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ASYMPTOTIC TOWARDS RAREFACTION WAVE OF THE JIN-XIN 
RELAXATION MODEL FOR THE P SYSTEM 

WEI-CHENG WANG* 

Abstract. We study the asymptotic equivalence of the Jin-Xin relaxation model to its formal 
limit of genuinely nonlinear 2 by 2 conservation laws (isentropic Euler equation in Lagrangian coordi- 
nate). We consider the case where the initial data are allowed to have jump discontinuities such that 
the corresponding solutions to the Euler equation contain centered rarefaction waves. In particular, 
Riemann data connected by rarefaction curves are included. We show that, as long as the initial 
data is a small perturbation of a non-vacuum constant state, the solution for the relaxation system 
exists globally in time and converges, as e —> 0, to the solution of the corresponding Euler equation 
uniformly except for an initial layer whose width is essentially of order O(e). 

1. Introduction. In this paper, we study the asymptotic behavior of the Jin-Xin 
model of semilinear hyperbolic system with relaxation: 

/, u ut + vx       =   0 
{     ' vt + a2ux    =    l(F(u)-v) 

as e —► 0. 
The relaxation limit for 2 x 2 nonlinear hyperbolic systems was first studied in [7] 

and further developed in [2]. Distinguished by the special structure of its nonlinear 
terms, (1.1) was proposed by Jin and Xin in [5] as a relaxational approximation for 
the quasilinear hyperbolic conservation law 

(1.2) Ut+F(u)x=Q. 

This model has an interesting numerical origin. It is used as an artificial approxima- 
tion for general conservation laws and the authors developed a new class of numerical 
methods for (1.2) called relaxation schemes based on discretizing (1.1). Owing to the 
outstanding performance of the relaxation scheme, the hyperbolic system (1.1) has 
stimulated much research activities. 

In the formal limit e —> 0, we expect the second equation of (1.1) to be well 
approximated by the local Maxwellian (local equilibrium) 

(1.3) v = T(u) 

and the relaxation system reduces to (1.2). 
However, the rigorous justification of this asymptotic equivalence is established 

mostly in the case when (1.2) is a scalar conservation law. For systems of conservation 
laws, Serre [13] has established a sufficient condition under which one can find an 
invariant region for (1.1). For examples the Temple system and a system of equations 
describing motion of elastic material 

dtui + dxU2 = 0,    dtU2 + dxp(ui) = 0, 

with constitutive relation satisfying p' > 0 and sp"(s) > 0 for 5 ^ 0. For those 
systems, the author showed the asymptotic equivalence between (1.1) and (1.2) as 
e -* 0.   With a slightly different approach, Tzavaras [16], Gosse and Tzavaras [3] 
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established a strong dissipation estimate for u G R2 with a growth assumption on 
the flux /. The convergence result then follows from the Lp theory of compensated 
compactness. 

In this paper, we study the case where the initial data are allowed to have jump 
discontinuities such that the corresponding solutions of the conservation law contain 
centered rarefaction waves. To be definite, we restrict ourselves to the isentropic Euler 
equation in Lagrangian coordinate (also known as the p system): 

(1-4) ^(u)'     ^ = ( p(") ) '    P^=v~^    ^>1 

It is shown that, as long as the initial data is a small perturbation of a non-vacuum 
constant state, the solution of (1.1) exists globally in time and converges, as e —» 0, to 
the solution of (1.2) uniformly except for an initial layer whose width is essentially the 
order of the mean free path. This is done by approximating the solution of (1.2) with 
a smooth rarefaction wave followed by a nonlinear stability analysis of the smooth 
rarefaction wave under discontinuous initial perturbations for (1.1). 

Other related works include Natalini [11], who showed the asymptotic equivalence 
that the solution of the Cauchy problem for (1.1) converges to that of (1.2) strongly 
in the scalar case. Teng [15] gave an optimal L1 error estimate for this asymptotic 
convergence. An optimal pointwise estimate was derived in Tadmor and Tang [17] 
based on the optimal L1 estimate and the Lip+ estimate. Luo [8] studied the stabil- 
ity of rarefaction wave in the scalar, multidimensional setting of the Jin-Xin model 
and Luo and Xin [9] showed nonlinear stability of the traveling wave solution in the 
scalar, multidimensional case. The relaxation approximation was later generalized to 
Hamilton-Jacobi equation [6] and to curvature dependent front propagation [4]. 

We choose to present the analysis for Riemann data connected by a rarefaction 
curve for the p system since 

<»> <*•<»»•-(-,'0
(,')   _„%) 

is a positive diagonal matrix, which will simplify the matrix presentation of our energy 
estimate. Furthermore, the sub-characteristic condition for (1.1) and (1.4) reduces to 

(1.6) -pf(v) < a2. 

We will assume throughout this paper that a is sufficiently large so that (1.6) is 
trivially satisfied. The result here can be easily extended to the case of two weak 
centered rarefaction waves of different families, and to general genuinely nonlinear 2 
by 2 conservation laws equipped with a convex entropy. We omit these cases to make 
the presentation brief and more readable. 

The rest of the paper is organized as follows: In section 2, we construct the 
smooth approximate solution and list some preliminary estimates about it. We then 
state the main theorem (Theorem 2.1). In sections 3, we proceed to prove the main 
theorem by treating the Riemann initial data as a discontinuous perturbation of the 
smooth approximation. We then proceed by a piecewise H1 estimate on the error. 
To this end, we first study how the initial jump propagates and decays along the 
characteristics in (1.1). We then finish the proof by piecewise energy estimate and 
the Sobolev inequality. 
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2.  Smooth approximations. We first rewrite (1.1) in a simpler form as 

Ft + VFl = ±N{Fe)     t > 0,    x e R 

(2.1) F<(xO)-lFr      [ix>0 

and the scaled version of (2.1): 

Ft + VFX = Af(F)     t>0,    xeR 

0      h 
a2h    0 

(2-2) F(xQ)-\Fr       ifa;>0 

where 

and Fr and Fi are both in local equilibrium (1.3). 
It is clear that F(x,t) is a solution of (2.2) if and only if 

(2.4) F^x^^Fix/ct/e) 

is a solution of (2.1). 
We further assume that the Riemann Cauchy data (F/, Fr) for (2.2) corresponds 

to Riemann Cauchy data ( (vi,ui)—ui,p(vi))T,(vr,ur,-ur,p(vr))
T ) for (1.1) such 

that (vi,ui) and (vr,ur) are connected by a rarefaction curve. Thus the solution of 
(1.2) is a self similar centered rarefaction wave: 

(2.5) (v,u){x,t) = (vcr,ucr)(x/t) 

(For an introduction on Cauchy problems with Riemann initial data and rarefaction 
curves, see [14].) 

We want to study the time asymptotic/small mean free path limit of (2.2)/(2.1). 
We will show that if \ui — ur\ are small enough and (1.6) holds, (2.2) has a unique 
global in time solution and this solution is asymptotically equivalent to a self similar 
function Fcr: 

(2.6) lim sup \F(x,t) - Fcr(x/t)\ = 0, 

where Fcr is obtained by imposing local equilibrium (1.3) together with (2.5): 

ucr 

^ FCr ~ V F(ucr) 

In view of (2.4), we see that (2.1) has a unique solution satisfying 

(2.8) lim     sup      \Fe(x,t) - Fcr{x/t)\ = 0 
e^0xeR, t>€s 

for any S < 1 (one can replace es by any g(e) such that e = o(^(e)) as e —» 0). 
In order to prove (2.6), we will construct G(x, £), a smooth approximation of Fcr 

and show that both F — G and Fcr — G are asymptotically equivalent (Lemma 2.3 
(b) and (2.20) below). 
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We proceed by constructing G as follows: 
Let w{x,t) be the solution of the following Cauchy problem: 

(2 gx wt + wtix = 0 
^ ' ' w(x,0) = ^{(wr + wi) + (wr — wi)taiihx} 

LEMMA 2.1. [10] Suppose wr > wi, then (2.9) has a unique global smooth solution 
satisfying 

(a) wi < w(x, t) < wr, wx(x, t)>Qfort>0,xeR. 
(b) For any p G [1, oo], there is a positive constant C such that for t > 0, 

(2 10) I|WX(£)||LP < Cmm(\wr -wil\wr-wi\(l + t)~1+p), 
\\wxx{t)\\LP A\™xxx(t)\\Lp < Cmin(|u;r - wi\, (1 + t)"1). 

(c) lim sup \w(x,t) — wcr(x/t)\ = 0. 
t^ooxeR 

Since the rarefaction wave solution written in the Riemann invariant coordinate 
reduces to a rarefaction wave for the Burgers' equation up to a nonlinear change of 
variables, we can thus construct the corresponding solutions of the Euler equation by 
inverting this change of variables. The corresponding solution of (1.2), (3.34), (v,u) 
satisfies 

LEMMA 2.2. For each (vi,ui) satisfying the sub-characteristic condition (1.6) 
there exists 5$ > 0 such that if (vr,ur) can be connected to (vi,ui) by a centered 
rarefaction wave (vcr,ucr) and \vi —vr\ < 5o, then the corresponding smooth approxi- 
mation (v,u) satisfies the following: 

(a) (v, u) is a smooth global solution in time of 

v       / ut+ p{u)x = 0 

(b) For any p € [1, oo], there is a positive constant C such that for t > 0, 

(2 12) II^(*),^(*)||LP < Cmm(\ur - ml \ur - ^|1/p(l + ty^p), 
\\uxx(t),ikx(t),Uxxx(t),Utxx(t)\\LP <Cmin(|ur-ui|,(l+*)-1). 

(c) lim sup \(v,u){x,t) - (vcr,ucr){x/t)\ = 0. 
t^00xeR 

Let us denote the zeroth order approximation of Fcr by 

(2.13, F<°> . ( J™     ) ,   .<"> = ( I 
(0) 

F(uM) J'    "     ~ V « 

and following the Chapman-Enskog expansion procedure outlined in [1], we get the 
first order correction 

(2.14) F« = ( v% ) ,   «« = -(a2 - ^(u(0))2)t40> 
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We then construct G, the smooth approximation of i7icr, by 

(2.15) G = FW+FW 

Thus G satisfies the following equation 

(2.16) Gt + VGX -M{G) = F^ + VF™ 

and we have the corresponding estimates for G: 

LEMMA 2.3. Under the same assumption in lemma 2.2, the smooth approximation 
G satisfies (2.16) and 

(a) Af(G) = -vW 
(b) lim sup \G{x,t) - Fcr(x/t)\ = 0. 

t-'00xeR 

To show the asymptotic equivalence of F and G, we let / = F — G. The equation 
satisfied by / reads 

ft + Vfx    =   Af(F)-Af(G)-(F(i1) + VF^) 

(2-17) -   (iy_
0
A/,)+o(lMl3 + l^1)l + l^1)l), 

/(x,0) = F(x,0)-G(z,0) 

where A = F'(uW + n/2). 
(2.17), like (1.1), is a semilinear hyperbolic system. The discontinuities propagate 

along x = at and x = —at. Thus we adopt the piecewise energy estimate. We 
introduce the following notations: Denote by Qk, k = 1,2,3 the regions separated by 
x = at and x = —at in the upper half plane t > 0, £}£ = Q^ fl {t = s} and for any 
interval I C R, H1^) the usual Sobolev space with norm || • ||i = (|| • ||z,2(j) 4- ||^- • 

IIL2(/))1/2. 

Now we define the appropriate function space on which we will be working: 

(2.18)     X{0,T) = {h : R x [0,T] H-» R4 \h € Co([0,r), 

HHW)n^([o,T),L2(^))nc2(nk), k = i,2,3} 

For h e X(0,T), we define 

\H;m2=   J\h(x,i)\2dx 
/—t nt pOQ 

\h{x,t)\2dx+ /    \h{x,t)\2dx+ l    \h{x,t)\2dx 
— OO J    —t J   t 

\\h(.Ml=  IIM-,*)f2 + ll^(-.*)-lf2 

{h}+(t)  =  h(t+,t)-h(t-,t)       (h)+(t)  =  Uh(t+,t) + h(t-,t)) 
[h}-(t)  =  h(-t+,t)-h(-t-,t)  (h)-(t)  =  l(h(-t+,t) + h(-t-,t)). 

(2.19) 

We want to show 

(2.20) lim sup \F(x,t) - G(x,t)\ = 0. 
t^ocxeR 
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A key observation is the following: The a priori bound on sup||/||Loo(t) implies ex- 
t>o 

ponential decay in time of the jumps (see Lemma 3.1 below). Thus in view of the 
Sobolev inequality 

(2.2i) mi-it) < c (m\\fxm + [/£(*)+[/]2-(*)), 
our task remains to estimate H/^ (Theorem 2.1 below). During this process, terms 
involving line integrals of jumps across the discontinuities appear naturally. Therefor 
the exponential decay in time of the jumps implies the a priori bound on sup||/-(f1(t) 

(Lemma 3.3 and on). We close this bootstrapping argument by the local existence 
theorem (Theorem 2.2 below) to extend / in X(0, T + At) and conclude that T = oo 
(global in time existence). 

THEOREM 2.1 (A priori estimate). There exists positive constants ei and Ci such 
that if f G -X"(0, T) is the solution of (2.17) in 0 < t < T for some T > 0 and 

sup ||/(t)ifi + K-Wi| <ei, 
0<t<T 

then 

(2.22) sup \\fml + f   \\fx(T)t < Ci(||/(0)^ + K - u^6). 
0<t<T JO 

The proof of Theorem 2.1 will occupy Section 3. 

THEOREM 2.2 (Local existence). Let T > 0 and g e X(0,T) be a solution to 
(2.17) for 0 < t < T. Consider the initial value problem to (2.17) with the initial 
datum 

(2.23) f(T,x)=gT(x),^g(T,x). 

Then for any M > 0, there exists a positive constant At depending only on M and 
sup|G(a;,t)| such that if 
x,t 

ll0Tllco(-oo,-aT] + ||0Tllco[-aT,aT] + ||^Tllc0[aT,oo) < M 

Then (2.17) together with (2.23) has a unique solution f G X(T,T + At) satisfying 

SUp (H/WHcoC-oc-at] + ||/tollco[-atlat] + H/Wllco^oo))  < 2Af. 
T<t<T+At 

As a consequence, g can be extended to X(0,T + At). 

The proof of Theorem 2.2 is standard, see [12] for the existence and uniqueness in 
the piecewise C0 function class. The piecewise C2 regularity is a direct consequence 
of the special structure of the nonlinearity (being the lower order term in (2.17)) and 
the C2 regularity of the source term G. 

^Prom Theorem 2.1 and Theorem 2.2, we have the following 

COROLLARY 2.1. For each (yi,ui), with vi > 0 there exists to and CQ such that 
if (vr,ur) can be connected to (vi.ui) by a centered rarefaction wave and 11/(0)^ + 
\ur — ui\ < eo, then (2.17) has a unique solution f G X(0, ex)) satisfying 

/oo 
\\fx(r)fdT < Co(||/(0)^ + K - u*|1/6). 

0 
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With Corollary 2.1, Lemma 3.1 below and the Sobolev inequality (2.21), it is easy 
to see that 

/oo 

ll/^2(r) + 
0 

and consequently (2.20) holds. 

£"■** (r) < oo 

3. A priori estimates. We first introduce here the entropy extension for the 
Jin-Xin system: 

PROPOSITION 3.1. Let ($(u),^(u)) be a pair of entropy-flux functions of (1.2) 
with (j) convex, then we can derive the corresponding entropy-flux pair ($, \I/) for the 
system (1.1) from the following wave equation with Cauchy data 

(3 26) *u = a2®v 

^Dj *(u,.F(u))=0(u) ' 
*t,(t*,.F(u)) = 0 

The solution ($, ^) exists in a neighborhood of the equilibrium v = ^(u) and there it 
satisfies 

(a) $ is convex if a is sufficiently large. 
(b) tt(u,.F(u))=V(u). 
(c) $t(u,v) + ^(u, v) = —^<$>v(u,v) - (v — Fiu)) < 0 for any smooth solution 

of (1.1). 

We remark here that the solution in general exists only in a neighborhood of the 
equilibrium v = ^(u) and is given explicitly by 

(3.27) 
<I>(7x, v) = h+iy + au) + h   {v — au) 
ty(u,v) = a(h+(v+ au) - h  (v - au)) ' 

where h±(') is given implicitly by 

(3.28) h±(^(u) ± au) = i(0(u) dh ^M). 
2 a 

For the p system 

(3-29) «=(^)>    ^(«)=(^) 

we take (j) the mechanical energy 

(3.30) ${11)=:]^- j" p{s)ds, 

and use the corresponding derived entropy $(ti,v) in the main energy estimate to 
follow. 

In order to perform the energy estimate, it is important to study how the singu- 
larity propagates. (1.1) is a semilinear hyperbolic system, the jump discontinuity in 
of the initial data propagate along the characteristic curves and, due to the relaxation 
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effect, decays exponentially in time. To show this, we write (1.1) in diagonal form in 
the characteristic variables w± = v ± cm, 

wt -aw' = l^i^-v) 

We denote by [-j^ the jumps along the characteristic line dx/dt = ±a. Taking the 
jump in the '-j-' family on both sides of the first equation in (3.31), we have 

(3.32) [wt+awt}+ = \mw+~a
w;r - i™+n 

where w~ = vr — aur is the corresponding Riemann data on x > 0. Since F has 
continuous first derivatives up to the boundary on either side of the jumps, we can 
interchange the tangential derivative with the jump to get an ODE along the charac- 
teristics 

(3.33) |Kr = I(^(^__if£)1+_,„.].). 

By standard ODE theory, [t(;+] + (£) decays exponentially in t together with [^^:]+(t), 
provided a is sufficiently large. The same applies to [w~, w^]~(t). We therefore have 
the following 

LEMMA      3.1. Let     a        = \ur    —    ui\      and     E        = 
SU

PO<£<T (ll/ihW + |[/]+(^)l + |[/]~WI) > ^en there exist positive constants 
ci, C and Ci such that ifO<t<T,E<€i and a sufficiently large, we have 

(3.34) l[/]±(*)l + l[/»]:t(*)l<Cac-Cf'* 

We now proceed with the main energy estimate. 
Let a and E be defined as in Lemma 3.1, we have 

LEMMA 3.2.  There exist positive constants e^ and C such that ifO<t<T and 
E < 62, then 

\\fm2+ fwv-ApfdT 
J o t 

<    \\m\\2 + cj j (b(1)|4 + l^l2 + l/l2l«(1)l + l/ll^l + l/l6) dxdr + Ca 
(3.35) 

Proof.   We introduce here the quadratic part of the increment of the derived 
entropy-flux pair and corresponding partial derivatives for the purpose of L2 estimate: 

5(/,G)      ^   $(G + /)-$(G)-$'(G)/ 
(3.36) Sf{f,G)     =    *'(G + /)-*'(G) 

£G{f,G)    =    $'(G + /)-$'(G)-/T$"(G) 

and 

J{f,G)     ^   *(G + f)-*(G)-V(G)f 
(3.37) Jf(f,G)     =    <r(G + /)-tf'(G) 

JG(f,G)    =    ^(G + /)-r(G)-/T*"(G) 
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It is easy to see that, for E < 62, we have 

v\f\2<S(f,G)<C\f\2 

(3.38) Sf(f,G)<C\f\ 
SG(f,G)<C\f\* 

Next we multiply (2.17) by £f(f, G), 

(3.39) St + Jx = SG(Gt + VGX) + £f(Af(G + f) - tf(f)) - f/(J'|1) + VF?) 

where we have used $'V = ^r'. 
Next we calculate each term on the right hand side of (3.39): 

(3.40) Gt + VGx=Af(G) + F(i1) + VF^ = 0(v^M1\v^), 

(3.41) ^G + /)-W)=(I/_i4#4°0(|/4|3)) 

and by expanding the S-c axound G + f/2, we have 

(3.42) £f = {£n,£v) 

o^)       ^=(a2r2"M?"+^(i)i2+i/i2) (aJ — A ) 

(3.44) £„ = {U~A^2f + 0(l^(1)ll/l + \f\W - AMI) + Od^l3 + l/l3) 
(a2 - A ) 

where both 0" and A are evaluated at UQ + fx/2.   Since     2^,^   is positive defi- 
(a — J± ) 

nite, (3.35) follows after integrating (3.39) over R x (0,T) and applying the Cauchy- 
Schwartz inequality and (3.34). D 

LEMMA 3.3.   There exist positive constants ei and C such that if E < 62 and 
0<t<T, then 

(3.45) \\fxm
2+ fwfArWdr 

J 0 

<\\fMt + cf\W-Ant 
J   0 

+cfj (b(1)|2|/|2 + |/|6 + l««|2 + |t&>|2 + |/x|
2|»«|) dxdr + Ca 

Proof. We first derive the equation for fx by differentiating (2.17) with respect 
to £, 

vx - Ai(tti0) + Mx) + ^o^0) + 0{vK£) 

0(vS£) 
vx - AOMX + 0(\vW\\f\ + l/H/J + 1^1) 

(3-46) , ^/ <(1) 
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where AQ = ^'{u^) and Ai = Ff(uW + /x). Next we multiply (3.46) from 

by 

(3-47) f* V -^0^0        ^ 
to get 

£o[fx\t + Jo\.fx]x 

[6AH) +0(l)(\a2tix - AoVxWvQ] + K 

-A)/*«l(l«(1)ll/l + l/ll/xl + 1^1) + |/x|2|«(1)|) 
where 

^ = ^V0)), 

tolfsj - /x ^ _^^o        ^      j Jx. 

^ol/J - /x ^ .^/^        ^ 

and we have used the fact that 4>oAo is a symmetric matrix and 

d  f   a2^      -^Ao \ _ n( (1). 
^V-^'A.     ^    ;      l    j' 

We then integrate (3.48) over R x [0, t] to get, for E sufficiently small and any rr 
there exists a C > 0 such that 

t3'49) <    \\fxm
2 + Jjrn\a^x-A0vx\z 

+C (\vW\2\f\2 + \v^\2 + \fx\2\vW\) dxdr + Ca 

where we have used (3.34). 
We now proceed to estimate a2^x — AQUX. 

First, let us rewrite (2.17) as 

(i) 

[       j vt+a2vx    =    -{"-Ari + OUvLft + OivP)' 

We now multiply the first equation of (3.50) by -AQ from the left and add it t< 
second: 

(3.51) (i/t - Aofit) + (a2/xx - Aoux) = -{y - A/x) + 0(|/x|3) + 0{&\ 

so 

\a2iLx- A^vJ? 
(3.52) =    -(^t- A^T{(^iix-A^vx) 

-{y - A/x + 0(|M|
3
) + 0(^1)))T(a2/Xx " ^o^x). 
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The second term on the right hand side of (3.52) is bounded by 

-> - A» + 0(M3) + 0(v^))T(a^x - A0vx) 
[       ' <    l\a^x-A0ux\2 + c(\u-A^ + \^ + \v^\2) 

while the first term is bounded by 

{(v - Aorft + 0(|t;W||/|))r ((aV - A0u)x + 0{\v^\\f\)) 
(3.54) <    (v-AofifiicPii-Aou),. 

+C\vW\ |/| (\vt - Aotit\ + \a2nx - A0vx\ + 0(\vW\\f\)) 

Substituting (3.50) into the second term on the right hand side of (3.54), we can 
estimate it by 

C\vW\ |/| (\ut - Aofxt\ + \a2nx - AoVxl + \vW\\f\) 

(3.55) <    C\vW\ |/| (2|aVx- A0ux\ + |v - A/i| + |/i|3 + I^H" l««||/|) 

<    i|aVx - A0ux\2 + C (b^l2!/!2 + \v - AM|2 + |^|6 + l^l2) 

while 

(y - Aofi)J{a2iji - A0u)x 

(3.56) =    {{iy-Aofi)T{a2fi-Aou)x}t 

-{(u - Aoti)T(a2n - A0u)t}x + (i/ - i4o/x)^(a2/i - Aov)t. 

The last term in the right hand side of (3.56) can be similarly treated as in (3.55): 

(3.57) (v - A0n)Z(a2fi - Ao^t < C(|i/X - AQ/LXJ
2
 + b(1)|2|/|2). 

After integrating over i? x (0,t) and applying (3.34), we have 

t 
\a2fix - AoVx^dr < 

C {|V - Afxfdr + J\vx - A0^xfdT + J'J (\vW\2\f\2 + |/|6 + l^l2) dxdrj 
+Ca 

(3.58) 

Since 

(3.59)     cifli/*!2 + \nx\2) < \a?fix - A0vx\2 + \vx - A0nx\2 < c2(|iyx|
2 + |MX|

2
) 

for sufficiently large a, we conclude with (3.45) from (3.49) and (3.57). D 
Combining Lemma 3.2 and Lemma 3.3 with suitably chosen m, a and E, we have 

for 0 < t < T, 

wfrnl+fusfdr 
<    11/(0)^ 

+C1Jj (\v^ + l^l2 + l/lb(1)l + l/l6 + l^il2 + l/x|2k(1)l) dxdr + Ca 

(3.60) 
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Finally, we can estimate the right hand side of (3.60) by 

LEMMA 3.4. There exist a positive constant C such that if E < £2 and 0 <t <T, 
then 

(3.61) the right hand side of (3.60) < C M|/(0)^ + a1/6 + {E + a) j ||/x^
2o!r j . 

Proof We estimate each term by virtue of Lemma 2.2 and the Sobolev inequality 
(2.21) as follows: 

f-flvWfdxdT < cfwv^Wl-WvWfdT < Ca 

fj\v^2 + \v^\2dxdT<C^. 

fj\f\ \vW\dxdT < cfmHf^ +ac-CT)||t;«||Lidr 

<c[\E2\\fxf + ll^1)|l!i)dr + Ca 
J 0 

<C f {E2\\fxtf + as{l + T)^)dT + Ca 
J 0 

J 0 
<CEl   \\fA2dr + Cai 

fjtffdxdT < fjftWfA'dr + Ca< EJ \\fxtdT + Ca 

fj\fJ2\vw\dxdT<aj\fttfdT 

J^fflv^dxdT^cjynHf^h^Loodr + Ca 

<c[\E\\fxtf + \\v{1)\\L)dT + Ca 
J  0 

<CEf\\fxt 
J 0 

,|2dr + Ca6 
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