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INFLOW AND OUTFLOW PROBLEMS IN THE HALF SPACE FOR 
A ONE-DIMENSIONAL ISENTROPIC MODEL SYSTEM OF 

COMPRESSIBLE VISCOUS GAS 

AKITAKA MATSUMURA* 

Abstract. We consider asymptotic behaviors in time of solutions to the initial boundary value 
problems in the half space for a one-dimensional isentropic model system of compressible viscous 
gas. In particular, we focus our attention on inflow(or outflow) problems where the velocity on the 
boundary is given as a constant inward (or outward) flow, and try to classify all asymptotic behaviors 
of the solutions. It turns out that depending on the data both on the boundary and at far field 
(especially depending on whether the state is subsonic, transonic, or supersonic), the asymptotic 
state variously consists of rarefaction waves, viscous shock waves, and also stationary boundary 
layer. Moreover, we give a survey of our recent results on some particular cases which justify our 
classification. 

1. Introduction. The one-dimensional and isentropic motion of compressible 
viscous gas which fills the half space is described by the following system in the 
Eulerian coordinates: 

pt 4- (pu)x = 0, 

(1.1) I   (pu)t + (pu2 +p(p))x = l^uXX)    x>0, t > 0, 

, P(p) =ap7, 

where p(> 0) is the density, u is the velocity, p is the pressure, all coefficients JI(> 0), 
a(> 0),and 7(> 1) are assumed to be constant. We study the initial boundary value 
problems to the system (1.1) with the initial data 

(1.2) (p,u)(0,x) = (po,u0)(x),    x>0,     infpo(x)>0, 
a;>0 

the boundary condition at far field x = +oo 

(1.3) lim (p,u){t,x) = (/o+,ti+),    t>0, 
X—KX) 

and also one of the following three types of conditions on the boundary x = 0. 

Case 1 (zero velocity on the boundary): 

(1.4)i u(t,0) = 0,    £>0. 

Case 2 (negative velocity on the boundary): 

(1.4)2 u(t,0) = u_<0,    t>0. 

Case 3 (positive velocity on the boundary): 

(L4)3 \pM) = ,_><),     '>a 
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Here p± and u± are prescribed constants, and we of course assume the initial data 
satisfy the boundary conditions (1.3) and one of (1.4) as compatibility condition. It 
is noted that the Case 1 means the wall is impermeable, and the Case 2 (resp. Case 
3) means the outflow (resp. inflow) constantly exists on the wall. It is also noted that 
in the Cases 1 and 2 the condition on the density can't be imposed, but in the Case 3 
it has to be imposed, so that the corresponding problem to the first equation of (1.1) 
(conservation of mass density) is well posed as a hyperbolic equation for the mass 
density p. In what follows, we call the initial boundary value problem (l.l)~(1.4)i, 
(1.1) ~ (1-4)2, and (1.1) ~ (1-4)3, the impermeable wall problem, outflow problem, 
and inflow problem, respectively. In this article, we are interested in the time-global 
existence of the solutions of these three types of initial boundary value problems, 
especially the large time asymptotic behaviors of the solutions in connection with the 
various combinations of the data on the boundary and at far field. 

There have been many works on the asymptotic behaviors of solutions to the 
Cauchy problems for the system (1.1) where the boundary conditions at far fields 
x — ±oo are given by 

(1.5) lim  (p, u)(t,x) = {p±,u±),    t > 0. 
x—+±oo 

Refer to [9]^[11], [14], [7], etc., and the references therein. All these results show that 
the large time asymptotic behaviors of solutions of the Cauchy problem with (1.5) 
are basically same as that of Riemann problem to the hyperbolic part of (l.l)(Euler 
equation), if only we replace the shock wave with discontinuity by the corresponding 
smooth viscous shock wave. Hence the asymptotic behaviors are naturally classified 
into eight different patterns of combination of the rarefaction and viscous shock waves. 
On the other hand, in the cases of IBVP, the influence of viscosity is expected to 
emerge not only in smoothing effect on discontinuous shock wave, but also in forming 
a boundary layer. As for the question when the boundary layer forms, we propose 
a criterion as follows by considering the Riemann problem for the Euler equation, 
where the initial right state (^+,^4.) is given by the far field state (1.3), and the left 
state (p-,U-) is given by all possible state which is consistent with the boundary 
condition (1.4) on x = 0 (that is, in the cases of the impermeable wall and outflow 
problems, /?_ is freely given). When the left state is uniquely determined so that the 
value on the boundary x = 0 of the solution of the Riemann problem is consistent 
with the boundary condition, that is when the solution consists of only elementary 
waves with positive speed, we expect no boundary layers emerge. On the other hand, 
when the value of the Riemann problem's solution on the boundary is not consistent 
with the boundary condition for any admissible left state, that is the case when the 
solution includes an elementary wave with negative speed or a stationary shock wave, 
we expect a boundary layer which smoothly but steeply compensate the gap comes up. 
Roughly speaking, inconsistency of the incoming or standing hyperbolic waves with 
the boundary data as the hyperbolic-parabolic system does form a boundary layer. 
Thus, we can easily imagine the situation crucially depends on whether the state 
either on the boundary and at far field is subsonic, transonic, or supersonic, because 
the characteristic wave speeds of the Euler equation are given by u ± c(p) , where c(p) 
is so called the sound speed. Recently the impermeable wall problems are investigated 
by Matsumura & Mei [8] and Matsumura & Nishihara [12], and it turns out that the 
asymptotic value of p_ is uniquely determined by the given far field data (p+,u+) so 
that no boundary layers appear and the solution eventually tends toward an outgoing 
rarefaction wave in the case U- < u+ ([12]), and a properly shifted viscous shock 
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wave in the case u- > u+ ([8]). This means the asymptotic behaviors of solutions 
are basically classified only into two patterns, making a remarkable contrast to the 
Cauchy problem. On the other hand, the inflow and outflow problems are expected 
to be far more complicated, and in fact, there have been few results on them. In this 
paper, we construct the boundary layer by the stationary solution, and try to classify 
the all possible large-time asymptotic behaviors of solutions of the inflow and outflow 
problems through the criterion mentioned above. Moreover, we give a survey of our 
just recent results on some typical cases, which justify our classification. 

The paper is organized as follows. In the Section 2, we recall the Riemann prob- 
lem to the Euler equation and introduce some notations. We recall the arguments 
on the Cauchy problem in the Section 3, and summarize the recent results on the 
impermeable wall problem in the Section 4. We study the outflow problem in the 
Section 5, and finally the inflow problem in the Section 6. 

2. Riemann Problem. We recall the Riemann problem to the hyperbolic part 
of (1.1), that is, Euler equation. In what follows, we use the equivalent system to 
(1.1) which is described in terms of the specific volume v (:= 1/p) and the velocity u: 

(2.1) 

'  (i)t + (^)x=0, 

<    (%)t + (v + P(v))x = M^xx,    x > 0, t > 0, 

p(v) — av-1'. 

Now we consider the Riemann problem on R to the hyperbolic part of (2.1) for given 
constant states (v±,u±), v± > 0: 

(7)* + (T+P(u))«=0i    3€R, t>0, 

{ M \  (v+,w+)    z>0. 

For smooth v and u, the system (2.2) is rewritten in the form 

(2.3) 

(2.2) 

V       +A{v,u)( V 
U Jt \ U /a 

= 0, 

where 

A(v,u) 
—v 

vp'(v)     u 

The eigenvalues {Ai}^ of A(v, u) and corresponding right eigenvectors {ri}1^1 are 
given by 

(2.4) Aiti;,u)=u + vAf (v),    r,^) = ^ _^v) ^ , 

where \i(v) = — ^(v)!1/2, and X^v) = IP'^)!
1
^
2
.  We also define the sound speed 

c{v) by 

c(y) := ^^(t?)!^ = y/ariv~  2   . 
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Here note that X^v) are corresponding to the eigenvalues of the system in Lagrange 
coordinates setting (cf. (6.6)). Thanks to the properties p'(v) < 0 and pf'(v) > 0, 
the system (2.2) is strictly hyperbolic and its both characteristic fields are genuinely 
nonlinear for v > 0. Let Q = {(v, u) G R-f x R} be the phase space of (v, u). In what 
follows, let us abbreviate (v,u) to w, (v±,u±) to tu±, and so on, for simplicity. Since 
the integral curves of the right eigenvectors are described by the ordinary differential 
equations du/dv = —X^{v) in Q, the rarefaction curves Ri(w-) and R2(w-) for any 
fixed left state W- G fi are defined by 

Ri(w-) = {w = (v,u) G £l\u = u- — /    X^(s)ds^ u > U-}    i = 1,2. 
Jv- 

Similarly, for any fixed right state w+ G fJ, the rarefaction curves Ri(w+) are defined. 
When w+ G Ri(w-) (i = 1,2), or equivalently w- G Ri{w+), the solution of the 
Riemann problem (2.2) consists of two constant states w± and one centered rarefaction 
wave which continuously connects the left and right states. We denote this solution 
by 

W{t(x/t;w-tw+) = (Vi
R,Ul

H)(x/t;w-,w+),    i = 1,2, 

and simply call it i—rarefaction wave. On the other hand, if w± and s 6 R satisfy 
the Rankine-Hugoniot condition 

(2.5) 

then it is known the Riemann problem has a shock wave solution with the shock speed 
s. By elementary calculations to the R-H condition (2.5), the value u+ and the shock 
speed s should be given in terms of U- and v± by 

(2.6) 

where 

(2.7) sftv-.v+H- 

u+ = u- -(v+-v-)s]t(v-1v+), 

s = Si(w-,v+) := ix_ H-v-sf (t;_,i;+),    i = 1, 2, 

p(v+)-p(u_) 
,3^(i;_,v+) = -5f/(i;_,?;+). 

U4. — V- 

Combining the above together with the entropy condition 

(2.8) Xi(w+) < Si < Xiiw-), 

which is simply equivalent to u+ < U- in our cases, we can define the shock curves 
S\(w-) and S2(w-) for any fixed left state W- G fi by 

Si(W-) = {w = (v,u) G n| U = W_ — (f — V-)Si (v-,v),  u < U-}. 

Similarly, for any fixed right state w+ G Q, the shock curves Si(w+) are defined. When 
iu+ G Si(w-) (i = 1,2), or equivalently iu_ G 5i(iy+), the solution of the Riemann 
problem (2.2) consists of two constant states w± and one shock discontinuity which 
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connects the left and right states and propagates with the shock speed s*. We denote 
this solution by 

Wf(x-Sit;w-,w+) = {V?,U?){x-sit\w-,w+),    i = l,2, 

and simply call it i—shock wave. 
For any fixed right state w+ € fi, the state space Q is divided into four domains by 

the rarefaction curves {Ri(w^)}^=1 and shock curves {Si{w-)}?=1, that is, RR(w-) 
with the boundary Ri(w-) and /^(w-), RS(w-) with the boundary Ri(w-) and 
52(^_), SR{w-) with the boundary Si(w-) and R2(w-)1 and SS(w-) with the 
boundary Si^-) and 82(11)-). When w+ is located in one of the above four domains, 
the Riemann problem's solution is given by the combination of the corresponding 1— 
and 2-waves. For example, if w+ £ RS(w-), then there exists a unique intermediate 
state w G Ri(w-) satisfying w+ £ S2{w), and the solution is exactly given by 

W^(x/t]W-,w) + W«f (z - S2t;w,w+) -w. 

Thus, all patterns of the solution of the Riemann problem are classified into eight 
cases depending on where w+ is located, that is, {Ri(w-)}f=lJ {Si(w-.)}j=ll1 RR(w-), 
RS{w-), SR(w-), and SS(w-). 

3. Viscous Shock Waves. We recall the viscous shock waves of (2.1) and the 
known results on the Cauchy problem and also the impermeable wall problem. The 
viscous shock wave W with the shock speed 5 G R is defined by special solution of 
(2.1) which has the form 

(3-1) w(x,t) = (V,Um,    S = x-st, 

and smoothly connects the states w± G fi so that W(±oo) = w±. Substituting (3.1) 
to (2.1), we have the system of ordinary differential equations 

(3.2) { 
{ sW + iHr+pWY^vU",   £eR. 

It is known that under the R-H condition (2.3) and the entropy condition (2.4), which 
implies w+ G Si(w-) (i = lor2), the equation is reduced to 

(3.3) 

f U(i) = u±-(V(0-v±)sHv-,v+),    Z^x-Sit, 

»sfV'(0 = -P(V(0) +P(v±) - (V(0 - v±)(s?r,    £ e R, 

{ V(±oo) = v±, 

where the shock speed s = Si(w-,v+) is given by u- + «_sf (u_,u+). Due to the 
convexity of p, it is easy to show the system (3.3) has a unique solution up to shift. 
We denote this solution by 

Wl
vs(x-sit;w-,w+) = (Vys,uVs)(x-sit;w-,w+),    i = 1,2, 

and simply call it i-viscous shock wave. 
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Now we recall the results on the asymptotic behaviors of solutions of the initial 
value problem to the system (2.1) with the initial and far fields conditions 

(3-3) (v,w)(0,x) = (VQ,UQ)(X),    x G R, 

(3.4) lim  (u,w)(t,rc) = (u±,M±),    * > 0. 
X—+±co 

As we mentioned in the Section 1, the asymptotic sates are basically same as that 
of Riemann problem to the hyperbolic part, if only we replace the shock waves by 
the corresponding smooth viscous shock waves. Therefore, for any fixed tu_ G ft, de- 
pending on where w+ is located, the solution is expected to tend toward the following 
asymptotic states: 

Wlt(x/t\w-,w+), forw+ G Ri(wJ), 

Wys{x- Sit + ai;w-,w+), forw+ G Si(w-), 

W^{x/t\ w-,w) + Wfix/t; w, w+) - w, forw+ G RR(w-), 

W^s(x - sit + au w-, ^)+ 
W¥s(x-S2t + a2',w,w+) -w, for^+ G SS(w-), 

W^s(x - sit + au w-, w) + W^{x/t\ w, iu+) - w,    for w+ G SR{w-), 

W^{x/t\ w-,w) + W¥s(x - S2t + a2; w, w+) - w,    for^+ G RS(w-). 

As for these asymptotic behaviors, there have been many works where all results are 
stated for the equivalent problem to (1.1) described in the Lagrangian mass coordi- 
nates, in which the system can be handled in easier way than that in the Eulerian 
coordinates. Here let us make a survey in terms of the Lagrangian coordinates. Mat- 
sumura & Nishihara [9] first treated the case w+ G Si(w-) and succeeded in showing 
that if (7 — l)\w+ —w-1 is suitably small, the viscous shock wave Wys(x — Sit\ W-.,w+) 
is asymptotically stable for small initial perturbations with zero integrals, so that the 
phase shift a does not occur. For the initial data with non-zero integrals, Liu [2] [3] 
studied the criterion how to determine the phase shift based on his deep insight, and 
Szepessy & Xin [14] succeeded in showing, for the system with artificial viscosity terms 
which make the system uniformly parabolic, that if | W+ —W- \ and the initial perturba- 
tions are suitably small, then the solution tends toward the Wys(x — Sit + a;w-,w+) 
where the phase shift a is uniquely determined by the Liu's criterion. Although the 
introduction in [14] reads the physical viscosity case can be similarly treated, it seems 
not to be so trivial. The arguments by Szepessy [15] on the asymptotic stability of 
the viscous shock wave to the Broadwell model are believed enough to compensate 
the gap. However the complete proof for our original system is not available in any 
publications up to now. Therefore we really hope to give a complete and simpler 
proof to our physical viscosity case, even if we use a special feature of our system. In 
the case w+ G SS(w-), combining the arguments in [9] together with that in [2][3], 
we can show as a kind of exercise that if \w+ - W-\ is suitably small and the initial 
data is suitably close to W^s(x] W-,w)-\- W¥s(x\ w,w+)-w, then the solution tends 
toward 

WYs(x - sit -f au w-, w) + W]fs{x - S2t + c^; w, w+) w 
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where the shifts ai and 0:2 are uniquely determined by the initial data. In the cases 
w+ G (RiUR2URR)(w-), Matsumura and Nishihara [10][11][12] succeeded in obtain- 
ing the complete results that the asymptotic state is given by the corresponding either 
simple rarefaction wave or combination of two rarefaction waves of the Euler equation 
without any smallness conditions on |iy+ — iu_|, 7, and the initial data. Finally we 
should emphasize the cases w+ G (SRURS)(w-) are still entirely open. These cases 
would be very interesting and challenging, because we could expect the interaction 
between the tails of the rarefaction and viscous shock waves are persistent and subtle 
enough to make controlling the phase shift of the viscous shock very entangled. 

Figure 3.1 S2{w+) Figure 3.2 

3!(i;-,0) 

Let us turn to the case of the impermeable wall problem (l.l)~(1.4)i. Following 
our criterion how to expect the asymptotic state as mentioned in the introduction, 
let us consider the corresponding Riemann problem (2.2) where the left state V- is 
freely given, that is, all candidates of the left states W- form the v—axis in 0. When 
u+ > 0, as the Figure 3.1 shows, we can see that the Riemann solution includes 
an incoming wave which is not consistent with the boundary condition (1.4)i for all 
w- on the v axis except the unique point such that (u-,0) G R2(w+), equivalently 
w+ G i?2(^-,0). For this i>_, the Riemann solution consists of only an outgoing 
rarefaction wave W^fa/t) W-yw+), and we do expect it as the asymptotic state of the 
solution. In fact, this conjecture was completely proved by Matsumura & Nishihara 
[12] without any smallness conditions on |iy+ — K;_|, 7, and the initial data. Similarly 
when 11+ < 0, as the Figure 3.2 shows, we can see that (v_,0) G §2{w+) is the only 
the option for which the Riemann solution is consistent with the boundary condition, 
and thus we expect the asymptotic state to be the corresponding viscous shock wave 
WYs{x - S2t + a\w-,w+) with a proper phase shift a. Here we should note the 
shock speed 52 is positive no matter how negatively large u+ is. (This fact is showed 
as follows: For a shock wave with the zero shock speed s, the left state w- turns 
out to be located on the straight line connecting the origin and the right state w+, 
due to the first equation of the R-H condition (2.5). This implies the shock wave 
has a positive shock speed S2 if W- G £2(1^+) is located above the straight line, and 
has the negative speed S2 if below the line (cf. Figure 3.2).) Recently Matsumura & 
Mei [8] succeeded in obtaining a positive result on this conjecture that if the viscous 
shock wave is suitably far away from the boundary at the initial time and if the 
initial perturbations are small enough, then the solution tends toward a properly 
shifted viscous shock wave whose phase shift is uniquely and explicitly determined 
by the initial perturbations. Thus, the asymptotic behaviors of the solutions for the 
impermeable wall problem can be basically classified into only two cases, whether w+ 

is positive or negative, in contrast with the Cauchy problem, eight cases. 
Finally in this section, we should make some remarks on the phase shift just 
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mentioned above to compare our case with that of the scalar viscous conservation 
laws, whose IBVP with Dirichlet zero boundary condition were studied in Liu & Yu 
[6], and Liu & Nishihara [5]. Even in these scalar cases, in order to locate the phase 
shift, they needed the laborious analysis (pointwise estimates via Green function in 
[6], technical weighted estimates in [5]), since the shift can't be determined explicitly 
because of the viscosity term. So we had thought our system case is much more 
difficult in many aspects. However it turns out that our system with physical viscosity 
on the half space has several better features than those both for the scalar cases with 
boundary and also for the systems without boundary. In particular, our system is 
not uniformly parabolic, i.e., there is no viscosity term for the density, and we can't 
impose the boundary value of the density, which usually gives various difficulties. This 
is really the reason why we can specify the phase shift a of W2S(oc — S2t + a) only 
by the hyperbolic equation for the density, and we can expect that value of ^(0, t) 
on the boundary is automatically controlled to tend to the value V- by the structure 
of the system itself so that the whole solution w(x,t) tends to W2S{x — S2t + a) 
with the same a. Let us show how to specify the shift a more precisely. Let denote 
W2S(x - S2t + a; w-)W+) simply by W{x — st 4- a). Then, by the equation of the 
conservation of density, we deduce 

Integrating (3.5) with respect to both x and t, we have 

r 1      1 i        r    l l        i       y' U{-ST + a)  , (3.6) /     --—dx= I     —p-r - ...    ,    , dx - /   -) —-^dT. 
Jo    v     V J0    vo(x)     V(x + a) J0 ^(-sr + a) 

If we assume that v — V tends to zero well enough, the right hand side of (3.6) should 
satisfy 

r i       i   j   r U
(-

ST+a) J   n 
^ I    M^-WTa)dX-J0    V(^Ta)dT = 0- 
Set the left hand side of (3.7) by 1(a) and differentiate it with respect to a as 

v     / da v+      s       V(a)     V{a) 

Since the first equation of (3.2) gives 

(3.9) -5T7rT + Y7^\ = -s—'    a^R1, v V(a)      V(a) v- 

we deduce from (3.8) and (3.9) that 

Thus it turns out that the phase shift a should be given by the formula 

1  /f0 i     i A   rvtfiLjx a-j^:{h M^~W)dx-Jo vi^)dT}- 
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4. Boundary Layers. Now we are ready to start to consider the Inflow and 
Outflow Problems. As mentioned in the introduction, the classification of the large 
time asymptotic states are expected to depend crucially on whether the state either 
on the boundary and at far field is subsonic, transonic, or supersonic. Hence we divide 
the domain Q, into 5 regions (see Figure 4.1) 

totuper     =     {wen\u>c(v)}, 

^trans      =     {w E n\u = c{v)}, 

Qsub       =    {we£l\\u\<c(v)}, 

trans {w GQ\u = — c(v)}, 

si: "super     =     {W Gn\u<-C(v)}, 

where we should note that 

^ ^ ^super 

^super 

sub 

trans 

"super 

Figure 4.1 (7 > 1) 

on   (Z   P + w ^-     trans 

W € Slsub 

w ^ Ftrans 

w ^ ^lsuper 

0< Ai(iy) < A2M, 

0 = Xi(w) < \2{w), 

\l(w) <0 < \2(w), 

Xi(w) <\2(w) = 0, 

Xi(w) < \2(w) < 0. 

Now let us pick up an example from the Outflow Problem(l.l) ~ (1.4)2 which show 
that any corresponding Riemann solution is not consistent with the boundary condi- 
tion (1.4)2. For fixed U- < 0,iLf > 0, and u+ > 0, consider the Riemann problem 
with free i>_ as in the previous sections. 

trans 

R2(W+) 

Figure 4.2 
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As the Figure 4.2 shows, 2-rarefacton curve R2{w+) intersects r^ans at a point de- 
noted by w* = (t;*,?/*). If u* < u- < 0, as in the impermeable wall problem, 
there exist a unique V- G R2(w+) so that we can expect the solution tend toward 
W2i(x/t',w-,w+) and no boundaryJayer appear. However, if it- < u* then, even 
for the most plausible option V- e R2(w+), the Riemann solution W^(x/t;w-iw+) 
includes a part W^tx/t^W-iW*) which goes into the boundary, so is not consistent 
with the boundary condition (1.4)2. In this situation, we do expect the interaction 
between the incoming wave and the boundary condition select a new v- and form a 
boundary layer solution which connects W- and w*. In this paper, we refer to sta- 
tionary solution W(x) of (1.1) with the conditions W(0) = W- and W(+oo) = w+ as 
boundary layer solution connecting W- and itf+, and denote it by 

W5L(x;^_,^+) = (VBL{x',W-,w+),UBL(x-W-,w+)). 

More precisely, the boundary layer WBL{x;w-,w+) is defined by the solution of 

i (4-1) \   (I£+p(V)y = iJLU",    rr>0, 

Let us investigate the existence of W(x) and its properties. We first consider the case 
corresponding to the Outflow Problem, that is, U- < 0 ( the following arguments 
on stationary solution are basically due to Kawashima & Nishibata[l]). The first 
equation of (4.1) immediately implies 

(4.2) m ^ = ^> x>0t 
V{x)      v+      V- 

in particular, that for a fixed w+, the boundary state W- should be located on the 
line BL(w+) which passes through the origin and w+, 

BL(w+) = {w G fi | u = —SQV, SQ = ——}. 

Integrating the second equation of (4.1) with the aid of (4.2), we have 

f s0^V' = -sl(V-v+)+p(v+)-p(V),    x>0, 
(4.3) { 

{ V(p) = v-,    V(+oo) = v+. 

Here note that 5o = —u±/v± > 0. We can check whether V has right sign or not on 
the interval between u_ and v+ in (4.3) as follows (refer to Figure 4.3). 
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First fix 11;+,   then draw the line 
BL(w+)   which   always   intersects 
the transonic  line F 
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trans'    U/V    ~ 
— Ip'iv)]1/2- Denote the intersection 
point by w* = (i>*,u*). Consider 
the graph of p(v) and draw the tan- 
gential line at (v*,p(v*)). It easily 
turns out that the slope of the tan- 
gential line exactly equals to — SQ. 

Then draw the line with the same 
slope — SQ which passes through the 
point (i>+,p(?;+)), denote this line by 
l(w+) = {(v,q(v))}. Note q(v) ex- 
actly equals to —SQ(V — v+) +p(v+). 
Thus for any w- £ BL(w+), we can 
easily check the sign of Vf on the 
interval between v- and v+ in (4.3) 
by seeing how the two graphs of p(v) 
and q(v) intersect. If w+ G ft<super> 
we can see that the 2—shock curve 
S2{w+) intersects the line BL(w+) 
at not only w+ but another point, be 
denoted by w •= (i5,£t), correspond- 
ingly the line l(w+) intersects the 
graph of p(v) at not only v = v+ 
but v = v. Then it easily turns out 

BL{w+) 

trans 

Figure 4.3 

that V7 has a right sign for u_ < u, that is, there exists the boundary layer 
solution WBL(x]W-1w^.)^ and have a wrong sign for 0 > U- > u. As for U- = u, 
although the sign is right, there exists no boundary layer solution but the stationary 
viscous shock wave Wf {x + a;it;_,iu+). If w+ G r^ans, we can also see that the 
2—shock curve 52(iu+) tangentially intersects the line BL(w+) at K;+ and has no 
other intersection points. Then Vf has a right sign only for u- < iq., and the 
boundary layer solution tends toward tu+ at the algeblaic rate 0(l/x) as x goes to 
+oo, because the line l(w+) coincides with the tangential line of the graph of p(v) 
at v = u* = ^4- (then we say the boundary layer solution is "degenerate"). Thus by 
these arguments above, we have the following 

PROPOSITION 4.1. Suppose u+ < 0 and w- e BL(w+). 
i) If w+ G Qjuper and 0 > U- > u, then there exists no boundary layer solution, 
ii) If w+ G QjUper and u > u- > u+; then there exists a unique boundary layer 
solution of (4.1) and positive constants C and 5 such that 

V'fa) > 0,     z > 0, and    \W(x) - w+\ < Cexp (Sx), x -> +oo. 

mj // w+ G ^7Uper an^ w+ > u-) then there exists a unique boundary layer solution 
of (4.1) and positive constants C and S such that 

V,(x)<0,    x>0,and    \W(x) - w+\ < Cexp(-fe), x -> +oo. 

iv) If w+ G ^trans an<^ 0 > ^- > w+; ^Aen t/iere exists no boundary layer solution. 
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v) If w+ G ^Trans and u+ > U-, then there exists a unique degenerate boundary layer 
solution of (4.1) and a positive constants C such that 

Q 
V'{x) < 0,    x > 0, and   \W(x) - w+\ < —, x -> +oo. 

x 

vi) If w+ G Q~uh, then there exists no boundary layer solution. 

Next we consider the boundary layer solution which satisfy (4.2)(4.3) correspond- 
ing to the Inflow Problem, that is, U- > 0. In this case, note SQ = —u±/v± < 0, and 
fix W- (u- > 0) at first for later arguments. As in the prvious case, draw the line 

U— 
BL(w-) = {w G Q | u = —SQV, SQ = }. 

V- 

which always intersects the transonic line r^.an5, u/v = {p'iv)]1/2, denote the in- 
tersection point by w* = (f*,^*), and then check the sign of V in (4.3) for any 
w+ G BL(w-). In particular, if w^ilfuper, the 1—shock curve 5i(iu_) intersects the 
line BL(w-) whose intersection point is denoted by w, and V has a right sign only 
for 0 < iz+ < u. 

PROPOSITION 4.2. Suppose u- > 0 and w+ G BL(w-). 
i) If W- G Qsub U ^trans an^ ^ < u+ < U-, then there exists a unique boundary layer 
solution of (4.1) and positive constants C and S such that 

V'fa) < 0,     x > 0, and    \W(x) — w+\ < Cexp (—fe), x —► +oo. 

ii) If W- G £lSub and u^ < u+ < u*, then there exists a unique boundary layer 
solution of (4.1) and positive constants C and 5 such that 

Vf(x) > 0,     x > 0, and    \W(x) — w+\ < Cexp (—fe), x -^ -foo. 

Hi) Ifw- G Qsub CLndu+ = u*, then there exists a unique degenerate boundary layer 
solution of (4.1) and positive constants C and 5 such that 

C 
Vl{x) > 0,    x > 0, and   \W(x) - w+\ < —, x -> +oo. 

x 

iv) If w- G Qsub ^^trans an(^ u* < u+' then there exists no boundary layer solution, 
v) If w- G Qfuper and 0 < w+ < u, then there exists a unique boundary layer solution 
of (4.1) and positive constants C and 8 such that 

V^x) < 0,    x > 0, and   \W(x) — w+\ < Cexp (—<fa), x -* -foo. 

vi) If W- G Qtuper and & ^ u+? then there exists no boundary layer solution. 

5. Outflow Problem. In this section, using the arguments in the previous sec- 
tions, we try to classify all asymptotic behaviors of solutions of the Outflow Problem 
(1.1) ~ (1.4)2. We primarily divide into three cases depending on where w+ is located. 
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• u+ > 0   (see Figure 5.1): 

trans 

BL{w*) 

Figure 5.1 

(i)   0 > u-  > u* :   There exists a unique V- such that W-  € ^2(^4-) and the 
asymptotic state is expected to be 

(5.1) W?{xlt\w-,w+). 

(ii) u* > u- : There exists a unique V- such that W- G BL2(w*) and the asymptotic 
state is expected to be 

(5.2) WBL(x; w-,w*) + Wf(x/ti w*,w+) - w*. 

where note that the boundary layer solution WBL(x;w-,w*) is degenerate. 

• u+ < 0, w+ G Qsub U r^rans (see Figure 5.2): 

S2(w+) 

(i)   u- 

(ii) U- 

(in) U- 

trans 

BL{w*) 

^lsuper *     R2(w+) 

Figure 5.2 

(i)  0 > u-  > n+ :   There exists a unique v- such that W-  G 52(w+) and the 
asymptotic state is expected to be 

(5.3) W2    (x — S2t + a]W-,w+)    for some a. 

(ii)  u+ > u- > u* :   There exists a unique v_ such that u>_ G JR2(^+) and the 
asymptotic state is expected to be 

(5.4) W£{xlt;w-,w+). 
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(iii) u* > u- : There exists a unique V- such that w- E BL2(w*) and the asymptotic 
state is expected to be 

(5.5) WBL(x-)W-,w*) + W?(x/t;w*,w+)-w*. 

where note that the boundary layer solution WBL(x',W-,w*) is degenerate. 

• w+ < 0, w+ e ttjuper (see Figure 5.3): 

(0     u- 
(ii)    U- 

(iii) u- 

(iv) u- 

"super 

Figure 5.3 

BL(w+) 

(i) 0 > U- > u : There exists a unique V- such that w- G S2{w+) and the asymptotic 
state is expected to be 

(5.6) W2    (x — S2t + »; w-, iy+)    for some a. 

(ii) u- = u :  There exists a unique V- such that W- G 52 (^+) and the asymptotic 
state is expected to be 

(5.7) W2    (x + a(t);iy_,iy+)    for some a(t) / +00. 

(iii)  u > u- > w+ :   There exists a unique V- such that iy_ G BL2(w+) and the 
asymptotic state is expected to be 

(5.8) BL\/ Wtu'(x;w-,w+)   with (V*Ly < 0. 

(iv) ix+ > -U- : There exists a unique v_ such that W- G BL(w+) and the asymptotic 
state is expected to be 

(5.9) W"L(x]W-iw+)   with (VBLy > 0. 

Among above cases, let us make some comments on the behavior (5.7) which is subtle 
and interesting. In this case, the corresponding viscous shock wave W2S(x',W-,w+) 
is stationary, so there is always a gap between the value W- and W2S(0 + a; K;_, W+) 

on the boundary for any constant shift a, which makes us expect the shift a rather 
depend on t and increase up to +00 as t —> +00 in order for the gap to decrease to 
zero. This case is just corresponding to that for the Burgers equation in Liu & Yu [6]. 

Only the results rigorously proved concerning above asymptotic behaviors are 
given by Kawashima & Nishibata [1].    They proved that if w+  G QjUperi W-  G 
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BL(w+), and \w+ — w-\ is suitably small, then the boundary layer solution 
WBL(x',W-,w+) is asymptotically stable. It should be noted that they employ a 
method where the monotonicity of the boundary layer solution is not used, so they 
can treat the both cases W- < w+ and w+ < W- (see [1] for details). All other 
cases are open problems! Finally in this section, we should point out a difficulty the 
Outflow Problem faces. If we employ, so called, the Lagrangian mass coordinates 
system, which usually makes the form of equations simpler and the treatment of the 
equations easier, the problem becomes a free boundary value problem which makes 
the treatment of boundary more difficult. On the other hand, as we will see in the 
next section, the Inflow Problem become a corresponding IBVP with a prescribed 
moving boundary (a; = sot,SQ = —u-/v-) in the Lagrangian mass coordinates, since 
the both values of velocity and density on the boundary are given. 

6. Inflow Problem. In this section, we try to classify all asymptotic behaviors 
of solutions of the Inflow Problem (1.1) ~ (1.4)3, and show some cases are rigorously 
proved. Thanks to all arguments in the Section 3 and 4, we primarily classify into 
two cases in terms of the location of w_, that is, W- G Qsub U ^trans or w- ^ ^tupen 
and then for each W- classify into many sub-cases depending on where WJ^ is located. 
For w- G Slsub U r^.ans, we basically divide the phase space SI of w+ into 13 regions, 
and for W- G fij"Wper, 14 regions. 

>W- G J| sub ur+m,   (see Figure 6.1): 

l 

R2(w 

/ 
/ 

.) 

BL(w-) 

i?2(W- X 
(12)            // 

/ 

*'super 

\ 
(7) > 

»\ y? 
»/ 

(8)         52(W+) 
«.  ^ trans 

/" 

r     \ --ja. ^ ub 
(3) 

-*^4« 

-     —^ S2(iu_) 

Figure 6.1 

(1) w+ G BL(w-), 0 < u+ < it-:  The asymptotic state is expected to be 

WBL{x;w-,w+). 
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(2) w+ € Region(2):   There exists a unique w € BL(w-) (u < U-) such that itf+ G 
R2(w) and the asymptotic state is expected to be 

WBL(x', w-,w) + Wfix/t; w, w+) - w. 

(3) w+ £ Region(3):   There exists a unique w G BL(w-) (u < U-) such that w+ € 
52 {w) and the asymptotic state is expected to be 

WBL{x\ w-.,w) + WYS(x - S2t + a; w, w+) - w. 

(4) ttf+ £ R2(w-):  The asymptotic state is expected to be 

W?(x/t;w-.,w+). 

(5) w+ £ 82(11)-):  The asymptotic state is expected to be 

W2S{x — S2t + a]W-,w+). 

(6) w+ £ BL(w-), U- < u+ < u*: The asymptotic state is expected to be 

where note that if ttf+ = IU*, then the boundary layer WBL(x; W-,w+) is degenerate. 

(7) w+ £ Region(7):   There exists a unique w £ BL(w-) (u > U-) such that w+ £ 
R2(w) and the asymptotic state is expected to be 

WBL(x; w-,w) + W£(x/t\ w, w+) - w. 

(8) iy+ £ Region(S):  There exists a unique w £ BL{w-) [u > U-) such that iy+ £ 
S2{w) and the asymptotic state is expected to be 

WBL(x', w-,w) + W2S{x - S2t + a;w,w+)- w. 

(9) W+ £ R2(w*):  The asymptotic state is expected to be 

WBL(x] w-, w*) + WJ?(x/t\ w*,w+) - w*. 

(10) w+ £ 52 (ty*): The asymptotic state is expected to be 

WBL(x;w-,w*) + W2{x-S2t + a')w*,w+) — w*. 

(11) w+ £ Ri(w*): The asymptotic state is expected to be 

WBL(x'1 w-,w*) + Wpix/t;w^w+) - w*. 

(12) w+ £ Region(l2),i.e.,RR(w*):   There exists a unique w £ Ri(w*) such that 
w+ £ R2{'w) and the asymptotic state is expected to be 

WBL{x] w-,w*) + {W^{x/t\w*,w)- w*) + {W^{x/t\w,w+) - w). 

(13) w+ £ Region(l3),i.e.,RS(w*):   There exists a unique id £ i?i(iy*) such that 
w+ £ S2{w) and the asymptotic state is expected to be 

WBL{x]w-,w*) + (W^(x/t\w^w) - w*) + {W?s{x - S2t + a;w,w+) - w). 
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Here note that in the cases (9) to (13), the boundary layer WBL(x;w-,w*) is degen- 
erate one. In Matsumura & Nishihara [13], we succeeded in giving rigorous proofs for 
some cases. First in the case (5), since the V has a right sign, we can prove that 
the boundary layer solution WBL(x;w-,w+) is asymptotically stable. Second in the 
cases (2) (7), combining the arguments in Kawashima & Nishibata [1] with that in 
Liu, Matsumura & Nishihara [4], we can show that if |itf+ — w-\ is suitably small, 
the combination of two waves WBL(x;w-,w) + W2l(x/t]w,w+)-w is asymptotically 
stable. Finally in the case (12), we can prove that if |iu+ — w*\ is suitably small the 
combination of three waves is asymptotically stable ( note \w- — w*\ is not neces- 
sarily small). We shall state this case more precisely in the last part of this section. 
All other cases are basically open. Among them, in the cases (3) (8), we should note 
that the phase shift a in WBL(x] w-,w) + W2S(x - S2t + a; w, w+) - w is explicitly 
determined by the initial perturbation by the entirely similar argument as that at the 
end of the Section 3, however the whole proof is not completed yet. 

• w- e nfuper (see Figure 6.2): 

1 

R2(w-) 

\ 
BL{w-) 

(13) 

y (V) 
\(8)      \ 

Ri{w-) 

\ 
\    ^ 

KT          (14)             ft+per 

\ 
i     /\ 
1    /     \ 

^^)    52(ll,-) 

(2)    ^ (9) 

/! 

'    (3) 
^^^^^          a ( ~\                     trans 

V-sub 

Si(w.) 
Figure 6.2 

(1) w+ G BL(w-), 0 < u+ < u: The asymptotic state is expected to be 

WBL(x;w-,w+). 

(2) w+ G Region(2): There exists a unique w G BL(w-) such that w+ G R2{w) and 
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the asymptotic state is expected to be 

WBL(x] >w-,w) + W^ix/t; w, w+) - w. 

(3) w+ £ Region(3):  There exists a unique w G BL(w-) such that w+ G 52(w) and 
the asymptotic state is expected to be 

WBL(x; w-,w) + W¥S{x - S2t + a; w, w+) - iD. 

(4) iy+ = w: The asymptotic state is expected to be 

WiS(x + a(i)',w-,w)    for some a(t) / +oo. 

(5) w+ G R2(w)\  The asymptotic state is expected to be 

WYs(x + a(t); iu_, i5) + W2
R(x/t; i5, iy+) - iD 

for some a(t) /^ +oo. 

(6) iy+ G S2(w):  The asymptotic state is expected to be 

WFs(x + a(*); ty-, it)) + W¥s(x - S2t + a2; w, w+) - w 

for some a(t) / +oo and 0.2 £ R» 

(7) K;-!- G 5i(i(;_):  The asymptotic state is expected to be 

WX
S
(F — sit4-a;iy-,iy+). 

(8) ^4- G Region(8):   There exists a unique w G 5i(iy_)(i2 < iZ < U-) such that 
10+ G R2{yj) and the asymptotic state is expected to be 

WXS(x - sxt + a; iy_, iD) + W^ix/t] w, w+) - iD. 

(9) ty+ G Region(9):   There exists a unique w G 5i(iy_) (tt < u < U-) such that 
w+ G S2(w) and the asymptotic state is expected to be 

WiS(x — sit + aiiw-,w) + W2S(x — S2t-\-a2',w,w+) — id. 

(10) w+ G R2(w-): The asymptotic state is expected to be 

Wit(x/t;w-,w+). 

(11) ti;+ G 82(10-): The asymptotic state is expected to be 

W2S(x — S2t + a]W-,'w+). 

(12) 11;+ G jRi(ti;_):  The asymptotic state is expected to be 

W{i(x/t]w-,w+). 

(13) w;+ G Region(l3)ji.e.)RR(w-):   There exists a unique w G Ri(w-) such that 
w+ G R2{'w) and the asymptotic state is expected to be 

Wp(x/t\ w-,w) + W^(x/t] w, w+) - w. 
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(14) w+ € Region(l4),i.enRS(w-): There exists a unique w G Ri(w-) such that 
w+ G S2(w) and the asymptotic state is expected to be 

Wi(xlt',w-,w) + W2S{x - S2t + a','w,w+) — w. 

Basically the above 14 cases are open. In the cases (7) to (14), we can easily imag- 
ine the behaviors of solutions are similar to that for the Cauchy problem since the 
situation is totally supersonic. However, because of presence of the boundary, the 
mathematical proofs are not completed yet even in the cases (10) (12) (13) which are 
completely solved for the Cauchy problem. The cases (4) (5) (6) should be subtle and 
might be even more difficult than the case (5.7) of the Outflow problem. In the cases 
(1)(2)(3), it is interesting to see that although supersonic is the state around the 
boundary, the state at far field is subsonic enough to create an incoming wave to the 
boundary which eventually forms a boundary layer. 

In the remaining part of this section, we state more precisely about the sub-case 
(12) in the primary case w- G fisub where the asymptotic behavior is expected to be 
a combination of a boundary layer solution and two rarefaction waves. First let us see 
that by transformation from the Eulerian coordinates (rr, i) to the Lagrangian mass 
coordinates (£,£), we can make the original problem easier to handle and become a 
corresponding IBVP with the moving boundary (x = sot, SQ = —u-/v- < 0). In fact, 
if we keep in mind that the mass flows in through the boundary at a rate of p-U-, 
we may define the transformation x = #(£,£) for £ > 0 by 

(6.1) I      0* 
1     ) l^>t)=xo(0, 

where £o(£) is given by the relation 

(6-2) £=/        pfo.Ojdy, 
Jo 

rMO 

and for £ < 0 by 

(6.3) 2*m = u(t,x(U)),    t>to(0, £<o, 
s(£,to(O) = 0, 

where £o(£) is given by the relation 

(6.4) -£ = /        (/m)(0,r)dr = (p-U.) • to(0- 
Jo 

By elementary calculations, we deduce from (6.1) ~ (6.4) that 

M£,t) 
(6.5) £= / p(y,t)dy,    £ > sot, 

which implies 

(6-5) ^^=«(*,x(^t)),    ^^- = u(t,x^t)),    S>s0t. 
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Due to the relations (6.5), we can rewrite the original problem (1.1) ~ (1.4)3 in the 
following form where we use again x instead of £: 

(6.6) 

vt - ux = 0, 

u* +v(v)x = ^{ux/v)Xl    x > sot, t > 0, 

with the initial data 

(6.7) (v,u)(Q,x) = (VO,UQ)(X),    x > 0,     inf VQ > 0, 
x>0 

the boundary condition at far field x = +oo 

(6.8) lim (v,u)(t,x) = (v+,iz+),    * > 0, 
x—*oo 

and also the condition on the moving boundary x = sot 

(6.9) (v,w)(t,5o*) = (v-»w-)»    i>0- 

This time the hyperbolic part of (6.6) is written for smooth v and u in the form 

(6.10) 

where 

:)/M: = o, 

AL(v) 
0      -1 

p'(w)     0 

It is easy to see that the eigenvalues {Af («)}?_! of AL(v) and corresponding right 
eigenvectors {ri}^-1 are just the same as in (2.4), 

(6.11) \L(v) = -A^(i;) - -|p'(^)|1/2,    niv) - ^ _Ai(u) ) , 

which implies the rarefaction curves i^(ti;_)(or Ri(w+)) are naturally the same as 
that for the Eulerian case. As for the Rankine-Hugoniot condition, we have 

(6.12) 

which implies that 

(6.13) 

—s(v+ — V-) — (u+ — U-) = 0, 

-s(u+ - u-) + (p{v+) -p(v-)) = 0, 

u+ =u- - (v+ -i;_)sf («_,!;+), 

■=   c^ af(t;_,v+),     i = l, 2, 

where s^^-, i;^) is as in (2.7). Thus the shock curves 5i(K;_)(or ^(ly^)) and the line 
BL(w-) are also naturally the same as in the Eulerian case, excepting the shock speeds 
Si(w-.,v+) are replaced by sf^u-, t;+). Let us use the same notations W/*, Wf, W^5, 
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and WBL to represent rarefaction wave, shock wave, viscous shock wave ,and bound- 
ary layer solution respectively. Among them, we especially should note that bound- 
ary layer solution is no longer stationary, but defined by a travelling wave solution 
with the same propagation speed (SQ = -U-/v-) as the moving boundary, that is, 
WBL(x — sot; w-,w+) is defined by the solution W(£) (f = x — sot) of 

(  -soV'-U' = 0, 

-sou' + (p(v)y = w/vy,  * > o, 

W(0) = w-,    W{+oo)=w+, 

which is equivalent to, for w+ E BL(wJ), 

(6.15) I   io^,/Vr = -5g(y-t;+)+p(i;+)-p(F),    f > 0, 

w y(0)=^_,    F(-foo)=^+. 

Since the right hand side of the second equation of (6.15) is exactly the same as that 
of (4.3), the Proposition 4.1 and 4.2 hold as they are also for (6.15). 

Now we fix any w* on T+rans and suppose tu_ E BL(w*) (tt_ < u*) and w+ E 
RR(w*). We also assume that the initial data in (6.7) satisfy 

(6.16) iuo--ti;+efl'1(R+), 

and the compatibility condition 

(6.17) wo(0) = w-. 

Then, as stated above, the solution of the Inflow Problem (6.6) ~ (6.9) is expected to 
tend toward a combination of three elementary waves 

+W2{x/t', w, iy+) - w. 

Roughly speaking, since the asymptotic state Wasyrnp has a right sign (that is, 
yasymp = jjasymp > Q) to adapt the L2 energy method, we can prove the follow- 
ing theorem by combining the arguments in Matsumura & Nishihara [12], how to 
handle the rarefaction waves for the viscous p-system, together with that in Liu, Mat- 
sumura & Nishihara [4], how to dispose the interactions between rarefaction waves 
and boundary layer solutions. 

THEOREM 6.1. (Matsumura & Nishihara [13]) Suppose w* E r£ans; tu_ E 
BL(w*) (u- < u*) and w+ E RR(w^). Assume also (6.16) and (6.17). Then, for any 
fixed w* and W-, there exists a positive constant 5$ such that if || WQ — {WBL — w*) — 
w+ H/fi + \w+ — w*\ < SQ, then the Inflow Problem (6.6) ~ (6.9) has a unique time 
global solution w satisfying w — w+ E C([0, oo); H1) and the asymptotic behavior 

lim   sup \w{t,x) - Wasymp{t,x)\ = 0. 
t^00 x>sot 
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Finally let us comment on some future's problems. We first should extend the 
above arguments to the full system including the conservation of energy. We next 
should extend the arguments to cases, even a 2 x 2 viscous p-system model, with 
a free boundary on which inflow or outflow occurs as a result of phase transitions, 
chemical reactions, etc. Eventually, we hope we could unify the arguments of fluid 
dynamical aspects and that of Stephan type problems, for example, hopefully could 
argue on the interactions of free boundary of phase and fluid dynamical waves as 
shock waves, rarefaction waves and contact discontinuities. 

Acknowledgement. The author wishes to thank Prof. S.-H. Yu for his helps to 
make the Figures. 
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