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CONVERGENCE ANALYSIS OF RELAXATION SCHEMES FOR 
CONSERVATION LAWS WITH STIFF SOURCE TERMS 

TAO TANG*, ZHEN-HUAN TENGt, AND JINGHUA WANG* 

Abstract. We analyze the convergence for relaxation approximation applied to conservation 
laws with stiff source terms. We suppose that the source term q(u) is dissipative. Semi-implicit 
relaxing schemes are investigated and the corresponding stability theory is established. In particular, 
we proved that the numerical solution of a first-order relaxing scheme is uniformlly Z00, I1 and TV- 
stable, in the sense that they can be bounded by a constant independent of the the relaxation 
parameter e and the the Lipschitz constant of the stiff source term, and time step At. Concergence 
of the relaxing scheme is then established. The results obtained for the first-order relaxing scheme 
can be extended to MUSCL relaxing schemes. 

1. Introduction. We consider the following Cauchy problem 

ut + f(u)x = q(u)    x e R,    t > 0 , 

Ufa, 0) = UQ(X)    x G R, 
(1.1) 

where / G C^R), /(0) = 0 and uQ G L^R) n BV(R). The conservation law (1.1) 
is stiff if the time scale introduced by the source term q is small compared with the 
characteristic speed f and some other appropriate length scale. It is observed that 
a realistic assumption on the source term is q'(u) < 0 for all u G R. It is indeed the 
case for many practical problems, e.g. in the model of combustion [4, 9], water waves 
in presence of the friction force in the bottom [24]. This assumption is also used in 
many theoretical papers, for example, Chalabi [2], Chen, Levermore and Liu [3], Tang 
[19] and Schroll and Winther [14]. In the sense of Chen, Levermore and Liu [3], q' < 0 
means the dissipativity of the source term. Furthermore, as usual, we assume that 
u = 0 is an equilibrium. Hence, throughout this paper we assume that 

(1.2) q(0) =0,     -K < q'(u) < 0,    for some constant K > 1 

We want to approximate the global weak entropy solution of the Cauchy problem 
(1.1) by relaxation schemes. The system (1.1) can be related to a singular perturbation 
problem: 

(1.3) 

'  v!i+vl = q(u£) 

^ v; + Bue
x = ~(ye-f(ue)>),        e>0. 

The relaxation limit for 2 x 2 nonlinear systems of conservation laws (without the 
source term) was first studied by Liu [8], who justified some nonlinear stability crite- 
ria for diffusion waves, expansion waves and traveling waves. A general mathematical 
framework was analyzed for the nonlinear systems by Chen, Levermore and Liu [3]. 
The presence of relaxation mechanisms is widespread in both the continuum mechan- 
ics as well as the kinetic theory contexts.  Relaxation is known to provide a subtle 
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dissipative mechanism for discontinuities against the destabilizing effect of nonlinear 
response [8]. The relaxation models can be loosely interpreted as discrete velocity ki- 
netic equations. The relaxation parameter, £, plays the role of the mean free path and 
the system models the macroscopic conservation law. In that sense they are a discrete 
velocity analogue of the kinetic equations introduced by Perthame and Tadmor [13] 
and Lions et al. [10]. 

On the numerical side, relaxation schemes proposed by Jin and Xin [5] are a 
class of nonoscillatory numerical schemes for systems of conservation laws. They 
provide a new way of approximating the solutions of the nonlinear conservation laws. 
The computational results that are available, see e.g. Jin and Xin [5] as well as 
Aregba-Driollet and Natalini[l], indicate that the relaxation schemes obtained in the 
limit e —» 0 provide a promising class of schemes. The main advantages of these 
schemes are that they require neither the computation of the Jacobians of fluxes for 
the conservation laws nor the use of Riemann-solvers. This important property is 
shared by other schemes such as the high resolution central schemes introduced by 
Nessyahu and Tadmor [12]. 

For homogeneous conservation laws, there have been many recent studies con- 
cerning the asymptotic convergence of the relaxation systems to the corresponding 
equilibrium conservation laws as the rate of the relaxation tends to zero. Katsoulakis 
and Tzavaras [6] introduced a class of relaxation systems, the contractive relaxation 
systems, and established an 0(>Je) error bound in the case that the equilibrium equa- 
tion is a scalar multi-dimensional one. Kurganov and Tadmor [7] studied convergence 
and error estimates for a class of relaxation systems, including (1.3) with q = 0, and 
concluded an 0(e) order of convergence for scalar convex conversation laws. The 
novelty of their approach is the use of a weak Lzp'-measure of the error, which allows 
them to obtain sharp error estimates. For the relaxation system (1.3) with q = 0, 
Natalini [11] proved that the solutions to the relaxation system converges strongly to 
the unique entropy solution of the corresponding conservation laws as e —> 0. Based 
on a general framework developed in [20, 16], the 0(e) rate of convergence in L1 of 
Teng [22] and pointwisely away from the shock discontinuity of Tadmor and Tang [17] 
are established for (1.3) with q = 0 in the case when the equilibrium solutions are 
piecewise smooth. The convergence theory for the relaxing scheme (2.1) and scheme 
(2.6) with g = 0 can be found in [1, 18, 23, 25]. 

In this research, we wish to analyze a fully-discretized semi-implicit scheme for 
approximating the relaxation system (1.3). It is the semi-implicit treatment that 
makes the CFL condition independent of the Lipschitz constant of the stiff source 
term. We show that the solutions of the numerical scheme, (u™'£,v™'£), are 1°°, I1 

and TV-bounded by a constant independent of the relaxation parameter e and the 
Lipschitz constant of the stiff source term q. Then it can be shown that (u™'e\v™'£) 
converge to the solution of the corresponding relaxed scheme. Due to the limitation 
of space, the convergence rate of the numerical schemes will not be investigated in 
this work. It will be reported elsewhere. 

2. Numerical schemes. We choose a time step At, a spatial mesh size Ax, a pa- 
rameter a which will be related to the characteristic speed of the conservation law and 
a small relaxation parameter e > 0. For these we define the mesh ratio A = At/Arc, 
the CFL parameter /i = y/a\ G (0,1) and the scale parameter k = At/e. The mesh is 
given by the points (jAx,nAt) for j G Z, u € NQ. The approximatate solution takes 
the discrete values u^£ at the mesh points. Furthermore, relaxing schemes involve 
the discrete relaxation fluxes v™,£.  For stiff problems, most of the numerical meth- 
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ods are semi-implicit, which are related to operator splitting (explicit method for the 
homogeneous conservation laws and implicit method for the stiff ODEs). Theoretical 
analysis for the semi-implicit methods have been given by Chalabi [2], Schroll and 
Winther [14], Tang [19]. In this work we will concentrate on a semi-implicit relaxing 
scheme: 

In+l,e _ on,e   ,   ^ /  n,e   _    n,e \ 
+ o \Vj+l      Vj-l) U,      '    — U■ 

(2.1) 
^n+l-e 

-fKA-2«r+^-i)=«(-rl'£)Ai 

-«r+TWi-«"-i) 
- f Wi - ^r+»Fi)=-* («r1,e - / (-r1")) 

The discrete initial data are given by averaging the initial data ^o over mesh cells 
Ij = ((j - ^) Ax, (j + |) Ax), i.e. taking 

(2.2) u0/ = -^ f uo{x) dx,    and setting vfe = f(uf£) 

In this paper we will show that the solution, (u™,£,v™,£), of the relaxing scheme 
(2.1) converge to the solution, (u^,^), of the relaxed scheme 

(2-3) j.rl - *?+£ w+i - "?-i) - f («- *>?+^-i)=« K+I) ^ 
with initial data 

(2.4) u0 = -^ /  «o(a0 di, i//^ 
The relaxed scheme (2.3) is a consistent, conservative and monotone scheme approx- 
imating the conservation law (1.1). 

The main results to be shown in this work are the following: If the constant a in 
the relaxing scheme (2.1) satisfies 

max /'(£)2 < a ,        where    M := 4||UO||BV 
|£|<M "      " 

then there exists a constant C independent of the relaxation parameter e and the 
Lipschitz constant of the stiff source q such that 

TV(un>€) < C,        TV{vn'£) < C, 

IK'£||/oo<c,      |K'lzoo<c, 
IK'£lbi<c,      |K'l,i<c. 

We will further show that there exists a constant C(K) independent of the relaxation 
parameter e and time step At (but may depend on the Lipschitz constant of the stiff 
source q) such that 

2 \uThe - u?\ Ax ^ C(K)At, 
j 

Y^ kn+1'£ - VJ  Ax ^ C{K)At. 
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With the above estimates, we can show that the solutions of the relaxing scheme 
(2.1) converge to the solutions of the relaxed scheme (2.3). Then the piewise constant 
function u&(x, t) constructed by the solution, u™, of the relaxed scheme (2.3) converges 
to the entropy solution of the Cauchy problem (1.1). 

A class of more accurate schemes, the MUSCL relaxing schemes, were proposed 
by Jin and Xin [5]: 

n+l,e       0l
n»e 

lAx[ 

1-P 

2 L-       i ±    (v
n>c   _ 7,

n>e \ _ _Y_I_r7/n'e   - 97/n'e 4- 7/n'e ^ 

n+l,e _    n,e r- 

(2-5)       ^-AT^    +    2^^-^)-^^:-^ + ^) 

4 
1 
e 

where a- 'c and 6• 'e are defined by 

T(t;r1,e-/K+1,e)) 

Ax ^'£ = ^-A+(^±^r)^^) 

and P = 11 = y/aAt/Ax, and A±^ = T(%' — ^jii)-   The corresponding relaxed 
scheme as £ —» 0 limit of (2.5) is as follows 

1,n+1 _ 7,n -1 /r 
(2-6) -^^ + ^W+1-v?-i)-it^-W + ^ 

+1-^r [(°t - °U) - ("7+i - "7)] =«(«r ^ • 

To gurantee the entropy consistency of the relaxed scheme (2.6) the following slightly 
stronger conditions are proposed in Tang et al. [21]: 

(2.7) \/a — = fj, < 1; CFL condition 

(2.8) supl/^w)! < — \/a; sub characteristic condition 

(2.9) 0 < %^ <X,        0 < ^(5) < X,        limiter function condition. 

The parameters a and X in the conditions (2.7)-(2.9) are required to satisfy 

(2.10) a>l,     0<X<2,     l-i>X(l-/z). 
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In [21], it has been shown that under the assumptions (2.7)-(2.9) the second-order re- 
laxed scheme (2.6) with q = 0 satisfies the cell entropy inequalities. As a consequence, 
the L1 convergence rate 0(V/At) for the relaxed scheme is established. 

In this work, we will restrict our attention to the study of the relaxing scheme 
(2.1) and its corresponding relaxed scheme (2.3). We wish to point out that the results 
obtained in this work can be extended to the MUSCL relaxing schemes (2.5)-(2.6). 

3. Stability Properties of the Relaxing Scheme. This section is devoted to 
establishing the /^-stability, the bound of the total variation, and the /^stability of 
the numerical solution for the relaxing scheme (2.1) with initial data (2.2). To begin 
with, we take the Riemann invariants 

(3.1) 
pn,e 

nn,£ 
H2J 

It follows from the above equations that 

(3.2) 'j      - nl,j "T- n2,j i V5 (*£-*£). 
Then the relaxing scheme (2.1) can be rewritten as 

(3.3) 

jjn+l.e 
- R1J        + 2 H2,j        - Kl,j 

,  A*     fRn+l,£   ,    r,n+l,e\ 

pn+l.e nti+i.c      k 
- R^        - 2 

r>n+l,£       r>n+l,£ 
K2,j        - Hl,j 

jtf\R^   +R^   ) 

/=/ {Kl,i       + H2,j      ) y/i 

+- At 
q ^j      + R2J     j 

with 

(3.4) 
n2J 

/(l«/i)^+^J%l \ 

It follows from UQ G BV{R) that there exists a constant Mi such that 

(3.5) ||txolUv<Mi. 

By the definition of the initial data ^'e, 

(3.6) :nV) = £K+1-^0l<Mi 

We first assume that 

(3.7) max    /'(£)2 < a, 
kl<ll«olU 
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where the constant a will be determined latter.   It follows from (3.6)-(3.7) and the 
definition of the initial data u0-,e that 

2V(JM)    :=    £(|<'•+!-<'?! + |4J+1 -flS|) 

(3.8) < 

<    2Mi. 

El'* + 0,e -^    max    IHOlK+i-^i 

Next, we choose the parameter a satisfying the following subcharacteristic condition 
(cf. Liu [8]) 

(3.9) max /'(£)2 < a 

where M = 4Mi = 4||UO||BV- Since 

\MX)\ < \MBV + uo(-oo) < Mi < M, 

the condition (3.9) also includes our earlier assumption (3.7). In the remaining of this 
section, we will need the following facts: 

(3.10) UQ(-OO) = 0    and    i;o(-oo) = /(uo(-oo)) = 0. 

They are justified by assumptions UQ G ^(R) n BV(R) and /(0) = 0. 

LEMMA 3.1.    Under the subcharacteristic condition (3.9), the relaxing scheme 
(3.3) 25 TVD (total variation diminishing), i.e. 

rprr(r>n+l,e   on+l,e\      . V^ /'I Pn+1»e       nn+l,e    ,     pw+l,e       p^+i^h 

(3.11) 
<    TV(R?e,I%'e)< -M. 

Proof. We prove the lemma by induction. We need to prove the following: If 

(3.12) 

(3.13) 

TV(R1'£,R^ £)<2M' 

sup|u"'£| <M, 
J6Z 

then the following estimates will hold: 

(3.14) TV (Rl+1'£, J£+1'e) < TV (R?6, i?^e) < ^M, 

(3.15) sup u]+1'e\ <M. 

We first observe that the assumption (3.12) with n = 0 is true due to the estimate 
(3.8), and the assumption (3.13) with n = 0 is true due to (3.6) and (3.10). Adding 
the two equations of (3.3) gives 

(3.16)    up1* = {l-n) (B^ + Ji^) + /i TO.! + a#+1) + q(u]+1,£)A* 
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where the equations (3.1) and (3.4) are used. The induction assumption (3.12) yields 

TOI + I^'JI    -    TV(pn'£  Dn'^ 
(3.17) 

\R^\ + \R^     <   TV(Rn
1'

£,R2'S)+ .l™    K,    + .^    Kj 

<  Ty«'£,i?^£)<^M, 

where we have used the facts that 

lim   |Rn;£| = lim 
j—> — oo '      lJ j—>oo 

^ =   lim   i(Uo(x) + (-ir^i^)=0,    1 = 1,2. 
x-»-oo 2 \ ya 

It follows from the above two results, i.e. (3.16) and (3.17) that 

<M. u?+1'e-9(«i+1,e)A* 

Then it follows from the assumption ^(O) = 0 and q'{u) < 0 for u € R that 

(3.18) n+l,e 
(l " q' (C+1,£) At)   'M^M,    j 

which verifies (3.15).   Set R^ = fl^j+i - Rij,    i = 1,2.   Subtracting (3.3)-,- from 
(3.3)J+i gives 

(3.19) 

+ (1 + 2(1 ^J-^)f)^ 
where £ is an intermediate value between ^+1

1,e and u"+1,£, which and (3.18) yield 
that |C| < M. Thus the subcharacteristic condition (3.9) can be applied to obtain 

Solving the equation (3.19) gives 

Ki1'"    =    ^[(l+a-9'(r?)At/2)^'£ + (« + 9'(v7)AV2)fi2jl'£ 

-pn+l,£ i [(7 + 9,(t7)At/2) <^'£ + (1 + 7 - 9,(»?)At/2) « 2,j 

where ^l=(l + A;)(l — qf(r])At). Using the above equations gives 

+ 

(3.20) 

< I{ [1 + a - ^(t?)At/2 + |7 + 9,(^)AV2| ] |i^'£ 

+ [1 + 7 - ^W + |a + 9,(^)AV2| ] |^i,£| } 
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where we have used the facts thata > 0, 7 > 0 and q'(r]) < 0. Observe that 

1 + a - q'{rj)te/2 + [7 + 9'(r?)At/2| 

< max (l + fc, l+a-7- q'{rj)M) 

<{l + k){l-q'{rj)&t)=A, 

and 

1 + 7 - q'(v)At/2 + \(x + <{{ri)btl2\ 

< max (1 + fc, 1 + 7 - a - q'{r))At) < A. 

The above results, together with (3.20), yield 

+ K < ^1J + 
(3.21) <^ ^2J-1   + (1 - M) ( ^1J    + l^J \)+»   Rlj+l 

Summation of (3.21) over j gives (3.14). This finishes the induction and the proof of 
this lemma is thereby complete. D 

Having the above lemma, we are now ready to state and prove the following 
theorem on the uniform boundedness of the relaxing solutions (u™'£yv™,£). 

THEOREM 3.1.   Under the subcharacteristic condition (3.9); the numerical solu- 
tions (u^£^v^,e) of the relaxing scheme (2.1) satisfy the following estimates: 

• TV-stability: 

(3.22) 3 

TV{v^)    =   J^-^^M; 

-stability: 

(3.23) sUp|^£|<-M, 
3 Z 

• ^-stability: 

sup IVj ' 
3 

<2V^M; 

(3.24) J2 K£\&x < 2\\UO\\LI ,        E K£\Ax ^ 2^\\UO\\LI 

Proof The TV-stability (3.22) follows directly from the transformation (3.2) and 
Lemma 3.1. The TV-bounds and the facts u™'£ —» 0 and v™,£ —> 0 as j —» oo lead to 
the 1°° estimates of the numerical solutions. We now need to prove the ^-stability 
(3.24). Using the assumptions /(0) = #(0) = 0 and the mean value theorem for 
/(un+1'£) and q(un+1,e) in the scheme (3.3) we obtain 

(1 + 7 - q'(v) At/2) flft1'8 - (a + q'(V)At/2) R^ = Jj£*,e , 

- (7 + <f{T,)At/2) iZ?+1'e + (1 + a - q'(V)At/2) R^1'* = R^'£ , 
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with 

(3.25) 

-!('-3Pi*o. 

where ^ and 77 are intermediate values between u™    ,£ and 0. Similar to the proof for 
(3.11) we can obtain from the above equations that 

£ (TO+ 1^1) A* 
3 

3 

< x:(i^i+KJI) AX. 
3 

By using the relation u™,£ = i?"^ 4- #2,'/> we ^ave 

£|^|Ax<X:(|^:;| + |i?^|)Ax 
J 3 

<E (l^'i+ 1^51)^ 

/(«?•') 
Vi 

Aa; 

<^;^1 + J£M)|tto,.|Aa.<2||11o| Li 

Similarly, using v^£ = yfiiR"^ - R^j) leads to the second equation of (3.24). D 

4. Convergence Analysis. In this section, we will discuss the convergence of 
the relaxing scheme. In order to carry out the convergence analysis, the continuity of 
the numerical solution in time and the difference between vn,£ and f(un,£) need to be 
investigated. 

LEMMA 4.1. Under the subcharacteristic condition (3.9); the solutions of the 
relaxing scheme (3.3) satisfy: 

(4.1) 
{\Ri,j      -Ri,: + K2,j        - U2,j Ax 

< {2K\\uo\\Li + {Kfi + 3yfi)M} At,     n G NQ. 

Proof Set i^J1'6 = RfJ1'* - R71^',    i = 1,2. Substracting (3.3)n from (3.3)n+1 



676 

gives 

T. TANG, Z.-H. TENG AND J. WANG 

(4.2) 

.At 
2 i+7 - m*) ^ft1" - (a+«*)%) ^M 

= JR?J*ie=^^+1 + (l-/i)^e, 

A 

where 

l + q'M^R^+il+a-q'iv) At 
2 

pn+l.e 

-in- v; -10^ 
and ^ is an intermediate value between u™ "E and u™. Therefore |^| < M/2 by (3.23). 
Thus the subcharacteristic condition (3.9) implies a > 0,7 > 0. Using the techniques 
similar to those used in the last section we can show that 

(4.3) /ra+1 - E (KJ1'8 + 5n+l,e 
■"2,7 ) ^ E (|^| + N) • 

Now we need to estimate I1. Using (3.3) and (3.4), i.e. the relaxing scheme for i?",£ 

and i?2,e> with n = 0 we obtain 

+ p0,£ o,e 
^J 2J-1 ) 

(4.4) 

11 ± EKI<^-^ 
+EH (^J - *&) - /(^ij+^,1)/^ 

+EkK£+4i)A* 

The initial condition u°'e = f{u®'£) in (2.2) is equivalent to 

(<£ - <•) - fK'j + R^/Vl = o. 

Using the above identity we obtain 

k[ (nlfj - R*'*) - mlfj + Rlfj)/^} 

= k [ (RI:* - %•<) - mifj+R^yvi - (4; - R0
IJ) + f(Rij+4?)/^] 

= -27^1; ■ + 2ay£^ , 

with 

<*i = ^n -il-^2 
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where ^ is an intermediate value between u1^6 and u^£.  Therefore, it follows from 
the subcharacteristic condition (3.9) that 

0 < aj,    7^ < fc,     \aj — 7j| < k. 

Using the relaxing scheme (3.3) with n = 0, we obtain 

= -2M (7,(^3+1 - ^)+^(^;? - ^--i)) 

-Klj + aj) [ [R
1
^ - R\'*) - f {R^ + Rty ly/i_ 

+(^-7,-)9(^u + ^)A*' 

which gives that 

h 
(4.5) 

K£-^;-)/(^;- + ^)/Vi 
< 

2/i/c 
« 0,6 

■iZ 
,0,6 + 

Summation of the inequality in (4.5) over j gives 

k 

^5-*-i|) + rT*h(^+^) At 

(4.6) 
^^l + fc 

^-I-Jj) 

Using the definition of the discrete initial data (2.2), the assumption on the source 
term of — K < q'(u) < 0 and the relaxing scheme on u™,£ (2.1) with n = 0 we obtain 

uf (i - At5'(0) = «?,e + M (i??;^! - <*) - /x (^^ - flg-i) 

where ^ is an intermediate value between 0 and u •,e. Therefore, 

n+l,e < + M(|^+I-^ + n2,j - n2,j-l ) 

and 

il = ^Ek(^e) Aa; 

(4.7) 

<    AJSTV |UJ'
£
|AX — ^—' I   ^    I 

3 3 

p0,£ p' 5-1) 

<    AAr(||uo||Li+/xAa;M/2) 

Substitute (4.6) and (4.7) into (4.4) gives 

k 

(4.8) 

^<A1 + IT^(2/1
1+/31)+/31 

< 2Afr||uo||Li + (A/fy + 3/x)M, 
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provided that Az < 1. Then the estimate (4.1) follows from (4.3) and (4.8). D 
By the transformation (3.2), the following corollary is an immediate consequence 

of Lemma 4.1. 

COROLLARY 4.1. Assume that the subcharacteristic condition (3.9) holds.  Then 
the solutions of the relaxing scheme (2.1) satisfy 

(4.9) J2\uTh£-u?£\Ax^ {^K\\UQ\\LI +(i^ + 3v^)M}A*, 
j 

(4.10) ^\vf+1>e-v?e\Ax<y/Z{2K\\uo\\Li + (K» + 3y/*)M} At. 

Next, we consider the difference between vn>£ and f(un'£). The following result 
will be useful in the convergence analysis for e tends to zero. 

LEMMA 4.2.   Assume that the subcharacteristic condition (3.9) holds.   Then the 
solution of the relaxing scheme (2.1) with initial data (2.2) satisfy 

(4.11) 
||vn,e _ f (^^ := J- \v^ - f (u?<)   Ax 

3 

<    y/i (2^||^o||LI + (^ + 4v^)M) e. 

Proof. It follows from the second equation of the scheme (2.1) that 

k^r1'6 - f (^+i'£) Ax 

* E hr1" - v?\Ax+^ E \^ - uu\^+f E h"+i - ^+«?-i Ax. 

Note k = At/e and fi e (0,1).   Then the desired estimate (4.11) follows from the 
BV-boundedness of un,£ and vn>£ and Corollary 4.1. D 

We are now ready to state and to prove the following main theorem of this section. 

THEOREM 4.1. Under the subcharacteristic condition (3.9), the solutions of the 
relaxing scheme (3.3) converge to the solutions of the relaxed scheme (2.3) as e tends 
to zero for fixed At. Furthermore, the solutions of the relaxed scheme (2.3) satisfy the 
following estimates 

(4.12) 

(4.13) 

(4.14) 

TV(un)<^M, TV(vn)<^M, 

EK" 71+1 - uf Ax < {2K\\u0 ||Li + (Kfi + 3Va)M} At, 

(4.15) ^ L"+1 - i# A* < v/i {2A'||«o||£i + (Kfi + 3\/i)M} At, 

for all nonnegative integer n. 
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Proof. Define the linear interpolant of the relaxing solutions: 

(un'£(x),Vn'£(x)) = ^ K'^r) X[Xj-AX/2,Xj+AX/2)(x), 
3 

where X[a,b) is the characteristic function on the interval [a, 6). It follows from The- 
orem 3.1 that (wn'e(*),vn'e(«)), n G No are bounded piecewise constant functions of 
bounded variation uniformly with respect to n and e. By Helley's theorem for each 
fixed n and a standard diagonal process, there exists a subsequence (un>£i (x),vn,€i (x)) 
such that (un'£i(x),vn>£i(x)) converges to a piecewise constant function 

3 

pointwisely for n € No as ei —» 0. Therefore {u^£\v^£i) converges to {u^v7-) as 
Si —> 0 for j G Z, n G NQ . Furthermore, it follows from (4.11) in Lemma 4.2 that 

E \vT£i - f K'£i) I Ax ^ ^ OTMIi + (K/i + 4V^)M) Si. 
3 

Then by letting Si -» 0 we obtain 

x;i«?-/(t*?)iAx=:o, 

which implies that 

(4.16) v? = /(^)    for j G Z, n G NQ. 

Then taking the limit Si —> 0 in the first equation of the relaxing scheme (2.1) we 
obtain 

(4.i7) uf - «y + £ (^+1 -1,?.!) -1 «+1 - ^ + t.y.0 - g (tiy+1) A*. 

The above two equations are exactly the relaxed scheme (2.3). The estimates (4.12)- 
(4.14) for the relaxed solutions follow from the results in Theorem 3.1 and Corollary 
4.1 . □ 

REMARK 4.1. Note that (^?,v?) is uniquely determine by the relaxed scheme 
(2.3) and initial data (2.4). So the whole sequence (u"'£,i^'e) converges to (u^v™). 

REMARK 4.2. Consider the piecewise constant function 

3       n 

for —oo <£<oo, 0<t<oo. Using the estimates for u™ in Theorem 4.1 and 
standard arguments of Helley's theorem, see e.g. Chapter 17 Smoller [15], we can 
show that the solution u&(x,t) given by the relaxed scheme (2.3) converges to the 
entropy solution of conservation law (1.1). 
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