line segment, and these segments are naturally
enumerated by the integers 1, . . . , k. The highest weight λLP of a word w coincides
with the centered shape of the tableau produced by a dual RSK algorithm defined
using column insertion. (The standard RSK algorithm uses row insertion.) By one
of the symmetries of the RSK algorithm [28, Cor. A1.2.11], this shape is the same as
the row-insertion shape of the reverse word w∗. Thus

λLP(w) = λ̂RSK(w∗) λLP
d
= λ̂RSK.
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Finally, if W is not irreducible, then we can choose a separate alphabet for each
summand in a direct-sum decomposition. For example, if

W ∼= Vµ ⊕ Vµ

for some dominant weight µ, then we can let the alphabet be the disjoint union of two
copies of the same alphabet Pµ, a “red” copy and a “blue” copy. The fundamental

properties of Littelmann paths imply that in all cases, λQM
d
= λLP, where

P [λQM = λ] =
dimTλ,N ⊗ Vλ

(dimW )N
.

What is the counterpart to λGUE in this context? Taking Section 1 as a guide,
each element A ∈ i · g defines a real-valued random variable on the quantum space
(W,ρ). These variables have the covariance form

κW (A,B) = ρ(AB) =
TrW (AB)

dimW
.

All together they can be taken as 1-dimensional projections of a quantum random
variable x ∈ i · g∗. Instead of the spectrum, we can consider the orbit of ix under the
co-adjoint action of g on i · g∗. By standard representation theory, ix is conjugate to
a unique weight

λ ∈ C ⊂ h∗ ⊂ g∗,

where C is a Weyl chamber in h∗, the dual space to a Cartan subalgebra of g. If
we assume a Gaussian distribution µW on i · g∗ with covariance matrix κW , the
corresponding distribution for the weight λ is

eW (λ)dλ = C
∏

α∈Φ+

α(λ)2e−κ−1

W
(λ,λ)/2dλ,

where as before Φ+ is the set of positive roots in g. This distribution can be derived
in the same way as equation (1). If g = sp(2n) (the compact form of sp(2n,C)),
it is the Gaussian symplectic ensemble (GSE). But if g = so(n), it is the Gaussian
antisymmetric ensemble (GAE). Since symmetric matrices do not form a Lie algebra,
the Gaussian orthogonal ensemble (GOE) would require some yet more general model.

Finally we can state the general theorem.

Theorem 6. Let W be a non-trivial, finite-dimensional, unitary representation
of a compact simple Lie algebra g of rank r. Let nλ be the dimension of the isotypic
summand of W⊗N of highest weight λ. Then

lim
N→∞

rN/2
( nλ

(dimW )N
− CeW (

λ√
N

)
)

= 0

uniformly in λ.

The arguments of Sections 1 and 2 both generalize in a straightforward way to
proofs of Theorem 6. As before, Section 1 establishes a weak version of it at a rigorous
level. We also comment that the tautological matrixM of Section 1 should be replaced
by a certain i · g∗-valued measurement operator

M ∈ g∗ ⊗ g
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acting on W⊗N . As a tensor in g∗ ⊗ g, M is again tautological; it comes from the
identity linear transformation from g to itself.

Remark. The Lie algebra picture of Theorem 6 suggests another interpretation
which is dual to that of Section 1, and in another sense dual to that of Section 2. If G
is a compact, simple Lie group with Lie algebra g and W is a unitary representation
of G, then the absolute value of the character χW of W has a local maximum at
1 ∈ G. When N is large, the character χN

W of W⊗N is approximately a Gaussian

in a neighborhood of 1. If we inflate G by a factor of
√
N , it converges to g, and

multiplication on G converges to addition on g. The character χN
W converges to

a limit on g, namely the Fourier transform of the Gaussian distribution µW on g∗

defined above. This intermediate picture led the author from Section 2 to Section 1.

3.1. Things out of reach. When g = su(k), Theorem 6 can be interpreted
as a limit distribution result for the shape λRSK of words with various interesting
distributions. For example, if each letter of the alphabet for the representation V2 of
su(2) is expanded into a pair of letters in the alphabet {↑, ↓}, then the distribution
ρ on expanded words is determined by its correlations for digraphs (adjacent pairs of
letters). In this case the correlation between the tth and t + 1st letter depends on
whether t is odd or even. But random words associated with representations such as
V2 ⊕ V3 do not exhibit such irregularities.

Especially when k = 2, these distributions resemble distributions given by doubly
stochastic Markov chains. In other words, the first letter w1 of a random word w ∈
[k]N has the uniform distribution. Each subsequent letter depends on the immediate
predecessor (but not on earlier letters) according to a Markov matrix M :

P [wt+1 = a | wt = b] = Mab.

Here M is chosen so that every letter has the uniform distribution if the first one
does.

What is the asymptotic distribution of the shape λRSK of a random word w ∈ [k]N

generated by a doubly stochastic Markov matrix M? Non-rigorously we expect it to
have the form

CP (λ̂)e−kλ̂2/2vN .

Here P is some polynomial (or at least some function which is asymptotically polyno-
mial) and v is the variance per letter of w. The variance v is defined by the formula

v =

∞∑

t=−∞

kP [w0 = wt] − 1

k − 1

using a bi-infinite word w generated by M .
We have conducted computer experiments with different choices of M with 2-

and 3-letter alphabets [20]. Figure 2 shows the distribution of λ̂1 for 400,000 words
generated by each of the following four Markov matrices M :

A =
1

4




1 2 1
3 1 0
0 1 3


 F =

1

3




1 1 1
1 1 1
1 1 1




C+ =
1

4




3 0 1
1 3 0
0 1 3


 C− =

1

4




3 1 0
0 3 1
1 0 3



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The lengths of the words are 1620, 3420, 1140, and 1140 in the four respective cases.
These lengths were chosen so that the four types of words would have the same total
variance (ignoring boundary effects). The experiments indicate that the distribution

of λ̂1 (the centered length of the longest weakly increasing subsequence) in the asym-
metric distribution A is genuinely different from the referent uniform distribution F .
The lower median value of λ̂1 in this case does not disappear as the words grow longer.
It also cannot be explained as a maladjusted variance, because at the other end the
tail of A eventually overtakes the tail of F . On the other hand, the distribution for
the cyclic Markov chains C+ and C− do appear to converge to the distribution for
F . Their symmetry implies that the longest weakly increasing subsequence sees the
same fluctuations in the transition 1 → 2 as it does for the transition 2 → 3, which is
apparently enough to produce the same distribution.

0
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10000

0 20 40 60 80 100 120 140

C
ou

nt

A

F

C+

C−

λ̂1

Figure 2. Distribution of λ̂1, the centered length of the longest increasing subsequence, for

words generated by four different Markov chains, 400,000 trials each.

Conjecture 7. Let M be an indecomposable, doubly stochastic matrix such that

Ma,b = Ma+1,b+1,

where k + 1 ≡ 1. Then the distribution of the shape of a word of length N generated
by M converges locally to the distribution of the spectrum of a traceless k × k GUE
matrix.

Conjecture 7 can be generalized further by considering other cyclically symmetric,
translation-invariant measures on words whose correlations decay sufficiently quickly.

Problem 8. Let V = C
k and let ρ be the state on V ⊗n extending a distribution on

[k]N generated by a doubly stochastic Markov chain. What is the limiting distribution
of λQM?

Problem 8 is really a statistical mechanics question concerning a quantum spin
chain with certain nearest-neighbor interactions. It cannot be stated in terms of λRSK

because there is no reason to expect that λ̂RSK
d
= λQM in this generality. Yet more
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generally, we can ask about the behavior of λQM for an arbitrary nearest-neighbor
interaction that produces the tracial state when restricted to a single site.

Problem 9. What is the distribution of the longest weakly increasing circular
subword of a circular word w ∈ [k]N?

In Problem 9, we assume that both [k] and [N ] are circularly ordered. We do not
know if there is a suitable circular generalization of the RSK algorithm.

3.2. Infinite matrices. The most interesting case of Theorem 1 to consider
(indeed the case that motivated the result) is the limit k → ∞. We have no firm
results about this limit, but we can propose a model of it that may be important.
Our model might be related to the semi-infinite wedge space model of Okounkov [24].

M ∼=

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Figure 3. The hyperfinite II1 factor M as a matrix algebra over itself.

Consider the Hilbert space H = L2([0, 1]). For every k, the matrix algebra Mk

acts on H by taking

Eab(f)(x) = f(x+
b− a

k
)

if f is supported on [ b−1
k , b

k ], and

Eab(f)(x) = 0

if f vanishes on [ b−1
k , b

k ]. The weak-operator closure of all of these algebra actions is a
von Neumann algebra M called the hyperfinite II1 factor [19, §12.2]. For every k, M
is a k × k matrix algebra over itself (Figure 3). Thus it could be generally important
in random matrix theory.

In this case we are interested in the Lie algebra structure of M (in addition to
its topologies), making M an infinite-dimensional analogue of gl(k,C). We are also
interested in the tracial state ρ, defined as the continuous extension of the tracial
state on each Mk. It is a normal state. It is also a model of the uniform measure on
the interval [0, 1]. Finally we define M̂ to be the kernel of ρ, analogous to the space
sl(k,C) of traceless matrices.

As a Lie algebra, M acts on H⊗N for every N . This action commutes with the
action of the symmetric group SN on H⊗N given by permuting tensor factors. There
is a direct-sum decomposition

(11) H⊗N ∼=
⊕

λ⊢N

Hλ,
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where Hλ is, as a representation of SN , the isotypic summand of type Rλ. Each of
these representations has a measure-theoretic dimension defined using ρ⊗N on H⊗N

(in which H embeds by the usual Leibniz rule for Lie algebra actions):

dimH⊗N = 1 dimHλ =
f2

λ

N !
.

Thus equation (11) is a quantum statistics model for the Plancherel measure on the
symmetric group. For each N , it defines a quantum random variable λQM ⊢ N .

The state ρ⊗N also expresses the uniform measure on [0, 1]N , i.e., the process of
choosing a “word” of N random points in the unit interval. The usual RSK algorithm
is defined for such words. Since the letter of the word are distinct almost surely, and
since the RSK algorithm depends only on the order of the letters and not their values,
it defines a random variable λRSK equivalent to the shape of a random permutation.
Its distribution is also the Plancherel measure.

By the quantum central limit theorem, the state ρ⊗N should produce a Gaussian
measure on M̂ in the limit N → ∞. So should the GUE measure on sl(k,C) in the
limit k → ∞. The relation between these two limits could shed light on the Vershik-
Kerov limit for Plancherel measure [32] and the Wigner semicircle for the spectrum
of a random matrix [23]. The quantum central limit theorem might also predict the
distribution of the deviation from a semicircle, at least to first order in N .
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random matrices, Ann. Inst. H. Poincaré Probab. Statist., 35 (1999), pp. 177–204,
arXiv:math.RT/9708207.

[13] David J. Grabiner and Peter Magyar, Random walks in Weyl chambers and the decompo-

sition of tensor powers, J. Algebraic Combin., 2 (1993), pp. 239–260.
[14] Charles Grinstead, unpublished note.
[15] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts

in Mathematics, vol. 9, Springer-Verlag, New York-Heidelberg-Berlin, 1972.
[16] Alexander R. Its, Craig A. Tracy, and Harold Widom, Random words, Toeplitz deter-

minants and integrable systems. I, arXiv:math.CO/9909169.



118 G. KUPERBERG

[17] Kurt Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure,
arXiv:math.CO/9906120.

[18] Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras,
vol. I, Academic Press, 1983.

[19] Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras,
vol. II, Academic Press, 1986.

[20] Greg Kuperberg, makewords.c, included with the source of arXiv:math.PR/9909104.
[21] Gregory F. Lawler, Intersections of random walks, Birkhäuser, 1991.
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