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DIRICHLET PROBLEMS FOR A NONSTATIONARY
LINEARIZED SYSTEM OF NAVIER-STOKES
EQUATIONS IN NON-CYLINDRICAL DOMAINS*

STEVE HoFMANNT AND KAJ NYsTROMF

Abstract. In this paper we consider the solvability of L2-boundary value problems for a non-
stationary linearized system of Navier-Stokes in the time-varying cylinders of Hofmann and Lewis
[19], i.e., we consider the problem

@:Aﬁ—VpinQ
ot

divi =0 in Q
in a class of time-varying, infinite cylinders
Q= {(x0,x,t) ER xR xR:z0 > Az, 1)},

with Dirichlet and Neumann type boundary conditions.

0. Introduction. Let D C R"™ be an open set. The Navier-Stokes equations is a
n+1 by n+1 system of equations for the unknowns u; (z, 1), ..., u, (2, t) representing a
velocity vector and p(z, t) representing specific pressure. The variables (z,t) € DxRL
represent position and time. The equations are,

ol

(1) 5 — VAT +@-Vi+Vp=F,

(2) divii = 0.

The coefficient v > 0 is called the kinematic viscosity coefficient and F (z,t) is the
specific body force. The equations are supplemented with boundary conditions and
in the initial boundary value problem @(z,t) is assumed to be known for ¢ = 0. For
the fundamentals on the Navier-Stokes equation we refer the reader to the book of
Constantin-Foias [6]. It is of interest to study linearized versions of the equation in
(1). In this paper we consider a nonstationary linearized version of the Navier-Stokes
equations and we are interested in solvability of this system using the relevant single
and double layer potentials. To be precise we consider,
88_1: = Aid— Vpin Q
divit = 0 in Q,

(*)

with L2-boundary data and the main novelty is that we consider this problem in a
class of nonsmooth time-varying domains 2. It is a well known principle in the study
of nonstationary nonlinear partial differential equations that a careful study of an
associated linear problem quite often yields information for the nonlinear problem at
least for some time interval [0,7p). This is also true in the case of Navier-Stokes
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14 S. HOFMANN AND K. NYSTROM

equations, see [12] where the Navier-Stokes equations are studied in smooth time-
independent cylinders and where the solvability of the system in (%) plays an important
role. The stationary version of the system in (x) is often referred to as the Stokes
system. In recent years solvability and regularity results for the Stokes system have
been established in as non smooth domains as Lipschitz, see [10][14][31]. These results
have also proven useful in the study of long-time behaviour of solutions to initial
boundary value problems for the Navier-Stokes equations in infinite time-independent
Lipschitz cylinders, see [11][3].

The nonstationary linearized system of Navier-Stokes, i.e. the system in (x) was
studied by Shen [32] in time-independent Lipschitz cylinders and this paper general-
izes to a certain extent the results of Shen to the setting of nonsmooth time-dependent
cylinders. This should not be misunderstood in the sense that this is not a straight-
forward generalization.

Before proceeding we would shortly like to describe some of the development of
partial differential equations in as nonsmooth domains as Lipschitz in order to put
our paper in perspective. In fact, in the last 20 years there has been a considerable
amount of activity in the study of boundary value problems in Lipschitz domains with
LP boundary data. For the Laplace operator the Dirichlet and Neumann problems
are well understood (see [24][30]). The initial Dirichlet and Neumann problems for
the heat operator in nonsmooth time-independent cylinders have also been analyzed
in depth (see [1][2]). Also, as mentioned above in case of the Stokes system, the
theory of systems has reached a considerable level of maturity. In [10] and [14] L3-
solvability for boundary value problems in Lipschitz domains for the Stokes system
and the systems of elastostatics are considered. Parabolic versions of these results are
proved in [32]. There are furthermore several other important contributions to the
study of linear systems of partial differential equations on domains as nonsmooth as
Lipschitz, see e.g. [9][17].

In [19] Hofmann and Lewis were able to find the optimal condition on a time-
varying cylinder in order to garantee the solvability of L?-boundary value problems for
the heat operator in the time-varying cylinder. In [20], [21] these problems are studing
in the setting of LP-boundary data. This is an impressive achievement and concludes
a development to which several researchers have contributed (see [18][19][22][25][26]).
In [27] Nystrom studied the solvability of L?-boundary value problems for the so called
parabolic Lamé system in the time-varying cylinders of Hofmann and Lewis.

In order to formulate the results of this paper we have to introduce some notation
and give a description of our time-varying cylinders.

Our geometric set up is graph domains of the form

Q= {(z0,2,t) ER xR xR: 29> A(x,t)}

where n > 2. We have to impose restrictions on A(z,t) and in order to do so we need
to introduce some parabolic concepts.
Let z = (z,t) € R"! x R and we let ||z|| denote the parabolic norm of z. Note that
||(8z,8°t)|| = 6||(z,t)|. Recall that parabolic BMO is the space of locally integrable
functions modulo constants satisfying

1
16]] := sup — / |b(z) — mpb|dz < o
s Bl
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where z = (z,t) and B denotes the parabolic ball
B=DB.(z0) ={2€R": ||z — 2| < 1}

1
mpb = E/b(Z)dZ
B

|B| = |B(20)| = ¢(n)r? where d=n+1.

Let A,V be the Fourier and the inverse Fourier transform on R™, and let £, 7 denote
the phase variables. Following Fabes-Riviere[15] we define a parabolic half-order time
derivative by

D,A(z,t) := (H(&T)A(fﬂ')) (z,1).

Define
”AHcomm = ”VrA”oo + ”DHA”*

0 0
Vx— (8%"."61‘”1)’

and ||V, Al s = sup; ||[VzA(+,t)||co. The basic geometric restriction we impose on our
domains is that

where

[Allcomm = [VeAlloo + [Dr Al < o0,

The main reasons why we consider domains defined by a function A(z,t) satisfying
such a smoothness condition are the results of S. Hofmann[18] on singular integrals
on these domains and Hofmann-Lewis[19] results on boundary value problems for the
heat equation in these domains. In fact, as explained in [18, p.213] the notation
|A]lcomm reflects the fact that this quantity is equivalent to the operator norm of the
first commutator [v/A — 9/0t, A]. Since this commutator is the parabolic analogue
of the first Calderon commutator, the present condition is, at least from the point of
singular integrals the appropriate parabolic analogue of the Lipschitz domains which
have been considered in the elliptic theory. In particular, one can not expect to relax
the condition on A to Lip;/, in the time variable [22]. We define a surface measure
on 0N as doidt, where doy is the naturally defined surface measure on the Lipschitz
graph 99y, Q; = {(mo,x,t) e R xR x {t};zg > A(x,t)}. The unit outer normal
to Q; is denoted by Ny = (NP, ..., N/~ 1).

We define LP(0RQ) to be LP-spaces w.r.t. the measure doidt and following Fabes and
Jodeit[13] we define a parabolic Sobolev space in the following way. Let 7 : 9Q — R"
be the projection m(A(x,t),x,t) = (z,t) and set f=for L’l’,l/Q(aQ) consists
of equivalence classes of functions f with distributional derivatives in x satisfying

||f||L11311/2(89) < 00, where

1,1/2

||fHL11’,1/2(aQ) = (| fllpe (Rn) *= IDflp-

Here,

D& 7) = (& IFET)
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i.e.

f=D"1¢, ¢eLP(R"),

where D~! is a parabolic Riesz potential. If p = 2 we have, by applying Plancherel’s
theorem, that

IDfll2 ~ 1D )2 flla + Ve flla-

Here D} /2 denotes the one-dimensional one half fractional derivative of f in the time
variable.

Recall that for 0 < oo < 2 and g € C§°(R) the fractional differentiation operators D,
are defined by

(Dag)™(7) = |7|*4(7).

It is well-known that if 0 < o < 1 then

Daate = [ 1501,
R

whenever s € R. I, = ¢D_!, where I,(s) = |s|*"! for s € R is the one-dimensional
Riesz transform of order v and ¢ is a universal constant. If h € C{°(R™) then by
D!h : R" — R we will mean D,h(z,-) defined a.e. for each z € R*~!. In [19] it is

proved that
[Allcomm = Vo Allso + IDnAllx = [VaAlloo + D12 Allx

and that given € > 0, 0 <e <1 and 7, 0 < < oo there exists § = §(g,7y) > 0 s.t.
if [VzA]loo <7y < 00 then

min{|[ D! All., [DoAll} < 8= max{|[D! Al [D,AllL} <e.

Le. the smallness of || D, A« could equivalently be stated as a smallness condition on
1D! oAl

One may also prove that ||Allcomm < 0 < oo implies that A(z,t) is parabolically
Lipschitz in the following sense,

Az, t) — Ay, 8)| < Blle —yl + [t —s|'?) 2,y eR" t,seR.

As mentioned above we are interested in solvability of the system in (x) using the
relevant single and double layer potentials. As our cylinders are non smooth we can not
expect to use the Fredholm theory of compact operators to prove invertibility of the
boundary operators that naturally appear. Instead we follow the by now ”standard”
approach on domains of Lipschitz type as laid out in Verchota[30]. I.e using the
relevant Rellich-type equalities we try to relate the L2-norm of conormal derivatives
of our singular layer potential to a L2-regularity norm on the boundary. In this paper
we do carry out all the necessary steps in order to prove the relevant Rellich-type
inequalities for the system in (%) on smooth approximating domains Q¢ defined below.
The constants of our inequalities are independent of €. As the reader will notice this
is a nontrivial task in the case of our nonsmooth time-dependent domains. Equipped
with these inequalities we then approach questions of invertibility and existence for the
Dirichlet-, Neumann-, and regularity-type problems on the approximating domains §2¢
and on the limiting domain Q = Q°.
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Let P(z) € C§°(R™). We furthermore assume that P(z) is a non-negative function
and that [, P(z)dz = 1. Le. we assume that P(z) is a parabolic approximate identity.
Let d =n+ 1 and define
T t
X )

For a locally integrabel function f we let Py f(z) be the naturally defined convolution
operator. The “parabolic” lifting p(A, x,t) from RQL_H =R, xR" ! xR onto Q) =
{(zo,7,t) ERxR" ! xR : z¢ > A(z,t)} defined in the following way,

p(\,z,t) = (A + Py\A(z,t),z,t) p(0,z,t) = (A(z, 1), z,t),

Py(2) = A79P(A\7%2) = A74P(

plays, as described in Section 1, an important role in our paper. Let for € > 0

Qf = {(z0,2,t) ERxR" ! x R:z9 > e+ P A(x, 1)}

L3(09°) = {f € L*(09°) : / (fyN)dof =0 for almost all t}
o0

We define a regularity space on 0€2€ in the following way,

—

€ - € € ag € €%
R(00) = {7 € 13,00 N L2(00). (50, V) € £2(-00,00, L3001},
where [L2(0Q¢)]* is the dual space of L#(0Q5). For each t, L3(9€) consists of
functions with distributional derivatives in z satisfying || f[|z2(a0;) < o0, where

[ fllz2os) = [Vafllz and f = fon~', w(A(z,t),z,t) = (x,t). The norm of an
element § € R(99Q°) is defined as

3 [,05 12
19z, o0 + | [ I Ny omey-
—o0

For more details on this space we refer to Section 9. In Section 8 the relevant Rellich-
type inequalities containing the regularity norm of R(9Q€) are proved on 9Q¢ with
constants independent of € provided || Allcomm < 8 < o0, ||D§/2AH* < ¢y < oo with
€0 = €o(||VzAllso) small enough. These inequalities enable us to prove solvability
for the regularity problem in 9Q¢. One may then hope to use this result to study a
regularity problem in the nonsmooth cylinder Q = Q% = {(zp,2,t) E R x R" ! xR :
xo > A(z,t)} by some approximation argument. To us this seems to be a delicate
and subtle point and we have decided to treat the issue separately in an other paper.
One resonable thing to do in order to handle the regularity problem is to make use of
the ordinary Dirichlet problem and in particular the double layer potential to extend
the data into the domain in a way adapted to the problem and then hope that the
restriction to 9Q° of the extension belongs to R(9€°) and that the R(9)-norm of
the restriction is bounded with a constant independent of €. In the case of the system
in (*) the relevant double layer potential of f € L2(99Q) is defined in the following
way,

0060 = D) = [ [ 5= Q= 9/(Qu) do(@s
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Q-X N
m< (Q?t)aNt(Q)>d0t(Q)'

o

For more details we refer the reader to Section 2. What we want to point out is that
formally Df solves the equation in (x) with associated pressure given by

) 1 *
a W< (Qat)th(Q)> th(Q),
0N

t

i.e. the double layer is not a classical solution and weak solutions has to be defined.
The fact that one has to resort to weak solutions complicate matters both in the
Dirichlet problem and in the regularity problem in the nonsmooth time-dependent
cylinder and we have decided (as mentioned above) to return to the regularity problem
in an other paper. We feel that leaving that issue to a separate paper serves to
emphasize that our results are non trivial generalizations of the results of Shen [32].

We are now ready to formulate our theorems. Apart from these theorem many
other results are proved in the bulk of the paper. Let in the following the symbols
N,, ]\7*76 refer to non tangential maximal function operators defined in the bulk of the
paper. The goal in case of the Dirichlet problem is to prove the following theorem,
Theorem A. For the definition of weak solutions we refer to Section 9.

THEOREM A. (The Dirichlet problem) Let Q = {(zo,z,t) e Rx R" 1 xR : 2y >
A(z,t)} where [[Allcomm < 8 < 00 and D] Al < €0 < 00. If €9 = €o([|[VaAloo) is

small enough then the following is true. Given fé L3,(09) there exists a unique weak
solution U solving,

— =Ad—-Vp in €
divii = 0 in Q
U= f a.e on  0f),
INs e (@) 2 < o0
There furthermore exists § € L?(0SY) such that @ can be represented as a double layer
potential, @ = Dg, and
IN.c(DG)]l2 < Call fll2-
In the following two theorems p is unique modulo a function just depending on

time and H D'{ /2 is the composition of the half time derivative operator described

above and the Hilbert transform in ¢. The following Neumann problem is treated.
THEOREM B. (Neumann problem) Let Q = {(zo,2,t) € Rx R 1 xR : x5 >

Az, t)} where ||Allcomm < B8 < oo and ||D§/2A||* < e < o00. Ifeg = €0(]|VaA| o)

is small enough then the following is true. If fe L2(09) then there exists a unique
solution (@, p) to the problem,

%:Aﬂ—meQ
divit = 0 in Q
o

52(Vﬁ)N—pN=fonaﬂ
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IN(@)ll2 + [N (VD) |2 + [|Nee(p) ]2 < 0.

Furthermore there exists § € L*(00) such that @ can be represented as a single layer
potential, @ = Sqg, and

INL (@2 + [ No(V@) |2 + | N<(HD o) ||z + | Nee (P2 < C fllo-

We have the following result on the regularity problem.

THEOREM C. (Dirichlet regularity problem on the smooth approximating do-
mains) Let Q° = {(zg,z,t) E R x R""! xR : zg > €+ Py A(z,t)} where ||Allcomm <
8 < oo and ||D§/2AH* < e < o0. Ifeg = €(||ViAlloo) is small enough then the
following is true. If f € R(00°) then there exists a unique solution (u,p) to the
problem,

ou

a:Aﬂ'—VpinQG
divii = 0 in Q°
ﬁzfon@Qe

IN(@)llz + | N(VE) |2 + | Ve, (9) |2 < 0.

Furthermore there exists § € L*(0Q¢) such that i@ can be represented as a single layer
potential, @ = Sg, and a constant C independent of € such that

INL (@) |2 + | N2 (VD) |2 + | No(HDY i) |12 + | Ne e (p) 2 < Cll fllreoae)-

The paper is divided into the following sections,

. Carleson measures and maximal functions.

. Layer potentials for a nonstationary linearized system Navier-Stokes equation.
. Estimates of square functions.

. Smallness of commutators and more Carleson measures.

. Estimates of the L?-norms of certain fractional derivatives of the single layer po-
tential.

6. The estimate of a difficult term involving the pressure.

7. Estimates of the pressure.

8. Inequalities based on Rellich identities.

9. Invertibility of the single layer potential and existence results.

10. Proof of the uniqueness statements.

U W N =

In Section 1 we introduce the relevant nontangential maximal functions. We also
state an important result which shows how the condition imposed on A(x, t) shows up
in the framework of Carleson measures. In Section 2 the relevant potentials for the
linearized system of Navier-Stokes equations are introduced. Mapping properties for
the potentials are deduced using the results of Hofmann [18] and traces to the boundary
of our potentials are considered. Some fundamental non tangential maximal function
estimates for our potentials are also proved. The main purpose of Section 3 is to
prove certain square function estimates for the single layer potential (Theorem 3.1).
The approach is via integration by parts in ”good” directions and estimates using
the Carleson measure descriptions of our geometry as outlined in Section 1. Section
4 contains certain technical estimates of commutators and Carleson measures. In
Section 5 we prove Theorem 5.1 which states estimates of fractional time derivatives
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of the single layer potential. This kind of estimates play an important role both
in the work of Shen[32], Hofmann-Lewis[19] and Nystrém|[27]. In [32] the estimates
are less complicated as the set up of [32] is time-independent cylinders. In our case
we try to redo the calculations of Shen [32] but as our domains are time-dependent
the nice cancellations used in [32] do not appear and we get complicated corrector
terms. The main focus is then to prove that these corrector terms are small if || D, A||.
is sufficently small. The main tools are partial integration, Carleson measures and
estimates of certain commutators. This is combined with the estimates derived in the
previous sections. In estimating the corrector terms just described one term turns
out to be particularly hard. This term contains the pressure and the main obstacle
is that the pressure does not behave well with respect to the parabolic nontangential
maximal function. Section 6 is devoted entirely to this term. Section 7 contains some
inequalities for the pressure and in Section 8 Rellich identities are explored. The
definition of weak solutions and the proof of invertability of our potentials can found
in Section 9. In that section the existence results of Theorem A, B and C are also
treated. The proof of invertibility of the singular layer potential follows, after some
additional arguments, from the inequalities proved in Section 8. In Section 10 we
prove the uniqueness part of Theorem A, B and C.

1. Carleson measures and maximal functions. Our geometric set up is, as
described in the intoduction, graph domains of the form

Q= {(z0,2,t) ERXR"* xR: 29> A(z,t)}
where n > 2 and the basic geometric restriction we impose on our domains is that
[ Allcomm = |V Alloo + [[DnAll« < oc0.

In the introduction we introduced D? ., the one-dimensional one half fractional deriva-

1/2)
tion operator in the time variable and we mentioned that the smallness of ||D,, A«
could equivalently be stated as a smallness condition on || D} 724l

We also mentioned that ||Allcomm < 8 < oo implies that A(z,t) is parabolically

Lipschitz in the following sense, -
|A(z,t) — Ay, s)| < B(lz —y| + |t — s|'/?) z,y e R™ t,s€R.

In this section we will now state an important result which shows how the condition
imposed on A(x,t) shows up in the framework of Carleson measures.

Let P(z) € C§°(R™). We furthermore assume that P(z) is a non-negative function and
that [, P(z)dz = 1. Le. we assume that P(z) is a parabolic approximate identity.
Let d =n+ 1 and define

Py(2) = AIP(AT%2) = ATP(5, —).

For a locally integrabel function f we introduce the convolution operator

Pyf(z) = / Py(z — v) f(v)dv.

R

Following Dahlberg|[7] and Hofmann-Lewis [19] we use a construction of Kenig-Stein to
define a “parabolic” lifting p(\, z,t) from R = Ry xR"~* xR onto Q = {(z¢, ,t) €
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Rx R ! xR: x> A(x,t)} in the following way,
PNz, t) = (A + Py A(z,t),z,t) p(0,z,t) = (A(z, t), 2, t).

Here v is a small parameter at our disposial and we may adjust v, as ||V, A < 00,
so that,
l <14 aPV,\A(Z)
2 oA
The following lemma is crucial and incorporates the geometrical information in an
analytic and quantitative way (for a proof see [19, p.365-366]).

< 3/2.

LEMMA 1.1. Let 0,0 be non-negative integers and let ¢ = (¢1,...,¢0n-1) be a
multiindex. Define £ = o + |¢| + 0. If ||Allcomm < B < 0o and if we define measures
in the following way,

2
0P\ A(z,t) 20+20—3
d”Z(W N i,

then this is a Carleson measure on erfl if either o +6 > 1 or |p| > 2 with

(i)v(B,.(z) X (0,7“)) < Crd7(2_2‘¢‘_49)b2(1 + B)?

where b= ||Dy Al if 0 > 1 andb=1, if 0 = 0.
Moreover if £ > 1 then

O'P, A

N o || = Cry =2 ON=00(1 4 )

(i)

oo

while if either o4+ 0 > 1 or || > 2 then

</\g+9_1 aZP'yAA(yv 5)) -0

(ZZZ) lim W

(A\y,8)—(0,z,t)

for a.e. (z,t) € R".
It is a well known fact that Carleson measures and maximal functions play an
important role in harmonic analysis. In our case the important maximal function is

the non tangential maximal function operator that we now intend to introduce. Let
a>0and (P,t) = (po,p,t) € Q. We let T'(P,t) = [',(P,t) be the parabolic cone

f(Pat) = {(CIO7(],S) € Q: H(p_Q7t_ S)” < a|q0 - A(pvt)‘}

We also introduce an elliptic cone,
1»:‘e(«Pvt) = {(qu,t) €Q: |p_ q| < a|q0 - A(pat)|}

If h is a function defined on Q we define the non-tangential maximal function N, A :
I — R by }
NPy = sup  [BI(@,s):
(Q,s)€r(P,t)
If (P,t) € 09 then by © l)im(P )h(Q, 5) we mean the limit as (Q, s) — (P,t) in T(P, ).
,8)— (Pt
We furthermore define an elliptic non-tangential maximal function N*,eh : 00 — Rin
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the following way,

N.h(Pt)= sup  |B|(Q,1).
(Qt)ET(Pyt)

And if (P,t) € 9 then by lim h(Q,t) we mean the limit as (Q,t) — (P,¢) in

(Qt)—(Pt)
Lo (P,t).
For a function g defined on Riﬂ and for a > 1 fixed we also introduce the following
maximal function N,g : RT‘I — R,

N.g(z,t) = sup \g|()\7ya s),
A>0,(y,8)EBax (z,t)

where B, (z,t) is the parabolic ball described in the introduction. If we let

Lo(z,t) == {(\y,8),A > 0,(y,s) € Bua(z,t)} one may easily proved that

Ta(p(0,z,t)) C p(Tq(z,t)), for @ sufficiently small depending on a and ||A||comm-
Given a > 1 we will by lim(y y s)—(0,2,1) mean that (A, y,s) — (0,2,t) in Ty(x,1).
Again we define an elliptic counterpart in the following way,

Nieg(,t) = sup lgl(\, . t).
A>0,(y,t)€ Bax (w,t)

If, as in the statement of Lemma 1.1, dv is a Carleson measure on R’f‘l
Rn+l
+

and ¢ :
— R then it is well known that,

[ 1P av <, [Ingo dsar (+)

n+1 R
RY

where C, is the Carleson norm of the measure v. l.e., C, is the smallest constant C*
such that

v(By(z,t) x (0,r)) < Crd,

for all (z,t) € R™ and r > 0. We refer the reader to Stein [29] for more information
on Carleson measures. The version of (%) that we will make use of in our paper is
the following. We let u be function defined on Q. If either o + 6 > 1 or |¢| > 2 then
according to Lemma 1.1 the following is true,

2
//"U, ° p|2 (865"{314;21;2)) )\2Z+29—3dxdtd)\
70x

0 R»

< Cny2261=40)p2(1 4 )2 / |N,(uo p)|? dedt

where b = |D,A|[, if 0 >1and b=1,if 6 =0.

2. Layer potentials for a nonstationary linearized system of Navier-
Stokes equations. Let in the following (X,t) = (xo,Z1,...;Tn-1,1),
(z,t) = (z1,..., &n—1,t). Let W(X,t) be the fundamental solution to the heat equa-
tion and let §(¢) be the Dirac delta function concentrated at t = 0. w,, denotes the
surface measure on the unit sphere in R”. Let I'(X,t) = {T'jx(X,t)}xn denote the
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Oseen’s tensor and let (¢°(X,t),...,¢q" 1(X,t)) denote the corresponding ”pressure”
vector. Le.,

T 92W (X, )
DX, t) = 0, W(X, 1) + [ S g,
Jk( ) ik ( ) t axjaxk S
¢ (X,t) = oM)z;

Then I' is a fundamental solution to the linearized Navier-Stokes equation. For f €
L?(09) we introduce,

t

(X, 1) = SFX.1) = / / (X — Q1 — 5)F(Q, 5) do,(Q)ds,

—00 00
(X -Q.f(@Q.1)
X, t) = — .
sxy = [ S an@)
N
The pair (@, p) solves the system,
ot
A —
5 U—Vp
divi = 0,

in R**1\ 9Q. Note that for each fixed ¢, p;(X) = p(X,t) is a harmonic function in
Q. We introduce the following conormal derivative

ou
— = (Vu)N — pN.

5, = (VAN —p

We first state two important results on LP- continuity of potentials.

THEOREM 2.1. Let ||Allcomm < B < o0 and let fe LP(0Q) with 1 < p < oo.
Define for (P,t) € 9Q and j = 0,1...,n— 1 the following operators

t
Kfip0=po [ [ 2P-Qt-9/Q 9. @ds
J
—00 095

Then
K7 fllp < Copll Fllp-

Proof. Using the argument of Coifman-David-Meyer [4] the theorem is a conse-
quence of [18,Theorem 1], i.e. a consequence of the results of Hofmann on parabolic
singular integrals. In case of the parabolic Lamé system the argument is presented in
[27]. We only need to slightly modify that argument in order to cover the proof of
Theorem 2.1.

A consequence of the theorem is that K7 f(P,t) exists for a.e. (P,t) € 0Q w.r.t. dodt.
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We now consider continuity of S f in the regularity space Lil /2 (09Q). By definition,

¢
Spf(P,t) = / / T(P - Q,t—s)f(Q,s)do(Q)ds.
—00 00
for all (P,t) € 0 for which this expression makes sense. Recall that Lil /2(0%2)
consists of functions with distributional derivatives in x satisfying || f|| .2 e
where |fllzz ooy = DSl and F = fomt, #(A(e,8),2.0) = (z,1). We have, by

applying Plancherel’s theorem, that
IDFll2 = 1D 5 f 12 + Ve fll2,

99) < 00,

where D} /2 denotes the one-dimensional one half fractional derivative of f in the time
variable.

Using [18, Theorem 2] of Hofmann and standard arguments one may prove the follow-
ing continuity result for S, f in the space Lil /Q(GQ). Again the argument is presented
in case of the parabolic Lamé system in [27].

THEOREM 2.2. Let ||Allcomm < 3 < 0o and let f € L2(8). Then

15072z | o < Call 7l

We will frequently make use of the following interior regularity estimate.
LEMMA 2.3. Let the pair (id,p) solve the linearized system of Navier-Stokes in
the parabolic cylinder Ba,(0) x (—4r2 4r?). Then
Val? ddt < / (@ + |p|?) dadt
Br2(0)x(=372,572) Br(0)x(=r2,r?)
Proof. Let 7 =1 by rescaling and let ¢ € C5°(B1(0) x (—=1,1)), p =1

on Bg4(0) x (—(%)27 (%)2) Then

(ily, Wy p*dX dt = / (AT, @) p?dX dt — / (Vp, i) p* dX dt.
B;(0)x(—1,1) B1(0)x(—1,1) B;(0)x(—1,1)

Integrating by parts we have

—% / Iﬁ\zwg—f dXdt = — / |Vii|?p? dX dt
B1(0)x(—1,1) B1(0)x(-1,1)
n—1
+2> (Vul, V)ulpdXdt — / (Vp, @) p* dX dt.
=0g,(0)x(~1,1) B1(0)x(—1,1)
As divii = 0,
— / (Vp,@)p? dX dt = / (Vp?, d)ypdXdt.

B1(0)x(-1,1) B1(0)x(-1,1)
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The conclusion now follows from simple manipulations.
We now define the relevant double layer potential of f € L?(92) in the following
way,

U = D = | O x_ —8)f(Q,s)do s
30X, 1) = DX -—481 Tt X — @t = 9F(Q8) o (@

Q-X &
oTx = gp (@1 Ni(@) dou(Q).

o,

The following lemma contains crucial estimates that will be used frequently in the
forthcoming sections.

LEMMA 2.4. Let ||Allcomm < 8 and let f € L*(9Q). Then

(D[N+.e(Df o p)ll2 < Call fll2,
(@) [[N(VSfop)lla < Cpll fl2,
(i10) [N (HD} ;5 (S 0 p)) 2 < C(L+ 77 Do All) [ f]]2-

Proof. (i) and (ii) are proved by standard arguments. Left to prove is (iii). The
following is an adaption of the argument of Hofmann-Lewis [19,p.367-371]. At one
important step the argument below is fundamentally different from the argument in
[19] as well as the argument in [27]. The reason for this is the poor continuity of the

pressure in the time-direction.
Let (z,t) € R™. Fix a > 1,K > 2,A > 0 and let (%,7) € Bux(z,t). Let @ = Sf. Then,

e—0 ‘f, s|3/2
e<|s—t|<1/e
. sign(t —s) .
=i [ TR we g s
{e<|s—TI<(Ka)?}
it sign(f—s)(ﬂo YA 2. 5)d
lim s wop)(\ T, s)ds

{(KaX)2<|s—1|<1/e}
= g1()\,5:,f) + 92()‘7£’t~)'
Note that if we define

g3\, T, 1) = sup [(@op)r(NZ,T)]
{r:|T—t|<(2KaX)?}

then

DO ED <ana D) [ s ds < Cakga(\ 3D
|s—#|<(2a K )2
Furthermore, if (7 — ) < (2Ka))?, then at (A, Z,7),

OPA
or ’

(@0 p)r = (tr o p) + (tz, © p)
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and by applying Lemma 1.1 we have

. 0P, A - _ L
(G0 ) (2222 ) 08 7)] < e poN) DAl Nen i, © )0,

where N, is the nontangential maximal function defined relative to ', o (2, t), where
1 is so large that (A, Z,7) € ¢, ko(z, ).

We need to estimate |@, o p(\, Z, 7)|. Using the equation as in Hofmann-Lewis[19] and
Nystrom[27] we will run into trouble because of the poor continuity of the pressure
in the time-direction. Instead we use the homogenity of the kernel of S f, i.e. the
homogenity of I'(X, ¢). Recall that

D(6X,6%) =6 "I'(X,t) = 6~ (X, 1).

L.e, the kernel is homogenous of degree d—1. The kernel of ., is therefore homogenous
of degree d + 1. Using this we get, after some fairly standard arguments that,

|- 0 p(\, &, 7)| < CATIM(f)(z, t).

Here M is a parabolic Hardy-Littlewood maximal function.
Summarizing we have proved the following estimate of g3(\, Z,t) when (Z,t) € Bax(z,t).

—

l93(X, 2, 1)| < Ca g | (YA) THIDRAll N (i, © p) (,8) + AT M(f) (2, 8)]-

Using part (ii) of the lemma and continuity of the maximal function we may conclude
that

IN:(g0)ll2 < CIllz[L + 7 D AlL].

We therefore have the desired estimate for g;.
To estimate go(A, Z,t) we do study the function

_ - i sign(t —s) , -~
ga(A\, T, ) := lim / ﬁ(u 0 p)(0,Z, s)ds.

e—0
{(kaX)2<|s—t|<1/e}

From Sobolev type estimates we conclude that g4(\, T, t) is well defined for a.e. (Z,1) €
R™. Arguing as in [19, p.368] we have, as |z — | + |t — £]'/2 < ca),

|92()‘7553t) - g4(>\,f£,t)| S

o (X0 M(N.(0 9)) .0) + A2 (@0 ) (0. 5.) ).
=0

where M, denotes the one-dimensional Hardy-Littlewood maximal function in the
t-variable, while the other variable is held constant and M,(LQ) = M,, o M,,. With the
same deductions as above, in particularly noting the estimate of u;, we get

—

NP0 3.7+6) < o (M)t t4€) 477 Dl x (T W (@nion) 49 )
1=0
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where N, is defined relative to I'.,. Note again that for 0 <i<n — 1,

L, - 0P, A .
(0 p)a, = (ilzy © p) =52 + iz, © p).

Using Lemma 1.1 once again and the inequality above we deduce

n—1
N.ga(z,t) < iupg4(/\, z,t) + K 'Cop(1+7 YD, A|.) Z M (N (ty, 0 p))(w,t)
>0 i=0

+ K Cap M (M (f)) (2, )
Define 9 (z,t) = sup |ga(\, z,t)| whenever (z,t) € R™. We have from Part (ii) of our
A>0
lemma and the Hardy-Littlewood maximal function theorem that
IN.gzlls < K" Cap(L 4+ [DnAlL) | Iz + [14]]2-

It therefore sufficies to prove the estimate

1$ll2 < Casll Flo-

But this estimate follows from the argument presented in [19, p.369-370]. The proof
is therefore complete.

We will now consider traces to the boundary of 99 of the potentials under con-
sideration. Recall that N;(P,t) is the unit outer normal to 0 at (P,t) € 0€);. The
normal exists a.e w.r.t the projective surface measure.

—

LEMMA 2.5. Let f € L2(09Q), a > 0 and j,k € {0,---n —1}. Let v/ = (Sf)I.
Then for a.e. (z,t) € R™,

ou? 1 . ‘ B
li A = — Nk J NkN] N.
(/\7y7s)l—>m(0,w,t) oxy, °p(\y,5) 2{ ¢ f ¢ Ni (Ni, )}

t

+p.v/ aal;i:(P—Q,t—s)fT(Qs)das(Q)ds,

—00 00

and

—

<Nt7f_> +pv / Wd

082

€

pop(/\,y,t) = Ut(Q)'

1

lim —=

(Ay,t)—(0,2,t) 2

In the first terms in these two expressions f is evaluated at the point
(P t) = (A(z,t),x,t). Ny is the unit normal at (A(z,t),x,t).

Proof. The proof follows from standard arguments. See [25] in case of the heat
operator.

We know that there exists a basis for the tangent space of 9Q; at (P,t). Let
{T; }?;11 = {T;(P, t)};l;ll be such a basis. Using Lemma 2.4 and following [19,25] one

may prove the following for appropriate operators K, and K,.
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LEMMA 2.6. Let f € L2(8Q). Fiza >0. 1< j <n—1. Then for a.e. (z,t) € R"
we have

(i) I
(if)

(A7y7t§@07x,t) [<((V5f) o p(A,y,t), N o p(0,,1))) — (po p(A, y, 1)) - (Ni o p(0, 2, t))

= (%f“l‘Kuf) 0 p(0,,1),

Gii)  lm  (V(SF)op(Ay,s). Ty 0 p(0,a.) = [(SF) 0 p(0,2,8)], .
(Ny,8)—(0,z,t) J
(iv)

. 1 ~ 0
1 D )\ t - - = KV 07 7ta
T fopA\yt) ( 5f f) 0 p(0,2,1)

(A,y,s]SLIn(O,:c,t) HD%/Z(Sf op)(\y,s) = HD%/Z(Sf 0p)(0,z,1).

Now let p_(\,z,t) = p(=\,z,t) when (\, x,t) € R™™ = {(\,z,t) = A < 0 and
(z,t) € R"}. Then p_ maps R™™ onto R"**\ Q and p_ extends continuously to the
closure of R™™ by putting p_ = p on the boundary of the domain. Non-tangential
cones and maximal functions are naturally defined. In the same way as the lemmas
above are proved one may prove the following

—

LEMMA 2.7. Let f € L2(8Q) and let @_ = Sflg-. Fixa>0. 1<j<n-—1.
Then for a.e. (z,t) € R™ we have

€ —

(DR op- 09 = (374 Fof ) 0p-0.2.0),

(#)

(i)

lim
Ny t)—(0,,t

()\,y,t%irn(o,z,t) |:<(Vﬁ)) o p*()‘7y7t)7Nt © p,(07x,t))> - (p, Op,(>\,y7t)) : (Nt o p,(O,x,t))

1

= (_if + Kl/f) o p7(07xut)7

i) | lmo (V) p-(\yes)Tyop-(0.0,8) = [(@-) 0 p (0.3,
(Ny,s)—(0,2,t) Ty

(iU) Ay SI)LIII(O ,t) HD%/Z(L_LL Op,)()\,y,s) = HD%/Q('L_L‘* Op,)(O,x,t).

3. Estimates of square functions. This section is devoted to the proof of the
following two results.

THEOREM 3.1. Let ||Allcomm < 8 < 0o and f € L2(8Q). Let Sf be the single
layer potential associated to the linearized system of Navier-Stokes. Assume that v <
1/2 and b = |D, A||« < €o = 73T Then

oo

(2) //mej Op‘QAdZd)\SCBHﬂ@, 0<i,j<n-—1,

0 R~

o0
i) [ [ Vo P dzin < coll {3 0i<n-1,
0 R™
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oo

(it) [ [1D4a(is, 0 pPAGaN < ol B, 0 <G <01
0 R»

COROLLARY 3.2. Let || Allcomm < 3 < 0o and f € L2(dQ). Let & = Df be the
double layer potential off. Then,

//'”wﬂplzkdwécm\ﬂlé, 0<j<n-—1

0 R~

Proof. D f =D, JF + Dy f where Dy ﬁ for each t, is the gradient of a single layer
potential associated to the Laplace operator. D; f is treated using Theorem 3.1 and
Ds f is treated using square function estimates for the single layer potential associated
to the Laplace operator in an argument similar to the one carried out in the proof of
Lemma 3.3 below.

Recall that the pressure

—

00y

is harmonic as a function of the space variables for fixed t. We will need the following
lemma,

LEMMA 3.3. Let the pressure be defined as above with f € L2(09)). Then

o0

//|Vpop|2/\dzd)\ < C/|pop(0,x,t)|2dz < C/|f|2datdt.
onN

0 R™ R

//|Vpop|2)\dzd)\=// / IVp o p|2 A dzd)dt

0 Rn —o0 0 Rn-1

Proof.

o0

<C /(/ |Vp25((xo, x), 08%) drodz)dt < C’/ |p o p(0,z,t)| dz.
—oo R™
Here we have used the result of [8][30] on the solvability of the Dirichlet problem for
the Laplace operator on Lipschitz domains as well as a square function estimate.
LEMMA 3.4. Let r,i € {0,..,n — 1}, E = (1+ 22342 /(1 4+ |V, P,y A]%) and
U= Sf with fe L2(09). Let p be the associated pressure. Define,

A= 7/E(u o p)( Pp_ )\ dzdA
LEL T4 p axraxl p .
0 R’IL

There exits a constant C = Cg such that,

n—1n—1

. 7112 £ =T r 2 1/2
S Al <CIFIB+ I ( D0 [ [ b, 0 pPAdzar) .

r=0 =0 r%,7=07 R™
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Proof. Recall that for fixed t, p;(X) = p(X,t) is harmonic. Let ¢ # 0. Then,

(2o gy, = (Lo PPt (T,
oz, Plai = 0x,0xq P 0x; 0x,0x; p
Op _9%p OP,\A &%p
(Txoop)mr*(afvgop) o, JF(axTaIOOP)
ILe.,
6}) 8P7>\A @ o 82]) ap 8P,MA6P,MA
Gy P2~ an g P = Gmom ° 7~ 522 ° P an, o

Using this identity to express ( 85%’% o p) we have for i # 0, r # 0,

R‘IL
P\ A
//E Uy, ©p) 68? (;—ﬁ)Op)I,_)\dzd)\
0 Rn !
82]) OP. )\Aa
E(u" gpr gl
+// (1,2 )55 © ) RS E RN dea
0 R™
e} ) 5
= —//(E(umi OP))zi(aTP o p)Adzd\
0 R» "
r OP\A_ . Op
B(ul, 0 p) =22, (2L 6 p),
0 Rn
Ji 02 OP, A 0P\ A
E(u" agp oA .
v [ [ B0 05 0 TG 2rE R A dean
0 R™

Obviously by definition,

We now let ¢ = 0 and r # 0. We need to manipulate ( Bxa 350 ©p). But

op _%p  OPNA , 9Pp

(87330 Op)zr - (8737(2) Op) axr 8337-61'0 Op)

We therefore have,



LINEARIZED NAVIER-STOKES EQUATIONS IN NON-CYLINDRICAL DOMAINS 31

2
- [ [ B, 00k 0 0 TpE A dzan

9°p  OP,A
_ //E(ugo op)(a—xg 0 p) S2E N dzd
0 r

i.e., using the Carleson measure characterizations of Lemma 1.1 we have

n—1 x° 1/2
S 4, < C[IIN*(u; op>||2( /] |Vpop|2xdzdx)
r,1=0 0 Rn

n—1

12 , % 1/2
(Z//m“ o p| Adzd)\> (//|Vpop|2/\dzd)\>
0 Rn»

n—1,
82]) 8P ,\AaP )\A
E(ul — T R NdzdA
* Z // (uxi0p>(8x(2) ° ) G Or,  Oz; Adz ’
r,2=0 0 Rn
n—1, %
r 82]) GPWAA
JrZ//E(umOo )(&E °p) =g Adz d)\‘

o[ [t oo

Using Lemma 2.4 and Lemma 3.3 the first two products are controlled. We therefore
have to handle terms of the form,

// ul o ’; p)Adzd),
Lo

0 R»

where F' is a function containing derivatives of the defining function for the domain.
Using that p is harmonic for each fixed ¢ we have

n7182p
=X g2er
2

_ 8P7AA7 @ 7]9
_ Z((%o TR = o), )~ IVPpAR(5 o)

2
Lo

Le.,

n—1
8P>\A 8])
1+ [VPRAP) (55 00) = > 2y~ 0 p)a, |-
(1 +[VPaAP) Op < 8%0 o, +(axjop) j)
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Therefore,
i 2
//F(u;lop)(% o p)AdzdA
0 Rn 0
T [ Fuiop i OP A Op
Ve — z: | Adzd\
O/R/ 1+|VP,Y,\A| ;( o0 * P o, o, 0P ) :

T () e

i Twop 8P7>\A ap
+Z//( (1+|VPA2) Oz, > (a o o p)Adzd.

0 R

Now all the terms in this expansion can be handled using Lemma 1.1, Lemma 2.4 and
Lemma 3.3.

Proof of Theorem 3.1. We start by proving (i). Integrating by parts twice in A

we have,
]::_,/( dz—// ug, o p)x dzdA
0 Rn
//| a2 A dzd\ — // o p)arAdzdA.
0 R» 0 R»
Using that
. 0P A

we have that

0 Rn
=T+ T+ Ts.
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As uj = Au" — p,, we have that u} , = Aul, — ps o,. Let,

n—1
, OPpA
K= Z |:(ufifo °© p)xk 8;k - (uz,zk © p)zk .
k=1

Then,
02

p
0x,0x;

Ktz 0p— op=(1+|VaPpAP) (W] 2 0 p).

Substituting this into 75 and introducing E = (1 + 81:;;‘4)2/(1 + |V PaAl?),

o0 n—1
o OP,, A
T = _ E T r % B r Ad dA
b O/R/ ; O, ( (uy, o P)) ((ugwO o p) e (. 0 p)) s
s n—1 82P )\A
* /E(“;Op) (Z(uim o p) 6”2 )Adzd/\
0 Rn k=1 Ly
~ [ [ Bz, 0 p, 0 pyrdzan
0 R
+ / / E(uy, © p) (4, © p) apg;AAdzd,\
0 R™
oo ) azp
*//E(uzi ° P (Ggam; ° PN dzdA
0 R™
Using that
‘//(%z 0 p2(1+ 222425 g
L0 8)\
0 R™
©0 n—1
o OP,\ A
| E(uy r Jo oA r \dad
+0/R[kz—:1 a$k< e, Op)) ((u” 0k il GO Op)) 2d\
o0 n—1
- 7//EZ |ul, ., © pI*AdzdX
0 R» k=0
[e%s} 8E . n—1 . aP A )
* // 9y Ui 0 ) [Z(“zizo ° p)ﬁ —(ul,, o p)] Adzd)
0 R™ k=1

and collecting the expressions we have derived so far,
o0 n—1

I= —//EZ Wi, o p2AdzdA
0 Rrn AL

33
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n—1
/ / aE Uy, [Z(u;iro o p)% — (ul, 4, © p)} Adzd\

k=1

n—1
" / [ B, op)(Z(u;m o )2 ;;AA)M ax
— k

. 02
- //E(u;i op)(Tg; o p)Adzd\

2
- [ [ 00, 0 SRR i

Le.,
I =51+ 95+ 853+ 54+ S5+ S¢ + 57,

by definition. S; is the expression we want to estimate. Sy, S3,S5 and S; can be
handled using Lemma 1.1 and Lemma 2.4. This gives,

- 1/2
Szl+53I+IS5|+IS7ISC||fQ(Z//um opPAGN)

j=0 Rn

We therefore need to consider

Sy = —//E(ug1 o p)(ur_ op)t)\dzd)\.

9%p
//E Uy, 0 p 5‘x e o p)AdzdA.

We first consider Sy. Integrating by parts w.r.t A we have,

S4://E)\(u;io A%lzdwr// uly o p)?liaA*dzdA.

0 Rm» 0 R»

Integrating by parts w.r.t. to t in the last term we may continue,

_ / / Ex(uZ, 0 p)(ul, o p)iX>dzdA — / / Ei(u ul o p)aN>dzdA

0 ’n 0 Rn
= Sa1 + Sao.
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Calculating F; and using Lemma 1.1, Lemma 2.4 we have

n—1n—1 ¢

1/2
Sul < €T ( XX [ [ ity o rdian)

r=0 j=0 0 R»

7 Py A
s = [ [ B 00,0, 00T E Nz
0 R™

o0

i / / Ea(u}, 0 p)(u,, 0 p)N2dzd
0 Bn

= Sa11 + Sa2.

Again using Lemma 1.1 and Lemma 2.4 we have,

n—1n—1

s 1/2
|S411] < C'||f||2<z Z// Uz, op|2)\dzd/\) .

r=0 j=0 0 R»

The same estimate is true for Sy412 using the interior regularity estimate in Lemma
2.3.
We now turn to Sg. But by Lemma 3.4,

n—1n—1

< 1/2
i < {17+ 11 (5 [ [ b o pPadsan) .
0 Rn»

r=0 j=0

Combining our estimates and using Cauchy Schwarz with € we may conclude the proof
of part (i) of the theorem.

Part (ii) is an immediate consequence of part (i), the interior regularity estimate of
Lemma 2.3 and the estimate in Lemma 3.3. To prove (iii) we integrate by parts w.r.t A,

oo o0

// |Di/2(ﬁzj o p)*PAdzd\ = 2//D§/2(ﬁ% op)Dim[(ﬁIj o p)a] A2 dzdA
0 R» 0 Rn
= 20//(1795_7 0 p)i(iiz, 0 p)AA? dzdA.
0 R~

(#47) now follows from (4), (i¢), Lemma 1.1 and Lemma 2.4.

4. Smallness of commutators and more Carleson measures. In this sec-
tion we collect a few estimates of commutators frequently used in the forthcoming
sections. By M,, we denote the Hardy- Littlewood maximal function in the n-variable.
We also define a truncated maximal function in the following way. Let o > 0. Then,

MG (O = s oo [ ez 4 0] da

0<a<o?
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The kernel of HDi/2 is k(t) = csgn(t)[t|=3/2. Let

ki(t) = k(t)X{ssi<r2azy(t), Ka(t) = k(t)X (s> r2a23 (1),

where R, A > 0 and let D; and D> be the associated operators. The following lemma
is essentially Lemma 5.16 in [19]. We only spell it out in a more general form as it
will be used frequently in the forthcoming sections.

LEMMA 4.1. Let R > 2 and let j € {0,...,n — 1}. Then,

i) |21 25228 a0 < o Ry 2Dl M oo (0
(i) | |D2 2522 o] < con R bt Gt )0
i) {[01. Z 22 gt 0)] < annrar (T2 o gt 0,

GQPW)\A(JJ, t) )

e\ R i wglo )0 (SR
J

where ¢r(t) = (RX) 7M™ 2x (1512 (r2)2} (), @n (1) = RAka(2).

Proof.

0P, A OP\A(x,s) OP\A(z,t)
D v _ _ v oy .
[ 1, 7z, ]g(m,t) / k(t s)( oz, oz, g(x, s)ds

{s:]s—t|<R2N2}

Using the mean-value theorem and Lemma 1.1,

OP,,
H:-Dlv 8,13]' ]g(a@t)’

- ] / [ k=99 ;P 22 sl = )l ) dsdn|
04

s:|s—t|<R2A2}

< cor 2 DAl A2 / 1t — 5| V2|g(z, )| ds
{s:|s—t|<R2A2}
< cor 2 RIDu AN My (gl ) ).

Also,

= k(t —s) (ap'yg;l@’ 5) _ 3P7>(;)1;1(‘:z:, t))g(x, s)ds|.
J j

{s:|s—t|>R2A2}
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Applying part (i) of Lemma 1.1 we immediately get the estimate stated in part (ii)
of the lemma.

0?P, Az, s O?P Az, t
- / k(t_s)< gi-a(x - a@-a(x )>9(x’s)ds'
J J

{s:|s—t|<R2X2}

Again using the mean value theorem as well as the truncated maximal function defined
above we have the following estimate,

2 2 3 .
P*PpAx,s) 0 P,YAA(:v,t)' < cals - t|Mf‘)‘<a P A(z, )>(t)
Oz ;0N Oz ;0N OOz ;0z,

The inequality stated in part (iii) of the lemma is a consequence of this estimate and
standard arguments.

9?P,) A

|:D2a (91’](9)\ :|g(f£,t)
0?P,\A(z, s) B O?P Az, t)

- k(t — ds.
/ ( $)< ;0\ ;0\ >g(x’5) °
{s:]s—t]>R2A2}

As in the estimate of |:D2, 81;;;,4} gz, ),
0?Py\A(z, s)

)
J

{s:|s—t|>R2A2}

_ _ 82P )\A(.’I} )
< 1p—1 . Bl ) .

g(x,s)ds

Also using Lemma 1.1,

62P7,\A($, t)

k(t = ) Ox; O\
j

{s:|s—t|>R2X2}
2
< Cﬂa P Az, t)
837]8)\
where ¢%, (t) = RAk2(1).
Let in the following ¢ra(t) = (R)\)’l|t\*1/2X{S:‘S|§(R>\)2}(t).

g(x,s)ds

(@Fx * g(@, ) HATTRTY

LEMMA 4.2. The following measures are Carleson measures on RTFI having Car-
leson norms stated below.

PPA(x,-) .
TINAL )N )| APdzd
92,000z, )()} =

(83PMA(;E, )

() dmOnan) = [

2
(i1)  dups(\,z,t) = dra * [M}? PRV )(t)] Ndzd,
] n
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) 2 a\

(i) dpaat) = a2 (2Pt ) 0

(i) dus(n ) = (51 - PoAGe >|) a2

(i) pa((0,7) x By(x,1)) < Cpy~*|[Dn A 2R,
(i) p2((0,7) x Br(,1)) < Cpy " [DnAlZ R,
(iid)  ps((0,r) x By(x,t)) < Coy~* | DaAll,

(@) pa((0,7) x By(x,1)) < Cp7*[|Allcomm-

Proof. The estimates of the measures in part (i) and (i¢) can be found in [19,
p.394-395]. The estimates in (iii) and (iv) are proved by similar arguments.

LEMMA 4.3. Let @ = Sf with f € L2(0Q). Let v < 1/2 and ||D,All, < 757
Then the following is true for all tripples (j, k,r),

T

0 R»

2
AdzdA S 22| fl3-

—— | (ug, ©p)

Proof. Integrating by parts with respect to A and using Cauchy-Schwarz with e

we have
3PMA 2
HDl/Q, (xk p) Adzd\
0 R»
2
/ / [HDW,‘?P A (ul, 0 p),| APdzdx
0 Rm»
2
/ / [HDW,%P ”5;4 (ul, 0 p)| AdzdX
0 R»
= N1+N2.

Using part (i) and (ii) of Lemma 4.1 with R = 4~!, Lemma 1.1, Lemma 2.4 and
Theorem 3.1 we have, Ny < 72| f]|3. Using Lemma 4.1 we have

s [ fJan (o0 (Z55) o
" 7 / 10 0, o )0 (222 e )

/ / ’ MRA@éZ%fézn))(“%A* (uh, 0 0)

0 R»

2
AdzdA

Adzd\

2
A dzd.
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Noting that [¢}, * (ul, © p)(z,-)](t) is non tangentially bounded by M, N, (uf, o p),
letting R = y~!, using Lemma 2.4, Lemma 1.1 and continuity of the Hardy-Littlewood
maximal function we have,

. 93P\ A(x, ) :
Nol < 2 2 // MR)\ Y I aA\ ) t T 5d d\.
INo| S 7 FII2 + /) Ropy * M, D000z ( )(uxk o p) \° dzd)\

Choosing R = v~ ! and using Lemma 4.2 on Carleson measures as well as Lemma 2.4

we may conclude that, |Ny| < ~2|f]|2. This completes the proof of Lemma 4.3.

5. Estimates of the L?>-norms of certain fractional derivatives of the
single layer potential. This section is devoted to the proof of the following theorem.

THEOREM 5.1. Let ||Allcomm < 8 < 0o and f € L2(09). Let @ = Sf be the
single layer potential associated to the linearized system of Navier-Stokes. Assume
that v < 1/2 and b = ||D, Al|. < o =89, Then,

/ / DY (i, 0 )\ 2) dadA < Cy I3,

0 R
DS, 40T 0 p)(N, 2)|* dzdX < C | 4IIF113 + || || 1S5 flz2 . com)
1,1/2
0 R
Proof.
// |D1/4 p)(\, 2)|? dzd\ = (partial integration in)\)
0 Rn»
. / [ Dt 0 DL, 0 pa)rdedn
0 R»
= 72//D§/2(u;j o p)(uy, o p)rAdzdA
0 Rn»
//| P)aPA dzd\)M? x //\Dl/2 " o p)PAdzd))'/?
0 Rn» 0 R»
//| Uy o © P)PAdzdN)/? x //|D1/2 " o p)PAdzd)\)Y/2.
0 Rn» 0 Rn

Using Theorem 3.1 our estimate follows. We now turn to the other estimate in the
theorem. Define @" = HD] ,(u" o p).

Z//\D3/4u o p)[}dzd\ = Z// (u” o p) dzd

T 0 Rn " 0 Rn
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—Z// (u” o p)e(1+ aP”AddA Z//~Tu§op )\Add)\

" 0 R" 0 R™
0P A OP A
u, ——dzd\ =T, + 15 + T5.
+Z Uy ©P) g o 9* 1+i2+ 5
" 0 Rn

We first focus on T;. Recall the definition of the conormal derivative
ou
ov '

If @ is a vector and if (i, p) solves the linearized Navier-Stokes then,

= (Vi@)N — pN.

/wg— dXdt = /u’)’Adeth—/u'prdth.
Q Q Q
But,
/erur dXdt = /wTVurNt dodt — /VwTVuT dXdt.
Q o0
We now let w = w"e, where w” o p = w" and e, is the unit vector in the x,-direction.
ie.,

.,
/ “’Taaut _ / WV Ny doydt — / Vo V' dXdt — / w” (;’)p dXdt
Ly
Q 50 Q Q
- / W' (V' Ny — pNY) dodt — / V' Vu dXdt
a0
e - Op
+ [ w'pN; dodt — | w B dXdt.
o0 Q "
As o P
r T r 9P w"
/w pN| dotdtf/w oz, dth:/8
o0 Q Q
we have
OP,\A
T = Z// (u" o p)e(1+ B\ YdzdA
" 0 Rn

T

_ZU (Vu' Ny — pNT)do—tdt—/Vw’“vu dthJr/gw
Ly

Q

P dth] :

To estimate 77 we therefore have to consider terms of the following forms,

ow" ou”
63:] oz

A = Bw

dXdt B= Z

We postpone the proof of Lemma 5.2 and Lemma 5.3 below in order to complete the
proof of Theorem 5.1. Lemma 5.2 is proved at the end of this section. All of Section 6
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is devoted to the proof of Lemma 5.3. As divél = 0 the term B would be zero if we were
studing a time independent cylinder. Now we want to prove that this term is small
in an appropriate sense. This turns out to be highly non trivial and for expositure
reasons we have devoted a whole section to that term.

LEMMA 5.2. Assume that v < 1/2 and b = |D, A« < g =374, Then, |A, ;| <
YIFII3.

LEMMA 5.3. Assume that v < 1/2 and b = |D, A« < eg = 43¢, Then, |B| <
V3.

Using Lemma 5.2 and Lemma 5.3 we have now proved the following estimate for 77,

1731 < Ca 13 + 1 5 el om |

Recall our main objective, i.e to estimate,

Z//\D3/4 u” o p)|2dzd)\ =Ty + Ty + Ts.

" 0 Rn
T5 and T3 are left to treat. In the following we use the summation convention. Triv-
ially,

P A 1/2 0 _ 1/2
|T2|<C<//| 8 v>\ d dA) X (//|Au70p+887pop|2)\dzd/\)
J
0 R»

< CL+~7"B)IAE S I3,

by Lemma 1.1, Lemma 2.4, Lemma 3.3 and Theorem 3.1.
Left is therefore to manipulate T3. Integrating by parts w.r.t. A we have that the
following formula is valid for T3.

Ty = // ur o an*Ad d\ = — // goop)apg)‘A)\d dA

0 R™ 0 Rn»

o aPMA )P Pd
—//w (uh, o p Adzd\ — // Uy, © BTN AdzdA.

0 R» 0 R»

Using this formula for 75 we have

o] 2 1/2 00 9 1/2
T3] < (//D )\dzd/\> (//](ugoop)f(a%f“) Adsz)
0 Rn»

0 Rn

o0 1/2 , oo 1/2
o (0PaAN? / . . /
+ |HD1/2 (u" o p)| —5r AdzdA (Ul 4y © )| AdzdA

i/z((ur ° P)/\)

0 R» 0 R»
[P PpA
AdzdA
‘// o © ) gian 4 ‘
0 R™

=M; - N1+ My - Ny + A.
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Applying Lemma 1.1, Lemma 2.4 and Theorem 3.1 we have
(N STl [Me] Syl

IN2| S | fll2 |Ma| S| fll2-
ie.,

Ty < [vnfn% +A}

To estimate A remains. Integrating by parts w.r.t ¢t in A we have

7 OP A
_ t T T 2
A—//HDl/Q(u © p) (15, © p) "B AdzdA

0 Rm»

- 7/[HD§/2(u" o p)le(ug, © p)

0 Rm»

T PoA
- / / HDj jp(u” 0 p)(ug, Op)t%kdw

0 Rn

0P, A OP,\A
//HDI/Q[ Op)#-k(u;op)} (ugoop)%)\dzd)\

OP,, A

ot
0 Rn
[ .. 0P,A . 10P,A
—//HDi/z u" o p) {(umm op)#: +(umop)] a% Adzd
R”L
P A P, A
//|: Uy, © 6 "/>\ +(u:0p)]HD1/2|:( . Op)%])\dzd/\
0 R
r OP A OP, A
t r r v 0%
_//HDl/z(U OP)(UwOwDOP)TT)\dzd/\
0 Rn

Ji OPA
—//HDi/Q(uTop)(u;Utop) (;)\ AdzdA = Ay + As + As.
0 R

Using Lemma 2.4, Theorem 3.1 and Lemma 1.1 one may conclude that

|As + 45| < Covll F113.

T [ N | P T

0 Rn

//[ Hao © GPMAJF( )}HDW[( Op)]a];“AAd dA.

0 R»
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Applying Lemma 4.3, Lemma 1.1, Lemma 2.4, Theorem 3.1 and Lemma 3.3 in a by
now familar way we may conclude that, |A;| < Cgv| f||3. Putting it all together we
have proved that |T3| < 7| f||3. This proves Theorem 5.1 modulo Lemma 5.2 and 5.3.

We now turn to the proof of Lemma 5.2. First we will derive an expansion of A4, ;
from which we will able to handle all terms. Such an expansion was presented in a
similar way in [27].

LEMMA 5.4. Letr, j € {0,....,n—1}. Then

0P, A
hes =850 [ [ 1Dty 092228t 0 ) 00
0 Rn
- 0P, A
(I =450 //HD1/2 ))}(umjop) 5; dzdA
0 Rn
0P, A
%40) //QHDW | (u zoop)>(u )ardzdA
0 R
OP A
95,0 //([HDl/Qa — A (u IOOP)A>( YAdzdA
0 Rn
0%P, A
95,0 //HDl/z M}\ (ul ul p)]( JAdzd\
0 Rn
0*P. A . i,
— (=050 // 5‘:1676/\)\ Dis {( OP)} (uz, © p)AdzdA
0 Rn ’
0P \A IP. A
—(1 HDt T ol ol
( 6],0)0/R[ 1/2 l(uw op) oz, (ug, ©p) B\ dzd\
i OP\A OP. A
- HD!, | (u” l 7 .
(1—9; O)O/R[ 1/2 l(uzoop) o, (uz, ©p) B\ dzd\
Proof of Lemma 5.4.
ow" ou” o 0P, A
Arg=— e D = —/w)\(uxo op)(1+ 87))\\ ) dzdA
2Q

r 0P\ A
=~ [ [ DL, 0 oz, 0 )1+ 25 dzan

0 R»

0P, A
/ J DY sz, o o)z, 0 )1+ Z 2 didy

0 R»
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T OP A OP\A
= [ [0l aln, 00 P22, 0 1+ P2 dan

o\
0 R»
r _ aP,A
— [ [ #D4alz, 00 P22, 0 p) dzan
0 R»

by anti-symmetry. Let j # 0. Then

If we define D =1+

But

Le.

ILe.

/ / (ws, © p) (u, p)(l—i—af(;;‘A)dzd)\

0 R™
BPA,,\A th ’
o OPRA ]
P = Wy A axj 1+dlj§;\A
L OP,A 1
=05 ST D

y 0P, A
Wy, HD1/2( )+HD1/2 [( Op)—aj:\_
j
1 0P, A
_5 81’]‘ H‘Dl/Q[( IOO[))D]

0 Rn
. aPA
- / / HDi/glmwoop) e R

0 RBn !

/ / agﬂAHpg s [(ul, 0 p)D]( )dzdA

Lj
0 R™
—— [ [ D[, o )z, 0 prazax
0 R™
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//([HDW 8P7AA

(ug, o p)> (uf, © p)dzdX

0 Rm»
0P, A OP. AA
HDt T 8l T 2i d\.
+ // 1/2[<umoop>} A (ur, 0 ) 2R

0 Rn
/ / QHDW,@P”A (moom)( )Mz
0 R»
0P A
+ / / ([HD5/2, 2o (EOOP)A>( JAdzdA
0 R /
0?P A
/ / ([HDW S| p))(u JAdzdA
0 Rn

Note that by the anti-symmetry of H Df 2 We have

/ / HD! /2[ )] (uly, 0 p)dzdA =0,

0 Rn
//HDi/2 [(ugo ) p) 827;\‘14 (qu ) p) ag;A_A dzdA
0 R» !
= //HDi/2 [(uij o p) 81;;?14 (ul, ©p) 81[(;’>’\\Adzd/\.
0 R»

Collecting we get the formula stated in the lemma.

Proof of Lemma 5.2. We intend to estimate |A,;|. Using Lemma 5.4 we have
that A, ; = 22:1 My, where M}, are the expressions stated in the lemma. Using the
antisymmetry of HD} /2 and the self-adjointness of the commutator all of these terms
can be expressed on one of the following forms for relevant indicies r, j, m and k,

0P A
Ny = //HDi/Q[(ugk Op))] (ug, Op)%dzd)\
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D* Py A .
// oz 8)\ )HDl/z( o p)Adzd
0 Rn
M= / / HDio l(“;k °r) a;; (ug,, ©p) a”; dzd\.
j
0 Rn

Applying Lemma 1.1 and Theorem 3.1 we have,

'NI'<</ [|otales. o) W‘“)l%/ [t () )

S AIFI-

Using Theorem 3.1 and Lemma 4.3 we get,

OP. A
|N2|<||f||2< / / [HDW, 984

0 R

(uf, ©p)

2 1/2 -
Adsz) <172

Integrating by parts w.r.t. z; in N3 we have

//aP”A L, © p)ay HDY s (ul, o p)AdzdA

0 Rn»

0P, A
[ [ 2B o Dl o e ot

B))
0 Rn»

P A
//a - Uz, © P)e, HD1/2( o p)Adzd
0 R»

P, A
/ / [HDl/wa i }( uy, 0 p)(uy, 0 p)a; AdzdA
Rn

oP. A )
/ / S (H DYy (uf, © p)](u], 0 p)r, AdzdA.
0 Rn»

As above |N3| < v f]|3. The same estimate is true for |Ny|. This is proven by similar
manipulations.

6. The estimate of a difficult term involving the pressure. This section
is devoted to the proof of Lemma 5.3 in the previous section. IL.e., define w" =
HD! /2(u’" o p) where u” is component r of the single layer potential associated to the
system of linearized Navier-Stokes. We want to estimate
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where w” o p = W". As divi = 0 the sum under consideration would be zero if we
were considering a time-independent cylinder. We will prove that in our situation B
is small in the sense that if v < 1/2 is small enough and if b = | D, A < 78+ then

|B| < 4| f]|3. Changing coordinates,

n—1 ¢
ow” 0P, A
B—Z()//(axrom(popxu 22 dad
r=07 gn

Recall that if we define D =1 + a%;A then for r # 0,

- - , 0P, A 1 , - 0P, A 1
Wy OP = (W" 0 p)e, — (W o p)x 83@ 1+ aPﬂA = (w" 0 p)s, — (w OP)/\#TB»
1
wh, 0 p=(w’ophpy.
Using this we may write,
o0
= //(wO o p)a(p o p) dzdA
0 R
0P, A
+ZU/ w" 0 p)a. (pop)(1+ (,;; ) dzdA
r=1 0 Rn
P, A
//w o p)a pop)a dd)\}
0 R
Using that divii = 0 we can derive the following equality,
n—1
- 0P, A
HD ol 0 )+ 32 HDY s (07 ), D — (o o 24 <0
r=1 r
Combining these identities with the facts that,
HDj py[(u” 0 p)a] = HD 5| (ug, 0 p) D,
- - - 0P A
HD ol 0 0)2,) = HDY 3 (0, 000 + (1, 0 ) 522 |

we have the following equality,

n—1

HD! (w0 p)a] + 3 HD y[(u” 0 ),
r=1

0P, A 0P, A
[ZHD1/2{ ,°P) 5;)/\\ — (uz, ©p) 8;/\ ”

Continuing the derivation started above we may therefore conclude, after some ma-
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nipulations,

B= Z[//{HDUQ,@P“ ](urop))\(pop)dzd)\

- 0 R™
/ / [HD1/2, o ”A} (u”  p)e (po p) dadr|

We have to prove that this term is small. For simplicity we just consider the term

//[le/zvmgVA }(urop)x(pop)dm,

0 R

the other one being treated similarly. Integrating by parts w.r.t A we have,

OP.
/ [ [0 2524 e oo ppsrazin

0 R»

OP.
/ J [0 524 0 e (oo pprzan

0 R»

2P\ A
//|:HD1/2’ B BA ](uTop)A(pop)Adzd/\

0 R»
=: T1 —|—T2 —|—T3

Ty can be easily handled using Cauchy-Schwarz giving,

2 1/2 o0
|Ty| < C(//’ [HDI/Q, 8P,Y,\A}( o p)a )\dzd/\) X <// Vpop|2/\dzd)\>
0 Rn

Using Lemma 3.3 and Lemma 4.3 and b < 487 we may conclude that [T}] <~ f2.

We now have to estimate To and 73. The problem here is that we have no
good estimates for the parabolic non-tangential maximal function of p o p. Let in the
following Pj, as usual, be a smooth parabolic approximation to the identity. We now
decompose the pressure in the following way,

(pop)(\ z,t) = Pa(pop)+ (I — Pr)(pop).

The following is true (the proof is given at the end of the section),

1/2

LEMMA 6.1.
[ Nw(Pr(p o p))(w, ) L2 (®r dedt) < CH.ﬂ|L2(BQ)~

Using the decomposition of the pressure we can write,

0P, A
T = //|:HD1/25 = }(UTOP)/\AP/\(I’OP))‘dZd/\

0 R~
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//[HDl/z’ aPﬂA} (" 0 p)ax(I = Pa)(p o p)A dzdA

= T21 + T

Using Theorem 3.1, Lemma 1.1 and Lemma 2.4 we have

To1| S ||f2(//‘ [HD1/27 aPA{)\A}PA(pOp)

Integrating by parts w.r.t x,- in T5 we have

/ J [0 228 0 e o s

0 Rm»

0P, A
//{HDU% — }(UTOP)/\(POP)mT)‘dZd)‘

0 &’»
= T3y + T3o.

2 1/2
A dzd)\) .

Using Lemma 3.3 and slightly adjusting the argument in the proof of Lemma 4.3,
|T52] < 7|l fl3. Decomposing the pressure in T3; we have

T OP,\A
Ty = —//[HD1/27 8”; ](u’"op)m,.APA(pop)Adsz

0 Rn»

//PIDU%({)PWA ](“TOp)mw-/\(I—PA)(pOp))\dzd)\

0 R~
= T311 + T312.

As above
OP. A
|T311|<||f||2( / / HHD1/2’ LA ]mpop)

We may therefore conclude that

2 1/2
A dzd)\> .

oP 2 1/2
(ol + 7] 21718 + 11 / J|[082 224 Prtwe ) adzan)

0 R»
2 1/2
A dzd)\)

# 171 / J|[#08 224 oo

Rn

‘/ / [HDl/zv 6PWAA} (u" o p)aa(I = Py)(pop)A dsz'

0 R"
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T OP,\A
| [1a082 228 w0 stz = P o ppraan)
0 R»

We first treat the term

//HHDU% 8P%A}PA(pop) 2

Rn

Adzd.

The term containing g/\*A instead of 8’;}. is treated in the same way. Integrating
the expression in A w.r.t A we have after some simple manipulations that,

P, AT 9 2
A<//HHD1/2, 2] 2 (Prtpo )

0 R~

P, \A 2
//HHDl/zv o ’%)\]PA(IJOP)

._&+A2

A% dzd)\

A2 dzd\

Using Lemma 4.1 with R =y~ ! and ||D, Al < ~3"¢ we have that

MR R, [ | S o) adsin

0 Rn
57//'%(&(1)0/))) 2

0 Rn

Adzd.

From now on we let Py have the following product structure, Py(x,t) = P)(\l)(a:)P)(\2)(t)
where P{"(z) = A="*1g(|z|/A) and PP (t) = A=2¢(|t|/A). Here ¢ € C5°(—1,1) and
Jo=1. Then

1

oPy 1
T =X @R+ @AY,

ox A

where Qg\i) is an approximation to the zero operator. l.e., Qg\i) denotes the operator

of convolution with a generic kernel of the form Q(i)( S = A4QW (- /A) where QW) €
CP(R™) and [ QW (2)dz=0. Heredy =n—1, a1 =n—1,n =n—1,dy =2,

R™4
Qg = 2, ng = 1.
Now
9 L oyep@ . L H@y2p)
oy (Papop)(X 2,1)) = Pa((pop)r)(A, 2,8) + (L (Q37)" A7 + (@) P ) (p o p).
Using this,

oo

//' (Pr(po p)) )\dzd/\g//

0 R™ 0 R»

2
AdzdA

Px((pop)r)
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0o 9 00 5
1 1
+ //‘(Q&”PP@ (po p)‘ 5 dzdA +//‘(Q§2>)2P§”(po p)| 5 dzdA
0 R™ 0 R»
= A1 + A2+ Ajs.

Ay, is treated by using the square function estimate of Lemma 3.3, A1y < || f]|2. We

now estimate Ajs. Let 1y (z) be the convolution kernel of (Qg\l))Q. Then [¢) =0
and

Q)2 (po p)(,a, 1)

_ /wsc—y)[pop(A,y,t)—pop(A,x,tndyI

_ / [ st =0l =) 192000 90 + 06— 5).0) ]

0 Rn—1

- / [ @ 1900 Pz~ (1m0
0 Rn—1
< AMW([Va(pop)) (N, 2, 1),

where M) is the Hardy-Littlewood maximal function in the z-variable. Using square
function estimates for the pressure, i.e. Lemma 3.3, as well as continuity of maximal
functions we may conclude that A5 < ||f]|2. Using an argument identical to the one
in the proof of Lemma 6.2 below one may prove that

AlBN//’ CN2(pop)(A, 1)

0 R

2
1 -
1 dwdtd < Cs|l f1I3.

Put together, A1 < || f]|3. Using Lemma 4.1 we have

|A2<//|R M, (P/\(POP)<%>>@)

//‘ (G # (Pr(p o ) (2 >(82/§f “)

0 R»

/ / a1 (22280 ) o x (Pr(pe ) 00

Noting that ¢F, * (Px(po p)) is nontangentially bounded by M, N.(Px(po p)), letting
R = ~7!, using Lemma 6.1, Lemma 1.1 and continuity of the Hardy-Littlewood
maximal function we have,

2
Adzd\

AdzdA

2
Mo dzd.

2
A2 dzd).

- T 03P Az, -
el 71 + [ [| om0 (T2 Y oo 0
0 R»
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Choosing R =y}

we may conclude that, |As| < 7| f]12.
We may therefore conclude that |T| < v| f||3 + | B| + |C|, where

and using Lemma 4.2 on Carleson measures as well as Lemma 6.1

0P, A
/ / [HDI/Q, 24 }(uropmu—PA)(pop)Adsz
0 Re

C= //[HDW, oPnA ](ur o plar(I = Py)(po p)AdzdA.

We just treat B as C' is treated analogously. Using the notation introduced above,

A
dv

A
- P)wep) = [ PAQDEe AN + [ PO AN
0 0

In estimating the expression in B we therefore have to consider

0P, A dv
By = ///|:HD1/27 A :|(Uﬂ"o/))>\>\F)152)(629))2(1)Op))\ded/\7

0 R~

B2 = ///[HDUQ,@P” }(urop)MPV<1>(Q,<,2>)2(pOP>AddedA'
14
0 R»

Note that as above,

@0 w01 = | [bule —)lpo o0 t) — pop(%t)]dy‘
SCI/M(l)(|Vz(pOp)|)()\7$,t),

where M) is the Hardy-Littlewood maximal function in the z-variable. Using this
observation, the selfadjointness of the commutator and Lemma 4.1 we have

1l = | / / / oo s [HD o 258 [P 00 )| A Ltz

< o(R + B2 1D, AlL) ///|u o Pl

R™ 0O

M@ (PP (QM)Y2(pop) ’—dzd)\

(R + B2y~ Dn L) / / / (" o )| MO MM, (p 0 p) ) (A, 2, 1) dvdzdX
0 R™ 0

< (R + Ry Du Al FI3 S 71113

by the continuity of the maximal functions, the square function estimates of Theorem
3.1 and Lemma 3.3 and the choice R = y~!. Left is to treat the term Bs. Let in the
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following e = 1/2.

1By < (///‘Q(Q) {HDW,aP”* ](uropm

2

d 1/2
(V)edzl/)\?’d)\)
124

A
0 R™ 0
dv d\
p(l) i
( QP (pop) ( ) dz— A)
0 R
Note that,
P% won| Lra @@w///\M(” @ (pop)| (L) D
0 R™ 0 Rn
<o [ Jlatimenf ot
VoA
0 R 0
I.e., what we have to do is to estimate the terms,
T 2 d\ | d
v
! =///'Q£2)(pop)' (— —d -~ ///‘Q(2 pop) —) N

2
v dv

By = (X)_Edzj)ﬁd/\.

oP,AY,
[ i/m%}(u ° p)ax

0 R

We first consider Bs;. Integrating by parts w.r.t A we have (e = 1/2),

21 = 27/‘62(”2)(1700)(”755’0 2

0 R~

dz—
v

dv
+4///Q<2 (00 D)@ (0 PA(3)' /2 dAd=" = By + Bana.

0 R™ O

Using Cauchy-Schwarz we have,

s (]| lpmal o a2)”
(] Jeoen

0 R»

1/2
)1/2 d”d /\d)\) .

Using Cauchy-Schwarz with e and standard arguments we have,

1/2 &V dv

|Ba1| S [Ban| + )(pop)a d AdA

)

0 R~



54 S. HOFMANN AND K. NYSTROM
oo
S1Banl+ [ [ Ipe pPrdids < B+ 1715
0 R™

LEMMA 6.2.

x 2
dv =
[ J|e#wenwaof a2 <ol

0 R~

Using lemma 6.2 we may conclude that [By;| < || f]|2. Left is therefore to estimate

0P, A
.

0 Rn

2y dv
(X) ‘dz /\?’d)\

But the relevant estimate of this term is stated in the following lemma.

LEMMA 6.3. Let R > 2. Then there exist integers my and ms such that,
| Bas| < Ca(R™ + R™~~™2)| f]3,
By an appropriate choice of R we may therefore conclude that,
2 —' Z11/2 Zi1/2 i
|B| < [B1] + |Ba| S 9IIfll2 + (Bar x B22)? S Al fll2 + 115" < 171" < AT

The proof of Lemma 5.3 of the previous section is therefore complete modulo Lemma
6.1-6.3.

We now end the section with the proof of Lemma 6.1, 6.2 and 6.3.
Proof of Lemma 6.1. Recall that

—

MKG=/VNX—@(@ﬂwM%

o

where I' in this context is the fundamental solution of Laplace operator. Let

9,1) = (po p) (A1) = /KAx%H 1) dy,
R
where ||7|| 2 (&n, dzdt) ~ ||ﬂ|Lz(ag) and K(\, z,y,t) = VI (AP Az, t)—A(y, t), z—y).
We may without loss of generality assume that g is non negative. Let ¢) be a smooth
function of (y,s). Let A > 0 and (x,t) € Bga(xo,tp). Assume that ¢ = 1 on

Beaa(xo,to) and ¢y = 0 on the complement of Ba.qx (20, to) for some constant ¢ >> 1.
We decompose,

§(y7 S) = ¢)\§(y7 S) + (1 - ¢A>§<y? S) = 51 (y7 S) + 572(.% 8)
Then g(\, z,t) = g1(A\, z,t) + g2(\, z,t) and one easily derives that

P <3 e [ gl duds £ 3 Mg an o),

T
Beax(o,to)
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where M is a parabolic Hardy-Littlewood maximal function. We now consider
Pyga(\, ,t).

P)\gz )\ x t)
/ / A LK 2y, 5) — K(0,20,4, 8))d (v, 5) dydads
R? Rn—1

— o oty —
—|—/ / )\_dP(xO/\ Z, 0)\2 S)K(O,xo,y,s)g'g(y,s)dydzds:M1+M2.

Rn R -1
Obviously,
|Ms| < eM P (g5(0, 20, -)) (t0),

where again M(?) is a Hardy-Littlewood maximal function with respect to t with good
continuity in LP. We now focus on Mj.

K()‘azvyvs) - K(Ovm()vyvs)
= K(Aaz7yvs) - K(AJO,%S) + K()‘vx(hyvs) - K(075307y75)~

K (X z,y,8) — K(\ 2o,y,5)|
= |[VI' (A + PyaA(z, 8) — A(y, 8), 2 — y) — VI(A + Py A(zo,8) — Ay, 8), 20 — y)|

< clxo —y| 7" ||PyaA(2, s) — PyaA(zo, )| + |z — zo|| < eMazo —y[™".

Analogously
IK(Aa zo,Y, 8) - K(Oa zo,Y, 8)| S C)\|l‘0 - y‘—n

Le,

|Prg2 (A, 2, 8)] < eM P (g2(0, 2o, ) (t0)

0 T
—d 92(:%3)
FE e f [ ] et
r j=0 20 A< |20 —y|<2IHIN |0 —2|<eA [to—s|<eA?

< eM® (g2(0,20,))(t0) + > eMD(MP (g5(—, ) (to)) (o)-
Again, the desired continuity follows by continuity of maximal functions and as p o
p(0,,t) is continous in L*(R", dzdt).
Proof of Lemma 6.2. Recall once again that

p(X,1) = / VI(X - Q. 0)f(Q.1) do(Q),

082

where I' in this context is the fundamental solution of Laplace operator and

(pop)(v,z,t) /Kuwy, gy, t) dy,
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where ||G]| L2 (&n dear) ~ ||ﬂ|L2(aQ) and K (v, z,y,t) = VI (v+P,, Az, t)—A(y, t), 2—y).
We define

T,g(x,t) : /Kuxy, g(y,t)dy.

Then po p(v,x,t) = T, §(z,t) and

1Tl 22wy < CllfllL200)

with a C independent of v. We intend to prove that,

/oo / ’QS)M(M) 2

0 R»

dv N
d:Edt7 < CHQHQLQ(Rn).

Note that Q,, A7, = ,,Q,(,Z) — [T, Q,(,z)] and trivially

T,QPg(x,t)

dv
dxdt— < o//‘Q@) z,t) ‘ dasdt— < C||gl17 2 @n-

R™

We are therefore left with the commutator. Let wu % be the kernel of Qy .

[T,,Q?g(x,t) /¢ I(t—s) / (K(v,z,y,t) — K(v,z,y,5))§(y, s) dyds.

Rn—1

Let K(v,x,y,t,s) = K(v,z,y,t) — K(v,2,y, s) and decompose §(y, s), for fixed v, in
the following way,

§(y.s) = P.gy,s) + (I — B,)g(y.s) = P,g(y,s /ng Y, 8)—,

where P, is a nice parabolic approximation to the identity. I.e., we have to consider

/ [ 92~ R y..5)Puiilv. ) dyds,
R Rr-1
25 dp
PP (t = $)K (v, 2,y,t,5)Q25(y, ) dydsj.
R RA-1
Define,
Avy / / PP (t — $)K (v, 2,y,t,5)Q27(y, s) dyds.
R Rn-1

We now use the following lemma. The proof is postponed for now.

LEMMA 6.4.
fogn
I Av,ull L2 (®n dodry < C(;)HngHL?(Rn)
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for some C > 0 independent of g, u, v, p < v.
Using the orthogonality statement in Lemma 6.4 and Littlewood-Paley theory we have,

//‘[TV,Q,?)] z,t) dmdtd—<//|M1|2dxdt— //|M |2dxdt—
0 Rn»

0 Rm»

dv .
< / R A

0 Rn

We now focus on Mj. Define
H,z,y,t) =VI'(v+ Py, A(z,t) — Py, A(y,t),z — y)
H(v,z,y,t,s) = Hv,z,y,t) — Hv,z,y,s).

Then M; = My1 + M where,

Mll = / / wl(?)(t_S)‘H(V7xayatvs)PV§(yaS) dyd87

R Rn—1
Mg = / / PO (t — s)(K (v, ,y,t,8) — H(v,2,y,t,5))P,g(y, s) dyds.
R Rn—1

Using calculus we may express Mi; in the following way,

1
w=[ [ =00 [ 5w+ - ) d8| Py, duas.
R Rn-1 0
Obviously
0 0
Tan(V LT, Y, 1) = VFzO(VJerA(I,t)fPWA(y,t),x—y)~&(PWA(x,t)fP,ﬂ,A(y,t)).
As |0°T'/0z;0x;| < c|x|~™ we may conclude that

P (t - 5)llt — o
M| <C
M| // Wty

U| e s+9(t—s))|—|—| PoyA(y, s +6(t — )| d8| P, |y, s)) dyds.

Here a_ denotes the derivative in the t-direction. Assume without loss of generality
t—s5>0,[t—s| <r? Then

1
)
’/ [ PrACs % 0(t = 5))] d@'
0

1 0 2 0
< / ‘a_%pr(.’siaﬂde < MY (@PWA(-,—))(S).
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Le.,

0

2
M| < cM, M” —
M| u+|x—y|> (azn

PWA(z,)>(*)Pylg”(y, *>|dy] (0

b
e [ e M (Pt ) ) P 1)
-

< ety ot (R ) @ (e P ) ) 9] 0

weaty [ s (o at ) ) gt ol )] 0

Using this estimate of M;7; and continuity of maximal functions we have,

T d
/ / |M11 |2dl‘dt71/

0 R»
SCZOR[ vM® <Pl,|§(-,t)|)(:z:)M,‘;2 (&PWA(:C,O() dxdt@
v f [l o (aiPwAc,>><t>Py|§<-,t>|}<> drir.

Using this estimate, the fact that according to Lemma 4.2 part (iii) the measure

o (2l

dz dtﬁ

is a Carleson measure with norm no larger than cy~2|D,A|?, the fact that
MO(P,(G(-, 1) (z) < P, (MM (g))(x,t) we get as P,§ has good continuity with re-

spect to N,,
T dv .
[ [ pufazat < cigps.

0 R
We now focus on Mis. Recall that

Mg = / / V@ (t — 5)O(v, z,y,t,5)P,§(y, s) dyds,
R Rn—1
where
O(v,z,y,t,s)
=VI(v+ P, A(z,t) — A(y,t),z —y) — VI'(v + P, A(x,t) — P, A(y,t),z — y)
+ VI'(v + Py, A(x,s) — Py Ay, s),x —y) — VI(v + P, Az, s) — A(y, s),x — y).
I.e., by the mean-value theorem,

(I = Py)A(, D)| | [(I—Py)A(y,s)|
|@(V71‘,y,t,5)| < (u+|:c—y|)" (V+|x—y|)” .
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Therefore,
M| < / / VH;‘;' 7= PL)AG ] 41T = Pr) A )| Pt )] dyds
<cM<1>[ - Py [/W IRt ds| )

+ M, {M(l) [i(f — P)A(,*) Pl *)] (x)] (t) == Mi21 + Miaz.
But

L= P A 1) dear®
v ) AT o v

is a Carleson measure with norm no greater that ¢y?||A|comm. This is statement (iv)
of Lemma 4.2. Therefore by continuity of maximal functions we have the desired
estimate for Miq99. Left to estimate is

//M1221 dxdtd—:.

R R"
2
/ M, dudt < / L1 = PG [ 12— I gte o) ds| dac
Re R
2
SC/IW)\* ~|(I — P,,)A| |P,|F||? dadt.
14
]Rn

Again, as is easily seen, the measure

2

1
12 ;|(1— P)A| (z,t) dmdtd—:

is a Carleson measure with norm < ¢y2||A||comm- Using this and the fact that the
non-tangential maximal function of P,|g| is good we may complete the proof. I.e., the
proof of Lemma 6.2 is complete modulo Lemma 6.4.

Proof of Lemma 6.4. Set
VI/(x7 y7 t’ 8) = 1/}1(/2) (t - S)R(V7 x? y7 t’ S)

=0 (t = 8)[VD(v + P A, t) — Ay, ), @ — y) = VE(v + Py, Az, s) — Ay, s),@ — y)].

Using that if ||(y, s) — (9, §)|| < u then,

o pl1 v
Vol ) = Vol ) < | om0 (= |

we may conclude that

Ay, )] = \/ [ 2 R, ) s

R Rn—1
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= ‘/ / Q;LVu(xvy,f,S)ng(y75) dyds

R Rn-1
< CoE M (MO Q- 4) (@) (1):
Continuity of maximal functions now completes the proof.
Proof of Lemma 6.3. Again the kernel of HDi/2 is k(t) = csgn(t)[t|3/%. Let
k1(t) = k()X (s:s|<r2on} (), k2(t) = k()X {s:)s)> R200} (D),

where R,v,A > 0 and let D; and Dy be the associated operators. Using part (i) of
Lemma 4.1 we have with R replaced with R such that R2A\2 = R2p)\,

0P }g(fc, t)

r

< CngyfannAH*Mn(g(fE, ))(t)

‘A|:Dla

< Ry 2| DAl (~ )1/2M (9(z,-))(t).

Again M, is the Hardy-Littlewood maximal function in the t-variable. As

[0 [21 2224 | ppaa| 0] < 08 ([, 224 s 9 0

r

we have,

[ ol

0 R»

< Ry D, Al / /] \Mn<<uropm<x,->><t>2

0 R™ O

2y dv
“\—e 7 y3
()\) dzyx\d)\

Vi_, , dv -
(X)l dzj)\d)\g’YHng,

with an appropriate choice of R and an application of Lemma 1.1, Lemma 2.4 and
Theorem 3.1. Next we consider the part of Byy coming from the operator Ds.

Qz(zz) |:D27 ag’y)\A:| = Ql(?)D agv)\A aP’y)‘AQ(Q |:Q(2 a‘g'y)‘A] ‘D2
LTy T, T,
=51 + S5 + S;3.

Let us consider an expression of the form )\QS,Q)Dgg. Standard deductions give,
IAQP) Dag(a,t)] < CR™ ( )M, (g, ) (1),

L.e., the contribution from the operators S; and Sy to expression under consideration
can be handled. We now focus on the commutator part and we let in the following

% e the kernel of Ql(,2).

OP, A
(2) ZoA
. %24y

‘ /M (angiu .5) apvg;ux,t))g(w)ds
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1

-|f [ ee-oe-

0 {s:|s—t|<v?}

PP \A(z,s+0(t — s))
02,02,

g(z,s)dsdb

< vy D, Al A~ / WP (¢ — )|lg(z, )| ds
{sils—t|<v2}

v
< C(X)l/QWQIIDnAII*Mn(g(% N(@).
Furthermore
1 A\1/2 7 —1,A 12
[ADag| < R (;) Gror/zaiz x g < R (;) M (g(z,-)),

where
Rul/2)\1/2
Drirania(t) = MTX{HDRZM}“)'

Combining these estimates and appealing to the continuity of M,, we have completed
the proof of the estimate stated in the lemma.

7. Estimates for the pressure. The main identity explored in this section
and stated in Lemma 7.4 below was, as far as we know, first discovered and used in
this context by Shen [32]. Let in the following,

Q° = {(zo,2,t) : x9g > €+ Py Az, t)},
ng =Q°N {t = to} = {(QCQ,IE) Xy > €+ P»YEA(.T,to)}.

Note that if ea < €; then e; + Py, A(x,t0) > €2 + Py, A(w,t). Le., Q57 C Qf} and
Qf, /" U, for each tg as € — 0. Obviously we also have that, Q¢ 7 Q as e — 0. Nf

is the unit outer normal to dQ. Ny is the j-te component of Nf. Let S§f be the
singular layer potential associated to the Laplace operator in the domain 5. The first
result is the following and is essentially due to Shen[30],

LEMMA 7.1. Let v € C*(R"1\ 9Q) and div & =0 in R*T1\ 0Q. Then,
1S5 (((AV, N{)) L2 a05) < ClIVU L2(008)-

Here C is independent of t and e.
In order to formulate the other two results we need to introduce some more notation.

Define for § > 0,
Q% = {(z0,x,t) : 20 > 6 + € + Py Az, 1)},
Q51_5 = {(xo,x,t) txg < —0+ €+ P'yeA(wvt)}'

In the following we let Sf’i‘s denote the singular layer potential associated to the
Laplace operator on Q. N7*° is the unit outer normal to Q0. We also intro-
duce the maps,

pesle, x,t) = (0 + €+ Py Az, t), x,t) pe—_s(e x,t) = (=0 + €+ Py Az, t),x,t).

We will prove the following two lemmas,
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LEMMA 7.2. Let in the following (@,p) = (S°f,p¢) = (Sf.p) be the singular
layer potential and pressure defined with Q¢ as the domain of reference and let fE
CE(R™ML). Then the following inequalities are valid with a constant C independent
of € and f,

() P+ 1| 2 (002
1/2
§C|:|Vﬁ+||L2(aQe (6111’(I)1+/ / ‘SC‘S N56>)|2d eédt> :|,
—00 9s°
(i) lp— | L2002
r ou B\ 12 5 1z
< U_|lr2(90¢ li o ]\7E i
<c|iva. <m>+(5gg+/ [ s G N ) |
—0 9080
6 s 1/2
. €, = €,—0\\|2 €,—
(i) (513& / / 15555 (28 Ne0))2 o dt)
oo ik

< C{|p:|:||L2(8Q€) + ||Vﬁi||L2(aQe)]~

LEMMA 7.3. Let in the following (u,p) = (Sfﬁpf) = (Sﬁp) be the singular

layer potential and pressure defined with Q€as the domain of reference and let f S
C§°(R™1). Then,

S B O A S | 50 0T ped )2 e
i [ [ 1Sy NP doi e = i [ [ st (G NP o

§—0+

—0 9080 —o0 9 —?
and
511%1/ / |S€5 N€5>)|2d Ot = //|S€ — N dotdt.
—008965 —OO@QF

Let in the following (@, p) = (Sef, pe) = (Sf, p) be the singular layer potential
and pressure defined with Q¢ as the domain of reference and let f € L*(99Q°). Let
fi € C§°(R™1) be such that f; — fin L?(09Q¢). Using Lemma 7.2 and 7.3 we define,

aSf dSf;
at at

SEESE N = Jim SE(ESE Np)),
with convergence in L2 (895) Obviously the definition is independent of the sequence
fj. The quantity Sf((aif,N5>) is therefore well defined for every f € L2(99°).

We end the section with the proof of Lemma 7.1-7.3.

Proof of Lemma 7.1. (AU, Nf) = Z?:_ol AviN{". Here ,

oP, A 1
dr; [Nyl

1

Ne,i _ )
! | VE|

n—1}, N°=—
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Note that on 99§ we have xg = € + Py A(z,to). Let

OP, A

= ox;
J

70’ ) 7707 1’0’ "'0)/|Nt€|’

where we have placed the number 1 at position j. Here j € {1,...,n — 1}. Note that
T} is tangent to 0§2;. A direct calculation using that div =0 shows that the following
formula is true.

LEMMA 7.4.

ale 8xk 0Tk 895]- axj

"i 0 OtOP AL D OvkOP A,

(0.8 = | 3 5

jk=1

"2‘:1 o 0. g avk‘)}'

> g G+ Y g
1 3Tj 8xj 1 6Tk 8950

il
Using Lemma 7.4 we now consider the singular integrals we want to estimate, i.e.,

S (AT, NE)) (P, t)

o[ BEND@Y
=D /wn(Q_n”P_Qn_gd t(Q)

a0
S / ! 0 otoPA) O otOPAT
o wp(2 —n)|P— Q"2 | 0T 0zx; Oxy 0Ty, " Ox; Ox;j 7t
Jk=lg0e
n—1
1 o o .
p / wn@—n)|P = QF2 a1, oz, ©
I=1a0;
n—1
1 o ok
“3. | e o)
o0

Using integration by parts along 0€2¢ and regularity estimates for the Dirichlet problem
on Lipschitz domains, see e.g. [30], we may conclude that,

1S5 ((AY, N{)|[2(a0s) < ClIVV| L2005,
with C' as in the statement of the Lemma.

Proof of Lemma 7.2. We start out by proving (i). As p is harmonic and 9Qf is
smooth we have using the Gauss Green formula that

. €,0
p(X,1) = / (@ X|}<Ni éﬁm’t)

p(Q.t)doy’(Q)

o0s°

o0
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Here daf’é, Nf"s are naturally defined. Let Sy % be the singular layer potential op-
erators for the Laplace operator on QE"S. If welet X — P € BQE"S we have the
relation

1 . s, 0
p(P,t) = Sp(P,t) + K° (0)(Pyt) + S50 (—2r ) (P, t).
2 ONS?®
Here,
e _ (P— QN (Q)(Q,1) P
K @)P) = po [ et L. a0 Q)
o0s°
Le., 50°(=2 oNe Lo)(Pt) = (L - K&)(p)(P,t). Therefore,
I €,0 €,0 3])
||(§ - K )(p)Hm(aggv??) = ||S; (W)”H({)Qj“)

ou

5 ,NE%)

€,0 €,0 €,0
CUISE (B, o oy + 15 (0 NEW o

As Q5% is an unbounded Lipschitz domain it follows from the invertibility of I-K; 0
that,

I €,0
HpHL?(aQ;*‘S) < C||(§ - Ky )(p)”L’z(ané)-

I.e. by continuity and Lemma 7.1,

) Y k&
IPlsony < C{ 9oy + (timy [ ISECGENED s gugoyat) |

All of the constants in these inequalities are independent of € and 4.

The proof of (ii) follows the same lines as the proof of part (i) with the modification
that we instead work with domains,

Q&9 = {(.’L‘Q,IJ) txg < —0+e€e+ P,YGA(.’L‘,t)}.

We now prove (iii). We choose to consider the case of Q9. Then

/ Era (e -
g/ / |Sf”5(<Aﬁ,Nf”5>)|2daf”‘sdt+/ / 1507 (=2 )2 dot bt
7009:-,75 70095 -5 N

N I €,—0
< C(HVU*HLQ(GQQ*L*) + ||(§ - K, )(p)HL2(896’*5)
< OV 20065y + [[P= L2 (902e ~5))-

Arguing as above we may complete the proof.
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Proof of Lemma 7.35.

t

SEF(X,t) = / / D(X —Y,t—s)f(Y,s)doS(Y)ds

—00 90

=/‘/Fm—&+aawmw—w—@%+aam@%@

—oo Rn—1

X \/1 + |V Py Ay, s)|? dyds.

Le.,
ase f) or
f (X,1) / / a— — (e+ Py A(y,s)),x —y,t — s)g(y, s) dyds,
—0o0 R — 1
where,
§0,5) = Fle+ PoeA(y, 9),5,9),/1+ [V Ps Ay, 5) 2
But,
0
gl"(xo — (e+ Py Ay, s)),z —y,t —s)
__or IP,Aly, s)
- axo (:L'O (6+P76A(y75))7x y,t 5) s
or
- a(xo - (6 + P"/EA(ya 8))1 T — yat - S)
Therefore,
P .

/ | oo e+ Pty s)a vt — 220D g ) aya
Zo S

—oco Rn—1

7/ /%mmﬁ+&MwD — gt — )3(y, s) dyds

ar OBy Ay, 5) -
:—/ / a—xo(l'o_(€+P’Y€A(y7s>)7x_y7t_S)%g< )dde

9
+ / / D(xzo — (e + PyeAly, s)),z —y,t — s)% dyds.

We introduce the following notation,

- 0Py Ay, s) -,
hl(6 + P’yeA(ya S)ayv S)\/l + |VP"/€A(y7 S)|2 = %QQIL S)a

65
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- oq
Fale + PreA(y. s)., /1 + [V Py Ay, )2 = 9(81/’8),
s
We may therefore conclude that,
AS<(f) o
8t(f) (zo,x,t) = —8—%S€(h1)(ajo,x )+ Se(hz)(l'o,l‘ t).
We are interested in
2 H
€, 10 aSe( ) / <356t a >(Q t) €, t6
St (< 8t >)(P t) wn( - TL)‘P o Q|n 2 dUt (Q)7
o0 *?
for P € 095, But,
dS<(f) 0

S(h1), N{°) + (S°(h2), Ni°).

€,0\ __
(Nt = (o

We need to examine the first term on the right hand side a bit more closely. Using
the trace result of Lemma 2.5 we have

lim (——S¢(h1)7) 0 pe 15 N7
53&(%05( 1)7) © pe,+6 N

= £ NP — NPy, NN 4 K o) NG9

Le.,
a n—1
€,0\ __
52%1+<6x05 (hl))ope,i&Nt ) —;:O K;, O(hl) t]’

and we may therefore conclude that <8S;t(f )7Nf ’6> is a continuous function in all of

R™*1. The conclusion in the statement of the lemma now follows from the smoothness
of 02 and the continuity of S;.

8. Inequalities based on Rellich identities. In this section we focus on
inequalities based on Rellich identities. Let QF := Q, Q= := R"*1\ . We also define

Uy = SﬂQ+, U_ = SﬂQ—, P+ = pla,, p— := pla_. Then the following identities are

valid,
8ui 8ui
N,) 2 =2
//a M Viiy|® dogds // 5333 81/) dosds

—00 9 —00 98
T T dad ou™ Qu” Dol Ou”
P 12 oo o
+ / /(dlva)|Vu| dxds F 2 / /[axk 9z, 9y O aij dxds
o 00

9 7/ Ou” Ou”
i Ox; Os
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T Vi ;oul Ol ou',
N - |2 -9 a4 + NI _:I:Nk
/ / (o, N)|Viig|* dosds / / O, <6xk i )dosds

—00 90 —00 90
J J k
+2/ /api(aszS oz, N )dosds
—00 9N
da? Ou” Ou” Ol Ou”
di 2 dxds + 2 — dxd
/ / va)| Vil deds / /[33% Oz 3xk Oz, 3333 ras
—o00 Qi —OOQ
T 8u ou”
42
/ ax] 0Os
— 00 Qi

To simplify notation we introduce the following,

DEFINITION. For each f € L2(09) we let @ = Sf be the singular layer potential
with Q¢ as the domain of reference. We define

= [ [

—00 90

se(( 2% Ney) do—gdt.

The main results are Lemma 8.1 and Lemma 8.2 below. Vg denotes the naturally
defined tangential derivatives.

LEMMA 8.1. Let in the following (u,p) = (S]?7 p) be the singular layer potential
and pressure defined with Q¢as the domain of reference and let f € L?>(0€). Then
the following inequalities are valid with a constant C independent of f and e.

(4) Vs |l72(a00) + P27 BQ‘)
< ClIVri] 720 + Al Ou 8;; H
(@) ||Vril7z(a0e) + A(d) < C[H%H%z(aﬂs) + ou” du” dthH
Proof. Using the second Rellich identity we have
192 < C IVl o0
+ pt 2009 [V il 2 (000) + tZ: gz; 8(;? T H
=000 +
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Using part (i),(ii) of Lemma 7.2 as well as Lemma 7.3 we have,
V4 500y + I o) < C |19 oy + A

Combining these estimates we get the conclusion in (i). To prove the second inequality
we use the first Rellich identity. This gives us,

8u ou”

||vui||L2(6Q‘ < C|:||Vui||L2 99e) ||—||L2(aQe) + — dx dtH

Using Lemma 7.2 part (iii) we have

Vi |72 (904 + Al@) < C{Hpiﬂiaagf) + ||Vﬁi||2L2(aQe)}

As furthermore,

6ui
HpiHQLz(aQe) <= o ||L2 aae) T HVUiHL2(aQ o)

we get the following,

8ui

||V'J:|:H2L2(695) + A1) < C(H ||L2 (99¢) T HVUiHLZ(aQe))

§C|8§‘

O+ ou” ou”
) =, 200 + 2

From this we get (ii).

LEMMA 8.2. Let in the following (i, p) = (Sf, p) be the single layer potential and
the pressure defined with 0 as the domain of reference and let f € L?(09). Then the

following inequalities are valid with a constant C' independent of f and v if v < 1/2
and |Dp Al < eo < A8t is small enough.

ou” ou” - - - o, 1?
o \<%bwﬁHWQWﬁmm@mmz}]

R’!L
Proof.
du” du” T OP,\A
o dxd = [ [, o o) o p)(1+ T2 daa
Q 0 R™
Using that

A
(" 0 p)e = (a5, 0 ) =25 +ufop
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we have,
ou” ou” _ r r r OP,\A
/ at Oxg _//(uwo o p)(ug OP)T dzd)\
2 0 E»
_//<U;Oo 8')')\ dd)\-I-// Uy, p)(u” o p)¢ dzdX
0 R R
= Il +IQ +I3

Integrating by parts w.r.t A in Iy we have

— i T r 8Pv/\A T r 282P7)\A
Ig_//Q(uwoop)(umOp)/\ 2t /\dzd)\—k//(quOp) Dot Adzd\

0 R 0 Rn»

= partial integration w.r.t t in the second term =

// wo ;oxo )(aPA{AA Ad d)‘ // xot o p) 8P8’Y)\>\A)\d2d>\

0 R~ 0 R~

Distributing the t-derivative in the term I3 we have proved the following identity,

ou” ou” 0P A
dzd\
Bt B PXI = // Uy © P)(ug © p) =i d
0 Rm
AP, \A
/ [ 20, 0 9, 0 )2 E N
0 R®
PoA
// ul wotop)aak A dzd)
0 R»

+C//HD§/4(uTop)D§/4(u;0 o p)dzdA.

/ ou” ou”
ot 8x0
Q
can be estimated with the following sum of products.

(] feosn e ) (] s sorren)”
< / / o %) Adsz) < / / Ul o © /\dzd)\>l/2

R

Le,
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1/2
<// i o a?;A) dsz) <// i, op) >\3dzd>\>
1/2 o 1/2
(//|D1/4 r p)|2dzd)\) x (//D§/4(urop)|2dzd)\) .
0 R™

Using Lemma 1.1, Lemma 2.3, Lemma 2.4, Theorem 3.1 in an by now familar manner
we may conclude that,

ou” ou” w0 p)? 1/2
[ 5o axa <05+ / / IDYut, 0 ) deda)
Q
x 1/2
X (//D§/4(urop)|2 dzd)\) .
0 Rn

Applying Theorem 5.1 completes the proof.
We now manipulate the second quantity in the lemma.

/\Dl/2 u” 0 p)(0,2)|2dz = — //aA DY, (u” 0 p)(A, 2) [ dzdA

0 R

——2 / [ Dt o 1Dt o6, 0 p) i

0 R»

T . . oP,A
=2 [ [ Dl e )DLl 0 0) P25 din,
0 Rn

where we have used that

0P A
o\ )

Using the self-adjointness and the fact that D1/2 * D1/2 CH% we have

(W 0 p)x = (ul 0 p)(1+

/\Di/g(uTOp)(O,z)Fdz:—2//]):2)/4(1[0%,)1)5/4(“;0 o p)dzdA

Rn 0 R»

- 20//H(ur o p)t(uy, ©p) 812;/1 dzd.

Le,

/ DL 50" 0 p) (0, 2) 2 dz

<//D1/4 T ded,\) 1/2 % (7)/|D§/4(ur0p)|2dzd>\>

0 R

1/2
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([ Jomemn @t 52 ([ [ emiran)”

OP\A OP\A
(" o p)y = (ul, 0 p) z;; —|—u§op:(u;oop)#:—F(Aur)op—kprop.

But

Le

)

/ Dol 0 p)(0,2) Pz

(//|D1/4 |2dzd>\)l/2 (//|D3/4 (u" o p)|? dzd)\)l/2
(// i, 0 p2(2E0 e dz‘“)m (//| (M) 0 p) + (5, o >|2Adzdx)l/2

0 Rn

/ / py2(OPad g dzd)
Hao B Y

0 R

The estimates stated in the corollary now follow from Lemma 1.1,Lemma 2.3, Lemma
2.4, Theorem 3.1 and Theorem 5.1.

LEMMA 8.3. Let in the following (i, p) = (Sf, p) be the single layer potential and
the pressure defined with Q€ as the domain of reference and let fe L?(09°). Then the

following inequalities are valid with a constant C' independent of €, f and v if v < 1/2
and if |D, All« < eo < 8+ is small enough.

) ou. oti_
(1) max{]| +||27|| —3} < 217 + ¢ HSbf||L2 (000 +A@)],
4
. 7 ot_
@) SefllZz | 000 +A(@) < nllfl13 + Cs mm{H 13, 1=, 112
where n — 0 as | D, Al — 0.
Proof. Using Lemma 8.1 and 8.2 we have,
Ot o ou” ou”
122213 < 0[50l o + A o ]|
7112 712 Qi s
< [ ISV, omey + A@ + A1 + [nsbfnLl oo G| 1

This gives the first inequality after some simple manipulations.
Again using Lemma 8.1 and Lemma 8.2 we have

Hsbf||L2 ,(99°) + A(a)

< C[mln{”

ot Oty 1/2
oo 1 2% ||}+V||f||2+Ifllz[IISbeILz o | 2 M }

1 1/2
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Again this gives the inequality after some simple manipulations.

9. Invertability of the single layer potential and existence results. We
will now prove the existence part of Theorem A-C. First we will state an appropriate
definition of weak solutions for the Dirichlet problem. Let as usual Q¢ = {(zg,,1) :
xg > €+ Py A(x,t)}. Recall the definition of the regularity space R(99°).

€ g € € 8“ € € *
R(09) = {7 € L3,,(00) 1 13:(090), (30, N7) € 120,06, L2001 .

where [L2(0Q)]* is the dual space of L?(9€2) and

L3(09°) = {f € L*(09°) : / (f,N)dof =0 for almost all t}.
0
Recall that for each t, L2(99¢) consists of functions with distributional derivatives

in z satisfying ||f|z2(00;) < 00, where [|fllz200:) = [Vafl2 and f = fon™t,
w(A(x,t),x,t) = (z,t). The norm of an element § € R(90Q°) is defined as

B o0 07 . 1/2
19z, o0 + | [ I Ny omey-
— 00

DEFINITION 9.1. We call (¢,q) a pair of admissible test functions in Q° if the
following is true,

(i) ¢€C™(F), qeC>)

(ii) divg=0 in QF

(iii) ¢=0 on O9° in R(9Q°)

(iv) For all « € N and all multiindices 3, (5 satisfies the following decay estimate

for (1X| + [£1/2) sufficiently large : |02033(X, 8)| < Cla, B, B)(|X| + [¢]}/2) =215
(v) For almost every t and every multiindex o there exists a constant C' such that

for | X| sufficiently large :  [0%q(X,t)] < C(a, q)| X1l
DEFINITION 9.2. We say that 4 is a weak solution to the problem

— =AU—-Vp in Q={(vo,x,t):x0> A(z,1)},
divii = 0 in Q
i=feL3(0Q) aeon 00

if and only if it is true that for for almost every t, N, (@) € L*(9%), and for almost
every (zo,x) € 0Q; w.r.t doy

€ —

hm ﬁ s ,t = T ,x7t .
o T80, 9:1) = flao, 2, 1)
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Furthermore, for every € > 0 and every pair of admissible test functions (gg, q) in Q¢
the following should be true,

/ (i, s+ AG+ V) dYds = / (ﬁ,%)dagds+ / (7, N¥)g dods.
Qe o0¢ ® o0¢

Let us for clarity prove that the double layer potential @ = D f is a weak solution.
We want to prove that the difference

/(ﬁ,$s+A$+ Vq)dYds — /(ﬁ,%}dagds— /(ﬁ,N§>qda§ds

Qe o0e o0e

is zero. As (i, Vq) = div(iq) we have using decay properties of @ and ¢ that

/(ﬁ, Vq)dYds — / (@, N$)gdosds = 0.
Qe Qe

Therefore we have to focus on the difference,

/ (@, §s + Ag) dY ds — / <ﬁ,£$§>da;ds

Qe o0e

which by integration by parts equals

/ (i, &s) + (AT, @) dY ds.

Qe

Recall that the double layer by definition is,

u = Df| = t 87F - - 9)f(Q,s)do s
(X, 0) = DX .—4 aQ/ g ¥~ @t = (@9 do (@)
O-X -

m( (@, 1), Ne(Q)) doe (Q).

00y

Le., 4 = 1, + Us with @y harmonic. Therefore,

/ (@,6:) + (A, &) dY ds

Qe
- / (@1, 8e) + (Adiy, ) + (T2, Bu) dY ds
Qe
81_[1 N — N —
= _/<E — Ay, ¢s) + /<u2,¢5>dms.
Qe Qe

As 1y essentially can be written as a sum of derivatives of single layer potentials we

essentially have % — Aty = Vp,, for some harmonic pressure p. Again using the
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divergence theorem and the fact that our test function ¢ is zero on the boundary we

have 5
[t - s -

Qe
Left to prove is that,
/(ag, bs)dYds = 0.
Qe

But @y = VSg for an appropriate g. Here Sg is the single layer potential associated
to the Laplace operator. Therefore as ¢ = 0 in R(092¢) we have,

/<a'2, bs) dYds = /(vsg, bs) dY ds = / (¢s, NV Sgdoyds = 0.

Qe Qe o0e

One also easily verifies that the double layer potential D f, f € L2(09), has boundary
values (f/2+ Kf).

We will now prove the relevant invertibility results on the approximating domains
Q€ with € > 0 small. In the case of the Dirichlet and Neumann problems we can then
easily pass to the limiting domain ( see the remark after Theorem 9.2). Combining

the inequalities of Lemma 8.3 we have that there exists a constant C' independent of
f € L?(09°) and € such that if @ = Sf = Sf then,

> . ot ot_
£l 22000 < len{Ha—;HLZ(asze)a ||W||L2(6526)}a (1)
- 1/2
Ilz20m < C|Vluz, omr+ / [ s enasiar) | e
—00 Q€

Now assume f € L2(99F). Then 0ty /dv = (£1/2+ K,)f = (£1/2 + Kév,j)f_' a.e on
09Q¢ by Lemma 2.6 and 2.7.

THEOREM 9.1. Let Q° = {(wo,2,t) E RXR"™ ' xR : 29 > e+ Py A(z,t)} where
Al comm < B < oo and ||D§/QAH* < e < 0. If g = eo(||VsA]leo) is small enough

then (£11+ K,) = (£31 + K. ,) is an invertible operator from L*(0) to L?(9).

Proof. We want to prove that f — (I/2 4 K,)f is 1-1 and onto L2(99F). We
know that the map is into L2(9QF). Let Ty (x,t) = ((I/2+K2)f)op(0,z,t) where K&
is the operator we get if A(z,t) is replaced with aA(z,t), @ € [0,1]. Then obviously
T, : L*(R") — L?(R") with norm independent of o and ||fop||Lz(Rn) < C’||Taf|\L2(Rn),
where C is independent of «. The last inequality is the inequality stated in (1). Using
arguments similar to the ones needed in the proof of Theorem 2.1, i.e. the results
on singular integrals of Hofmann[18], one can prove that dd% : L2(R") — L%(R™).
Invertibility now follows from the method of continuity as described in [23,p.150].

THEOREM 9.2. Let Q¢ = {(xg,z,t) ERXR" ' xR :xzg > e+ P A(z,t)} where
Al comm < ﬁ~< oo and ||D§/%AH* < ey < 00. If eg = €(||ViAlloo) is small enough
then (£31+ K. ,) = (£31 + K,) is an invertible operator from L?(99°) to L3, (99°).
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Proof. Note that if (@(X,t),p(X,t)) solves the system of linearized Navier-Stokes
in {(X,t) : zo > €+ PyeA(x,t)} then (@(X, —t), p(X, —t)) solves the adjoint system in
{(X,t) : z0 > e+ Py A(z, —t)}. Obviously, A(x, —t) has the same properties as A(x, ).
Let f(; be the boundary operator associated to the adjoint single layer potential on
{(X,t) 1 29 > e+ Py A(z, —t)}. Invertibility of £17 + K* then follows from Theorem
9.1. The invertibility of i%[ + K, now follows by duality.

REMARK. That Theorem 9.1 and 9.2 remain valid with Q¢ replaced with Q) follows
from a simple approximation argument.

THEOREM 9.3. Let Q¢ = {(xg,z,t) ERXR" ' xR :xzg > e+ P A(z,t)} where
Al comm < B < oo and ||D§/2AH* < ey < 00. If eg = €(||ViAlloo) is small enough
then the map f — S¢f = Sf from L?(09°) to R(952°) is one-to-one and onto, i.e.
invertible.

Proof. Let f € L%(09°) and let 4 = S f Consider Sy, the single layer potential
operator associated to the Laplace operator on €25. Using elliptic theory we know that
S; ! exists and is continuous from L?(99%) to L?(995). For v € L}(99Q5) we define

the functional,
8u € € E €
(5 V) //S )S; () doft.

—00 895

Using Lemma 7.2 and Lemma 7.3 it then follows that @ € R(0€2€) and
]| reoaey < C|l fllz2(00¢)-

Therefore the map f — Sf is into R(9Q¢). Using inequality (2) above we also have
the opposite inequality. Furthermore, using the results of Section 7 we have,

HU’HL? 1/2 (99°) + / H _ZV6 ||[L2(8Q6)]* dt ~

) T
nm@ﬁm+//mﬁﬁmwwm

—00 90

I.e we may consider the latter an equivalent norm.
We will now use a continuity type argument to prove invertibility. We have chosen
to present our argument as it is, because of the complexity of the regularity norm,
nontrivial.
In the following we will not as before all the time indicate that our quantities depend
on €. Let a € [0,1]. Define,

pa(T,t) = (e + aPye Az, 1), 2, 1)

Ta(e+ aPy Az, t), z,t) = (x,1)

00N ={(e+ aPy Az, t),x,t):  (z,t) e R"}.

Let the regularity space, R, (92%), be defined with the equivalent norm
R, (09Q%)
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B . B ©0 o 1/2
(@€ 1200 ilug, one+ ([ [ 150055 NeDPaozar) <
—00 9N
In the following we will assume that Sgl exists for sufficiently small values of 5. This
can be proved using an argument similar to the one presented below and the fact that

we have invertibility in the halfplane {(zo,z,t) : o > 0}. Recall that if @y € R, (9Q%)

then by definition [ o - NP doy = 0 for almost every ¢. All the o’s indicate that
a0

things are defined w.r.t 9Q%. Given iy € R,(9Q%) we define a vector 7 on 098 in

the following way. For j € {1,....,n—1}, v} = %(u% 0 pa 07g), and v§ = (ug 0 ps 0 7g).

Then for almost every t, [ @ - N/ do} = 0.

QP
Suppose that iy € R, (9Q*) and suppose that S’El exists. Construct 7y as above.
Then @y € Rz(99”). Therefore there exists gy € L?(992%) such that Szgdy = ¥p. Le.,
Jo = Sglﬁo. Define f; € L?(09%) in the following way,

fo= (Jo © pg © Ta)-
Let A, g denote an n x n matrix having all off diagonal elements equal to zero and
(Aag)i1 =1, (Aa,p)j; = § for j € {1,...,n —1}. Then,
Go =850 = S5 (Aa,pilo © pa © Tp).
Le.,
Aq 5o = S5(fo 0 pa 0 T5) 0 p3 © Ta.

We hope that Saﬁ; is a good first approximation of #y. Define u; = g — Saﬁ).
Repeating the argument above in an iterative fashion we can construct two sequences
of vectors 1; and f; in such a way that

oo
Ujp1 = Uj — Safjs UO:E Sa fr-
k=1

We want to prove that Y~ fr converges in L2 (09%) if o — B is sufficiently small.
As above,

fl = (gl Cpp 071-(!)7
G = 551171 = S[;l(Aa,ﬂﬁl © pa ©T3),
Aapily = A plio — Aa3Safo = Ss(fo 0 pa 0 T5) © pg 0 To — A 3Sa fo-
Using our Rellich inequality in (2),
[ f1llz2a00) ~ 1l 22(008) ~ [Aa,pli1 © pa © 75l Ry 008)

= [|Ss(fo 0 pa o ms) — Aa,pSafo o pao ﬂﬁHRB(aﬂﬁy

Define, Ta,ﬁ.ﬁ) = Sﬂ(.f(; O Pa © T‘-B) - Aa,ﬁsaf(; O PaOTg3-
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We want to estimate the operator norm of this operator in Rg(aflﬁ ). For simplicity
we surpress the index of fy. We consider Ti, gf. Then

HTOéﬁfH%?)l/z(aQﬁ) = |ID(Tu5f 0 ps)lI72@n)
and

Ta,ﬁf °ps = Sﬁ(f O Po Oﬂ-ﬁ) ©pp— Aoc,,BSaf © Pa

= [ [ 1000~ pals )T paly 511+ BV, Al o) dyds

—oo Rn—1

[ [ Tlalwt) = pulu.5) 0 paly )T+ @2V Al 9 dyds.

— 00 Rn—l

Define a kernel in the following way,
Ko p(2,1,9,5)
= T(ps(,1) = ps(y, )\ 1+ B2V Py Ay, 5)?
— T(pal,1) = paly, 5)y/1+ 02 VP, Ay, 5) 2

= [Toatent) = ps(309) = Fpa(a0) = (o)) /T4 VP A o)

+ T (Pl 1) — paly. ) Wl + B2 VP Ay, 5)2 — /1 +a2|VP%A<y,s>|2}.

Obviously,
{\/1 + 52| VP, Ay, s)|? — \/1 + a2|V P, Ay, s)|2] =
(a = B)(a+ B)|VP, Ay, s)|*
VTP PL AT + TF @V P Ao
Define,

K2 (. t,y,5) = [Npa(ﬂc,t) — 051, )) = T(palest) — paly, s>>]
Kiﬁ(x,t,y, 5) = F(pa(I,t) - pa(yv 5))7
F(y,5) = [0 paly,5)\/1+ B2V P, Aly, )1,
é(y,s) _ fo pa(y73) (OL + ﬁ)|vP’Y€A(y75)|2 )
[\/1 + 32|V P, Ay, s)|? + \/1 + o2|VP, Ay, s)|2}

Let Téﬁ be the operator corresponding to the kernel Ké)ﬁ(x, t,y,s). Then,

Topfops(z,t) =Tt 3F (z,t) — (a — B)T2 4G (x,1).

[e3
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Using the results of Hofmann[18] we immediately get,
||D(T§,5G)||2L2(Rn) S 1fllzzqe)-
The fundamental theorem of calculus gives,

Klﬁ(mty, s)

= — / aﬁF(O'P%A(x,t) - O'P'yeA(ya 3),.13 - y7t - S) do
o

«

= - / Ty, (0(PyeA(, ) — PocA(y,s)),x — y,t — )(Poc Al t) — PcA(y, s)) dor
B8

Again the continuity of the operator T, 5 follows from the result of Hofmann[18] and
we may conclude that,

||Ta,ﬁf||%§11/2(am < Cla = B fllr2(a0),

where C is a constant independent of o and (3.
We now have to consider the rest of the norm, i.e.,

/ [1sea® ’ﬂf NP2 dodt

—0 90f

Recall that
Topfops=Ss(fopaomp)ops— AapSaf o pa-

Let p” and p® be the pressures associated to Sg(fo paomg) and Safrespectively. By
definition if (P,t) € 998

T sf Mool NPY(Qt
st ey = po [ LEIED o)

o0?

_ (2.55(f 0 pa 0 7s), NIY(Q, 1)
- / =P — Q"

do} (Q)
o0y

9 o om B
—p.v/ <6t(AOé’BSaf Pa ﬁ)th >(Q7t)

B
w2-mp-gqrz @

o0s
=1 (P, t) 4+ I2(P,t).

We now want to spell out these expression in graph coordinates on 9Q°. Let for
the moment & = Sz(f o po o ) and consider SP((AT, N)Y(P,t). (AT, NP) =
S AVINS Here

1

forie{l,..,n—1}, Nf’=—-—/.
IN|

OP, A 1

NP =
A ATV
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Note that on 997 we have 2o = ¢ + BP A(z,t). Let

OP, A
8xj

77 = (8

J ’0’7’)7071’0""0)/|Nl‘»ﬂ‘7

where we have placed the number 1 at position j. Here j € {1,...,n — 1}. Note that
T; is tangent to (’9(2,56 . Using the formula of Shen stated in Lemma 7.4 and partial
integration,

SY (AT, N ) (P, t)

(AT NIN@1) 5
= p.w do
p /ﬁ wn(2_n)|P_Q|n_2 t(Q)
o9
= 3 8 k0P A 0 0 OP A . 4
B Z wy (2 —n)|P — Q"2 5($ Oz ) - 5(% 0z )| dot
j’kzlaﬂﬁ n B/TJ 7 k aTk J J
n—1
1 a o
_ —)do?
Y [ wamar—arranon
Clo%

n—1
1 8 81}’“ 16}
> / wn@ = WP~ Q"2 o1 20 "

_189{’
n—1
= 9 B WP OPy A | 5
__,Z /8T,ﬁ(wn(2—n)|P_Q|n2)(87j By ) doy
Jykzlaﬂf J
n—1
9 g vk OP A 4
+Z / ( — (5 ) do,
k=17 Ty wn(2 = n)|P = Q"2 0x; Ou;

n—1
8 1 6’[}0 5
N T o2 oz, ) 4ot
]:169? J

S 4 1 ovk 5
_ Z / 8Tkﬁ(wn(2 —n)|P — Q|n72)<8—:co) doy .

F=loqar
Changing to graph coordinates and introducing,

K(ﬂvxayat) = (ﬁ(P'yEA(xat) - P'yEA(yat))ax - y)

SP (AT, Nf) 0 ps(y,t) =

n—1 / 8 {/6’2 OPy A P, A(y,t) — PyeA(z,t) Yj — %j 8]376/15'71)’C .
Oz; wn| K (B,y, z,t)|™ wy|K(B,y,2,t)|"| Oxip Ox;

pp(z,t)dz

j,k:an,,l
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n—1

OP,cA Py A(y,t) — Py A(z, 1) Yk — 2k OP., A OvF
20heA Iy , B! , gl
P (e o e L e UL
n—1
OP,cA P A(y,t) — Py A(z,t) Yi — 2j on°
20heA Iy g i 7
) P R e e e 5y o P 8
n—1
0P, A Py A(y,t) — Py A(z,t) Yk — 2k vk
_ 2 o ol Y s
=/, e e s wR g (5ag) P50

We also recall that 5”8( op" )(P t)= (2 — K2)(p°)(P,t) where

_ B
KGR i=po [ =D 500,045

008

Using the formulas just developed we will write down a formula for I o pg(y, t) below.
But first we focus on Is. If (pg,p,t) € 895 then Wg(po,p, t) = (p,t). Consider

(2 (Aa,3Saf 0 paomg)ops, N
wn (2 —n)|pg(z,t) — pply,t)[" 2

—Iy 0 ps(a,t) = / \/1+52|VP75A(y, b dy.

Rn—1

Let H .= Aa,gSafo Pa © T3 be defined on 90P. Then H o pg = Aa,gSaf_’o Po and,

0 P, A
5y 0 ps) = Hyops+ BHy, 0 pp—p —.
Le.,
0 - 0 -
&(Aa,ﬁsaf 0 pa O Ta) 0 pg = &(Aaﬁsaf ° Pa)
0] > 0P, A
—58780(140{,55@]”0%0775)005 (;t
0Saf 8S.f  OP,.A
oy ©Patadap(Tyy mora) =,
ﬂaP%A 9 .
1+531:g;,486( ,gSfOp)
But
) e 0Saf OP, A
57 (Aa a0 pa) = (Aa st 0 pa)(1+a=25).
We may therefore conclude that,
d - 9Saf 9Sof 0P, A
&(Aaﬂsafopaoﬁﬁ)opﬁ:/laﬁ ot 0 po + ada p( Dz ° pa) gt
0P, A (1 + a2ty 9Saf
7ﬁ N (Aaﬁ ax Op(l)

ot (1 _|_I36P%)
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Using these calculations we see that the expression

(& (Aa3Saf o paoms)ops, N, 5
VP, Ay, )2 d
/ (@ lppat) = ey, O V”ﬁ' neAw: 1) dy

Rn—
equals
<A B BtfopouNfg
: 1+ 32|VP, Ay, t)]2 dy
/ BT e B poly ATV IV PreAG )
14+
< _5(1158P76A3)<A 758§xof po"N >6P A
+ / — ”E \/1+62|V Ay, t)[>dy
Lo em@mnles(@,t) = pa(y, )l
= (fa1 + I22) 0 pp(z,t)
Note that,
ORI
1_i_ﬁaPWA 1_’_5313%,4
Therefore,

[ [ Uz pstant))? dudt < Cla = DIV e o0y < Cla = B) o0
—oo Rn—1
We now focus on Is;. Retreating to ordinary coordinates and again using the formula
of Shen we have

121(p07p7t)
3Saf N
:’“’/ i _dof(Q)
sore Wn(Z=1)[((Po = Ga0 + (5 = D)), p — )"~
ik=1p0e wn (2 = n)|((po — qu + (g —1)e),p —q)|"~2 OT}" ax] A, &
- Z « 9 O(Sa f)’“aP%A)
Sl =m0 = Zao+ (5 = De)p— @' 0T Dey 0y g
_Z / : J (a(S“JF)O)da;X
j= 1an wn(2 — n)|((]90 - gqo + (g — 1)6)’p _ q)|”*2 3qu ﬁxj
1 0 a(Saﬂk
* =( ) doy*
;m? wn(2 = 1)|((po — Zqo + (£ = 1)e),p — q)|"~2 0T2* dao t
(Vp™, N¢) .
—pw / (@
o =m0 = Zao+ (E—Dyp—gp2 1@

a0
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I N a O(Suf)F OPLA, o
- Z / 8Tj‘?“(wn(2_n)|((p0_ Bgo+ (2 - 1)6),p—q))|”—2)( dzxj; Oy, ) do

3:k=1gQ

o A(Saf)k AP, A
4 / )
Z o1 w2~ (0 a0+ (2 Do )2 da; 0, )

J,k= 150

—

1 ( @ ) do_a
+Z/8Ta wn(2*n)|((p0*§¢I0+(§*1)6),p*fl))|’172)( Oz do

=100

_ 0 1 (Saf')k o
;69/ aT]?(wn(2—n)|((p0_§q0+(§—1)6)’p_q))|n,2 8930 )d t
o <vPa’Nta> do®* .
p- 84 wn(an)K(po*§QO+(§71)E)’p7q)|n,2 t(Q)

By arguments similar to those used in the proof of Lemma 7.2 we have

V7, N7) do? =
/ wn(2 = n)|((po — Lqo + (£ = 1)e),p — q) |2 (@)

o0y

p(Q, 1) do} (Q).

a (o — B0 + (£ = 1)), p — 0), N (Q))
5P (Pa t) —p.v 3 3 .
wy|((po — £q0 + (5 — 1)€),p — q)|
202
Changing to graph coordinates

Iz 0 Pﬁ(yv t) =

B nil N [52 OPy A P, A(y,t) — PycA(z,t) Yj — % }
Sr—1 8l‘j wn‘K(ﬁ,y7Zat)|n wn|K(ﬁay7Zat>|n
I R=1pn—1
8P’YEA 3(5 f)
axk ax] pa(zﬂt) dZ
+ nil / |:52 apfyeA P'yeA(yv ) P’yeA(Za t) Yk — 2k :|
h—1 .Tk wn‘K(ﬁ,y7Zat)|n wn|K(ﬁ7y7Zat)|n
I R=1pn—1
APy A DSy f)E
nzl { 20P,cA P Ay, t) — Py A(z,t) Yj — % ]
1 ] wn|K Bayaz7t)|n wan(ﬁay7z7t)|n
9(Saf)"
X (=5 =) 2 palz;t) dz
Oz

= |: aP'yeA PfyéA(ya ) P’yeA(th) Y — 2k :|
1 wn|K ﬁayazat)ln wan(ﬁay7z7t)|n

k=
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Ak
9(Saf)

X (TCO) 0 pa(z,t)dz

<<(p0 - %Io + (g - 1)6),}9 - Q)7Ntﬁ(Q)>
wn‘((po - g% + (g - 1)6)7p - Q)‘n

_ %pa(P, t) + p.v / pa(Qvt) da?(Q)

ek
Before continuing we have to summarize what we have achieved so far. Recall that
Topf = Sa(fopacms) = AapSaf o paoms

and that our main objective is to prove the estimate

| T fll Ry 008y < Cla = B)|| FllL2o00)-

But
. , r OT. 5f
sty % s oy + [ [ 190 (F5 20 NP dofar
— 907

Above we have proved that,
- ~
”Ta,ﬁf”Lil/Q(aQB) <Cla-— ﬁ)HfHL?(aQa)’
where C' is a constant independent of o and 3. We have also derived a decomposition

OTosf
ot

Sts(< aNtB>):I1_121_I227

and we have proved that

| [ (o pstait))? dudt < Cla = B)I 1B oo

—ocoRn—1

We therefore just have to focus on I; — I5;. Let ¥ = Sﬂ(fo Pa O T3). p? and p® be
the pressures associated to Sg(f o po 0 m3) and S, f respectively. We have derived the
following formula for this difference.

I o pg(y,t) — Ia1 0 pg(y,t) =

S 5{5281%614 Py A(y,1) = PocA(z, 1) v = 2 ]
A wn| K (B, y,2,t)[" wn| K (B, y,2,t)[
X %g—zj opa(z,t)dz
n—1 R
o8 ]l R b
« aPVEAM 0 palz,t)dz

8I1€ 8xj
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oP GA P EA(yvt) - P EA(Z7t) Yk — 2k
+ ﬂl:ﬂ2 2l 2l 8l
JE%—:lR/1 8‘rk wn|K(ﬁ,y,z7t)|" wan(ﬁ7y,Z,t)‘"
3P,Y€A ok
— t
Ox; Ox; o pp(2,1) dz
_ nil / |:62 aP’YEA P’YEA(ya ) P"YEA(th) + Yk — 2k ]
j’kle - Z‘k; wan(ﬂvyaz7t)|n wan(ﬁ7yazvt)‘n

L 0P AD(S, fiE

ar, D, 0 pa(z,t)dz
+"§ / [ ﬂzaP%A PycA(y, t) — PycA(z, ) Y — 2 }
=g Ox; wn|K(B,y, 2z, t)|" wn|K(B,y, z,t)|"
o
X (a—%_) o pa(z,t)dz
= /[ 20P, A P Ay, t) — Py A(z,t) Yj — 2 }
=i Oxj  wa|K(B,y, 2, 0)|" wal K(B,y, 2, t)|"
9(Saf)°
X (— oz, )0 palz,t)dz
fz / [52313 A Py Ay, t) — PreA(z, 1) Yk — 2k }
it wn|K(B,y,2,t)|" wn|K(B,y,2,t)|"
8 k
X (axo)oﬂﬁ(z 1) dz
"Zl [ aP%A PycA(y,t) — PycA(z 1) Yk — %k }
- w,|K(8,y,2,t)[" w,|K(8,y,2,t)|"
9(Saf)"
( dzo )Opa(zvt)dz

1
— 5195 ° pp(y,t)

|:5VP’76A : (y - Z) - 5(P76A(y, t) - P'yeA(Z7t)):|

p?ops(z,t)dz

-/

Rn—1

wan(ﬂv y’ Z?t)‘n

1 (e
+5p%0 pp(y,t)

[onP,YEA (y — 2) — B(PyeAly, t) — Py Alz, t))}

K(B,y,zt)|"

p% 0 pa(z,t)dz.
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Introduce the following notation,
ap’yeA P’yeA(yv ) P’yeA(Za t) Yi — %5
xj wn‘K(ﬁay7zat)|n wn|K(ﬁ7y7Zat)|n

Using this and summation convention we can rewrite the formula above in a shorter
form,

Aj(ﬂ7yaz7t) 62

Iy o p(y,t) — I21 0 pa(y,t) =
_ 0P, A d(Saf)* o 0Py A Ov*
[ oGz TR 2 o o o) - 5y (0,020 TR T ot

Py A O(So f)F
8xj 8wj

OP.,.A ovF
avj gz, ° o=t — adi(Bry.2,1)

0 palz,t)dz

R"_l
/ BAWB, . 2 1)

y .
+/ 52050 0 pa(as0) = A8 ) o2

Rn—1

+ / Ak(/gay7z7t)(

)0 palzt)dz

Ak k
8(gaf) )0 pal(z,t) — A(B,y, 2, t)(gv ) o pp(z,t)dz
Zo o

_ﬁVPA,GA (y—2z) — B(PyeA(y,t) — Py A(z,t))

l.s
p” o pg(z,t)dz
KBy 20 5(2:1)

1
*Qpﬁopﬁ(y, t) + /

Rn—1

aVP, A (y—2z)— B(PyAl(y,t) — Py Az, 1))

1
37" 0 paly.1) o (K g 20T palz1)

Rn—1

We need to estimate I; o pg(y,t) — Ia1 o pg(y,t) in L?(R™, dydt). Obviously in order
to do so we only have to consider the following operators for relevant indicies.

. N Ak k A
1.0 = [ [a28eIE ooty - 955 0 pate 0] 456,50 2
J J
R’VL*I
(Saf)™
7,0y, / A8oy.2.0)| (G o o(ent) = (PG 0 a0 s
T f0,0) = 516" © pa(u,1) = 1  pa(y, )
) VP, (1= 2) = BB Al ) = PoeA(D)|
Rn—1
{aVPWA (y —2) — B(PyeA(y,t) — PycAlz, t))}
B / (KB, D) prepalzn b
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We will now treat each of these operators. Rewriting T3 f we get,

P, A

o Ak
e B R

Rn—1

a vt dP, A
/ﬂA 6.2 280 o ety = 2 0 )] 2
J

J

= Tllf(ya t) + T12f(y’ t).

As T essentially is an elliptic singular integral operator of the type considered by
Coifman-Macintosh and Meyer[5] we deduce using the usual nontangential estimate
that

|71 fl 22 & ayary < Cle = B) fllz2000)-
In the same way,

ov* 2
T2 f117 2 e, dydt)<c/ /’ 63: palz,t) = 50 pp(z, )| dedt.
J J

—oco Rn—1

But,

o B
8(2;]) o palz,) Z; / T (a(Pye Az, t) — PocA(w, s)), 2 — w,t — s)
—Y—ooRn—1

X fi 0 palw,s) \/1 + a?|VPyeA(w, s)|? dwds

k n—1

ZL o pg(z,t) Z / / F“C B(PyeA(z,t) — PyeA(w, s)), 2 —w,t — s)

1= O*OOR" 1

X fi 0 palw, s)\/l + 32|V P, A(w, 5)|? dwds

Using the fundamental theorem of calculus we have,
I‘;’j (a(PyeA(z,t) — PyeA(w, 8)), 2z —w,t — s)
- cmlj (B(PyeA(z,t) — PycA(w, s)), 2 — w,t — s)
/I‘;kmo( (PyeA(z,t) — PycA(w, s)),z —w,t — s)(PycA(z,t) — Py A(w, s)) do
B

Again using the results of Hofmann[18] on parabolic singular integrals we may conclude
that,

8’Uk 2 .
/ / ‘ axj 0 palz,t) = 35— 0 pa(2,1)| dzdt < Cla = )| fllz2(ons).

—o0o Rn—1 J

This completes the estimate of T3 f By a similar argument we see that
T2 fll 22 ®n ayar)y < Cla = B)|| fllz2(qe). Introducing, K(8,a,y,2,t) = (BPycA(y,t) —
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aPy A(z,t),y — z) and rewriting Tsf we get,

o _1 <pﬁ(yat)_pa(z ), f opa 9 9
Tsf(y,t) = 5 / o KB gz \/1+a VP, A(z, )2 dz

_ 1 <pﬁ(yv t) — Pﬁ(z t), f Opa . -
2R7;[1 wﬂK(ﬁ,y,z t)|n \/1 . 6 VPV&A(Z t)| dz
_ 1 / {5y, 1) = palz,), [ 0 pa)

2 wn|R(ﬁva7yaZ7t)|n
Rn—1

(a = B)(a+ B)|VPy Ay, s)? dz
[\/1 + BV P Aly. )P + /T4 o2 [V P, Aly, S)'Q}
L1 / (ps(2:t) = pa(z:1), Of’a 1+ BIVP Az )2 de

Rn—1

X

1 / [ 1 1 }
+ _ _
2w ) KBy s KBy 00

Rn—

x (ps(y,t) — ps(z,t), fo Pa>\/1 + B2|VPy A(z,t)|? dz
o= T f(y, t) + Tsof (y,t) + Tss f(y, 1)

Using the theory of elliptic singular integrals we immediately see that,

751 fll 2w ayar) + | Ts2.f || L2 ayary < Cla— B)| fllL2e)-

After some thought we realize that the same is true for the integral of T33 f
Rewriting Ty f we get,
T4.F(y7 t)
{ B—a)VP,A-(y—2)

/ wn|K(B,y,2,t)|"

Rn—1

pﬁ © pﬁ(zat) dz

[avp%A — 2) = B(Py Ay, t) — Py A(z, 1)

B o —p% t)d
p* 0 pal(z,t)dz
o KByt p"epp =1%o pal(=,1)

\

—

f( t)+ Tua f(y,t)
Again by elliptic theory, ||T41ﬂ|L2(Rn7dydt) < Cla— ﬂ)||ﬂ|Lz(aga). Also by elliptic
singular integrals we get,

o0 2
e e i <€ [ [ \[pﬁopﬂpaopaxz,t) dzdt.

—oo Rn—1
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Now,
[p° 0 pg — p* 0 pal(z,1)

_ <pﬁ<y’t) pﬁ(Z t) opa 5 .
_/ wa|(K(B,y, 2, )| \/1+ﬂ2|VP%A( )[2d

- (Pa(y,t) = pa(2,), f Opa o z z
/ wy| (K (o, y, 2, )| \/1+ 2|V P, Az, t)2d

_ / {psyt) = ps(z,1), f o pa) (B = a)(a+ BV P Aly, s)|*
iy wy|(K(B,y, 2, )| {\/1+ﬁ2|VP7€A(y,s)|2+\/1+042|VPVEA(?J,S)2

<((a_ﬁ)(P“(y’t)_P“/G(Z’t))ao)afopa> 2 2. 1)12 dz
! / wa|(K(B,y, 2, t)|" \/1+a VP A(z,t)|2d

“n, | @@ - ]
we ) TEGy =0 Ky =0

X (pa(y:1) — palz.1), Fo pa)y/1+ 02| VP, Az, 0|2 d
= Tyo1 f + Tago f + Taos f-
Obviously
||T421ﬂ‘L2(R",dydt) + ||T422.ﬂ‘L2(Rn,dydt) < C(Oé — /B)Hﬂ‘[/?(aﬂa)

That the same estimate is true for the term determined by T4o3 follows from elliptic
theory. Adding our estimates we may conclude that

[ [ 10050000 = B 0 patu 02 v < e = 3171 ey
—oo Rn—1

Looking back and adding estimates we have proved that,

| T fll Ry 008 < Cla— B L2a00)

where C' is a constant independent of o and 3 and
Topf = S5(f pa o 73) = Aa,gSaf © pa o 7.

By construction we formally have @y = > | Sa f;; and our main objective was to
prove that Y .=, fx converges in L?(02*). But the estimate we have proved implies
that,

| fellz2a0e) < C*(a = B)¥| foll £2(o00)-

If (a — 3) < C~!/2 we may therefore conclude that we have the desired convergence.

As mentioned in the beginning of the proof one may prove, in an argument similar
to the one presented above, that Sﬁ_l exists if 3 is small enough by considering 9Q°
as a perturbation of the halfplane {(zg,x,t) : o > 0}. We have therefore completed
our continuity argument and therefore the proof of Theorem 9.3.

dz



LINEARIZED NAVIER-STOKES EQUATIONS IN NON-CYLINDRICAL DOMAINS 89

10. Proof of uniqueness. In this section we prove the uniqueness statements
of Theorem A, B and C.

Proof of uniqueness in the Dirichlet Problem. Assume that @ is a weak solution
of the linearized Navier-Stokes equations and assume that

(i) N..(@) € L*(09)

e —
(i4) lim @(Y0,y,t) =0 non-tangentially for almost every t and for
(Yo,y,t) > (wo,,t)

almost every(zg,z,t) € 9Q;.

c||A]lcomm where ¢ is a constant independent of e the existence results of the pre-
vious section are valid on €. Furthermore the inequalities of the previous sections
are valid on € with constants independent of €. In addition to this Q€ is a C*°-smooth
domain.
Let . be the weak solution(given by the existence proof) to the Dirichlet problem in
Q¢ with data on 90 given by the restriction of @ to dQ°. As N, (@) € L?(dQ) this
restriction is well defined. Then @, = D.f,. for some f. € L2(9Q°) where D, is the
double layer potential operator on €. This follows from the existence results of the
previous section as N, (@) € L?(9Q).

We now claim that @, = @ in Q€ for all € > 0. Let us assume the claim for now
and let N¢ be the non tangential maximal function operator on Qf. Similarly define
Nj’e Then trivially, N¢ (@) < N, (). By the existence results in Q¢ we have that

*,e

the following inequality is valid with a constant ¢ independent of e:

We want to prove that @ = 0. As |D,PyAll. < ¢|DpAls and ||PyeAllcomm <

NS o (@) L200¢) < cllidll 2a0e)-

As N..(@) € L*(9%;) for almost every ¢t we get by dominated convergence that
N.,.o(@) = 0 a.e on Q. Le. ]\7:6(12') = 0 for every € and almost every t. Le., @ = 0.

Left is now to prove the claim. Let W, := 4. — @ in the closure of 2¢. Then w0, is
a weak solution in Q¢ and w, is zero on the boundary of Q¢. We want to prove that
W, = 0. To prove this it is enough to prove that for all F' € C§°(Q°) the following is
true,

/(@, F)dYds = 0.
Qs

Le., given F € C§°(Q°) we want to prove that there exist an admissible pair of test
functions (¢, q) in € such that

$s +AG+Vq=F.
Let (¢, q1) solve the problem qgi + A¢' + Vg, = F, dive! = 0 in the whole of R™.
We postpone the proof of the following lemma for now.

LEMMA 10.1. The restriction of ¢* to O0F is in the space R(9QF).

We now consider the problem, ¢2 + Ag2 + Vgo = F, divg? = 0 in Q° with
boundary data 52 = q’_)'l. Using lemma 10.1 we notice that we are solving the Dirichlet
problem with data in our regularity space R(92€). Using our existence result from
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the previous section we may conclude that (52 can be represented using the single layer
potential. Define ¢ = ¢! — 2, ¢ = q1 — g2. Then (¢, q) is an admissible pair of test
functions in Qf reproducing F € Cg°(QF).

This completes the proof of uniqueness in the Dirichlet problem modulo the lemma.

Proof Lemma 10.1. We have that

PUX ) = / /I‘(X —Y,t—s)F(Y,s)dYds,

700R‘n,
(X -QF(Y1)
]Rn

We want to verify that the restriction of ¢' to 9QF is in R(9QF). Let O.(\,y,s) =
(A+ e+ Py Ay, s),y,s). Then as the support of F' is contained in O,

q's’l(X,t):// /F((X,t)—GE(A,y,s))ﬁoGE(A,y,s)dydsdA

—00 —oo Rn—1

AF) ¢

= / / /F((X,t)f@E(A,y,s))ﬁoGe(A,y,s)dydsdA
0 —ocoRn—1
AF)

—

Sy F(X, 1) dA.

I
o

Here SA,Gf is the single layer potential with {(zo,z,t) : ©o = € + A + Py A(z,t)}
as the underlying boundary. Now using the estimates of maximal functions outlined
in Section 2 as well as the arguments of Section 7 we may conclude that indeed the
restriction of ¢! to 90 is in R(OQF).

Proof of Uniqueness in the reqularity problem. We assume that @ = 0 in R(00%0),
N.(Vi), N, .(p) € L*(9Q°) and that (i, p) solves the equation under consideration.
We want to prove that @ = 0. Fix (X',t/) € dQ% and (X,t) € Q. Choose r > 0 so
large and € > €p so small that (X,t) € Q°NQ,(X’,¢') with

Qr(Xlat/) = {(yo,yvs) : |t/ - S| < T23 |$6 - yO‘ + |£L'/ - y| < 7‘}.

Let W = g where ¢ € C§°(Qa2-(X',t')) is such that ¢ = 1 on the closure of
Q3r/2(X’,t"). We furthermore assume that

n—1 n—1
6t/ + Z [0 [l + Z 1022, [loo < ar .
i=0 i,j=0

Let § € (0,1) and let s € (—oo,t — ). Let I'(Y,s) =T'(X — Y,t — s) be the matrix of
fundamental solutions. Let I'; be the i-te row in that matrix. The vector I'; solves the
adjoint system of linearized Navier-Stokes equations with pressure p = ¢’ according
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to Section 2. Using integration by parts we have,

t—6
1575 i = / /(wkfik)s dYds

—00 Q¢
7 os T ok or
_ 9P k. gu” ik, k
— / / 8su T dYds + / /( P oLk + s u®¢)dYds
—o0 Q¢ —o0 Q¢
t—0 8 t—0 (‘9
= / / isu‘ﬂrik dYds + / / (AuF@Ty, — 2 6T1) dY ds
Os Oxy,
—00 ¢ —00 Q¢

t—6
q°
— aukd — k
/ /(Aqu 0] D, pu”) dYds

—o00 Qf

_ _k _ zkk €
_// uFT . dY ds +//8Nf i aNe 6) dotds

—00 QF — 00 696

+ / / (VuFV (o) — VIV (u"¢)) dY ds

— €
0o Q€

g Op
( - aTck(éf?Fm)) dYds.

oo e
But a simple calculation shows that,

VulfV (¢Ti) — VI V(uF¢) = VuF Vel — VI Vour.
Furthermore,

div (¢'¢t) — div (p¢Ls) = (Vq', ¢0) + ¢"(Vo, @) — (Vp, ¢Ii) — p(Ve,Ty).

91

Noting that terms containing ¢* make no contribution to I 's we may conclude that,

> I kz:: /_ / uFTip, dY ds

t—0o
n—1 8’uk . 1k k 6d
3 [ [ Gor - gyeo doias
0 S

n1 t=9
+ Z / / (VuF VT — Vi Vour) dY ds

0 Qe
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ne1 t—o
-y / / oL NF dotds
k= 0—00896
s
+Z// Ty, dYds
0% e
n—1
=" Ay + Bi+ Ci + Dy, + Ey..
k=0

By standard arguments we get,

n—1

D 1Akl + Okl + |Ex| < Cri— 2 (IN( V) 2 + || Noe (p)|2) — 0
k=0

as r — 00. Now consider the second term in the expression By, i.e.

t—5 or
ik €
//8]\76 ¢dogds.

—00 00

As || Allcomm < B and (e + Py, Ay, s),y, s) = 0 we have
|’J‘(6 + PVEA(:% 8)7 Y, S) < 05(60 - G)N*OV’JD(GO + P’yeoA( )7 Y, S)'

Using this and dominated convergence we find that the term under consideration tends
to zero as € — €9, § — 0. We have therefore proved that the absolute value of,

n—1 n—1

eSS [ (e

00 002¢

IN: pN;»k> Ty, dotds

tends to zero if r — oo and € — ¢y, d — 0 in an appropriate manner. Now,

du” ek w* ek uk 8(;5
<8N§_ )¢’ aNe_pNS oW ENe

Arguing as above the integral over the third term in this expression will disappear as
we pass to the limit with respect to r.
Let F*(Y, s) = w*Ty, and ©(\,y,s) = (A + € + Py A(y, s),y,s). Then,

5 //deYds—/ //F 0 O, d\dyds

70095 —oo Rn—1
_ / / / = (F* 00,0, 254y indyds
0s
— 00 RN — 1

://F 0 O(A,y,t —0)dAdy
Rn— 1
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t—5
P,.A
+/ /F’“o@e(o,y,t—s)aa76 dyds

S
—o0o Rn—1

= Il + Ig.

By standard arguments we get >, It — u'(X,t) as § — 0. Using dominated conver-
gence and Lemma 1.1 we have

t—9
~ P, A
|12\gce/ /mqvmW%da;dHo
—00 90

as € —¢g and ¢ tends to 0. Letting r — oo and € — €y, § — 0 in an appropriate manner
we may therefore conclude that
ou
u(x,t) = S(=— t).
i, 0) = S(50) (2, 1)

Using inequality (2) of Section 9 we may therefore conclude that % =0 a.e on OO,
This completes the proof of uniqueness in the regularity problem.

Uniqueness in the Neumann type problem. We assume that i solves the linearized
system of Navier-Stokes in ) with associated pressure p and that g—f =0 a.c on 99
in the sense of non tangential convergence. We furthermore assume that N, (|Vi|),
N..(p) € L*(0Q). We want to prove that @ = 0 if @(X,t) = 0 for some point
(X,t) € Q. Following the argument used in [19] we will prove that

]| r(a0e) < o0, (%)

where €€ is defined as above and € > 0. Assuming this we may use the uniqueness
in the regularity problem to conclude that @ = Sq. for some ¢, € L?(992°). Using
inequality (1) of Section 9,

R ou
1Gell22(a0¢) < C||$||L2(asze) —0

by dominated convergence as € — 0. It therefore follows that @ = 0 in Q if @(X,t) =0
for some point (X, ¢) € 2 and the proof is finished.
We therefore have to prove (x). Using Lemma 7.2 we may conclude that

To07 . S -
/ K5z Nl oagy- dt < CAUN(IValll + [ Nee ()2,

and in order to prove (x) all we have to prove is that
||77HL§11/2(596) < 00, (s%).
Define p : Ry x R® — Q€ in the following way:
Pe()\, T, t) = ()‘ +e+ P'y()\+e)A(x7t)v €T, t) = (1’0, Z, t).

For fixed € and a we put @ = @Wop,, p = pope and let N, (wW)(x,t) be the non tangential
maximal function of @ defined relative to I'z(z,t) where a is chosen so small that
N, (W) < NE(@) at points corresponding under the transformation (z,t) — pc(0, z, t).
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N . is similarly adjusted to the situation at hand. By the definition of the space

L2 1/2(0€2°) and since NE(|Vi|) € L2(99) all we have to prove, in order to prove (s)

is to prove that the restriction of D} /2111' to R™ has finite L2-norm. We now intend to
demonstrate the latter.
For a given R > 0 we set

Qr = {(\z.1) € Ry x R",\ < 2R, (z,1) € Bar(0,0)},

1
mopW == —/i}'(a:,t) dXdt.
Qg
Qr

Adjusting the proof of Lemma 6.12 in [19], using the appropriate interior regularity
result stated in Lemma 2.3, one may prove the following.

LEMMA 10.2.

R™? / (@ —mqpd]* dXdt < ca(| N (V)3 + | Nue (B)]13)-
Qr
Let ¢ € C§°((—2R,2R) x Bag(0,0)) with ¢ =1 in (—R, R) x Bg(0,0) and
l@elloo + IV @lloc < cR™?
where
n—1 n—1
V20l = )" @2, + > 02+ D
i,j=1 i=1
We will need the following lemma,
LEMMA 10.3. Let k := (& — moW)e. If z = (xz,t) then,
oo

(i / / RPN dzdA < (NN 2a0ae) + N2 000)):
0 R™

(i) //IktIQAdzd/\SCﬁ(IINE(IVﬁI)I\%2(aQe)+||J\7§,e(p)lliz(age)),

0 R™
oo

i) [ [ 190! FPAdNCHINE(TTDE 00 + 175 0) o)
0 R»

Proof of Lemma 10.3. We first consider (i). Let k = (& — mQwW)e, k=
(k% ...,k"1). For each i € {0,..,n — 1} recall that w’ = u’ o p.. At the point
(A, x,t) we have

V2K? S V20 Popet (i 0pe) 2 V2 Pyr o APl Vet 2| Vg P+ cfur —mi 2|92

where we also have used Lemma 1.1. In order to prove the main estimates we need to
prove one auxillary estimate. As NE(|Va]) € L2(9Q°) we may for 4,5 € {0,...,n — 1}
represent du’/dx; as a double layer potential Df = D, f. with f = f. € L*(9Q°). We
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may assume that f and du' /Oxz; have comparable L?(99¢)-norms. This conclusion
follows from the existence results of Section 9. Using Corollary 3.2 we therefore have

[ [ e 2 9O VAN < A NE(T DI
0 Rn
Using this estimate and familar arguments one may therefore easily prove that
oo
[ [193kPAdzax < I8V aon

0 R~

+//(|Vwi\2|V<p|2+|wi—mQRwi|2|V2ap|2))\dzd)\ )
0 Rm

But

[ [ 1vwPIveladzax < el NV o
0 R»
by familar arguments. As ¢ = 0 on the complement of QQr we may use the inequality

stated in Lemma 10.2 to conclude that

oo

/ / [ — mguut V2P A dzd) < (| Nu (V)2 00, + [Nore ()22 500)
0 R™

< ca(IN(IVaDIIT2 (o0e) + IN: e (0172 062e))-
We now treat part (i) of the lemma. At the point (A, z,t) we have

BP’Y(A‘H)A |2

[Kil* < lugl” © pe + (uly, 0 pe)’?| +w' —mouw'Plef*.

ot
As
I i 2 r i 2 r Ip 2
lug 0 pe|“AdzdX < |[Au® o pe|“AdzdX + |8x- 0 pe|“AdzdA
0 Rn 0 Rn 0 Rn ’

< cp(INL(IVA 2 000) + V2 e (D)2 (001)),

by case (i) and elliptic theory, case (ii) can be handled by the same argument as in
case (i).
To consider (iii) note that

//|VD§/2ki|2Adsz: /<VD§/2 L VD] k") A? dzd)

0 R» 0 R™

o _ 1/2 o0 ' 1/2
< (//|Vk§\|2)\dzd)\) X (//|Vl<:,§|2/\‘3 dzd/\) .
0 R™ 0 R»
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The first factor in this product is handled using part (i) of the lemma. We are left
with the second factor. But at the point (A, z,t) we have
i i i oP. Ate A
VK S IVai]? 0 pe + [V, 0 pef?| =59
OP (x40 A
ot

Using part (i), (ii) of the lemma as well as the argument in the proof of part (i) and
(ii) we have,

Hug, 0 pel |V [+ VW' Pl + [wi [ Vel [w' — mopw'*[Ve|*.

/ / VA PA® dzdh < / / VA% dzd + [NV |2 o) + IV (D)2 o
0 Rn O Rn

But,

/ / V278 dzdA < Co(I NSV 200y + 1N D)2 o))

0 Rm»

using interior regularity and elliptic estimates.
Using the same deductions as in [19,p.403] one may prove that

1D joklren |13

oo ) o
SC(//|E>\/\2)\d/\dZ) X (//|D1/2k,\2)\d/\dz) X <//|Et2>\d/\dz).
0 R» 3 n

Plugging the estimates of Lemma 10.3 into this inequality we may conclude that,
1D ok len |2 < CUINE(VED |22 o0e) + [N (D) 2200)) < oo
To prove the same statement for @ one proceeds as follows. Note that

= 2
1D e |3 ~ /// |$_t|§“”” A grdsdt.

R R Rr-1

—

But as, by definition, ¥k = @ — ¢ on (—R, R) x Br(0,0) for some constant ¢,

= 2
/ / / I CIL)) PN / / / K, 1)) dedsdt
|S—1t|2 |8—t\2
“R-RRn-
2
/ / / K, 1)) drdsdt
\5*t|2

R Rn—1

~ 1D} okl |15 < CUNL(Va| L2 oe) + N2 o (p)l] 22 90e)) < oo

Letting R — 0o we get the estimate we wanted. This completes the proof of uniqueness
in the Neumann problem.
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