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THE EINSTEIN-DIRAC-MAXWELL EQUATIONS - BLACK HOLE 
SOLUTIONS 

F. FINSTER*, J. A. SMOLLERt, AND S. T. YAU* 

1. Introduction. We are interested in studying how different force fields inter- 
act with gravity, at a "fundamental" level, but not at the level of Quantum Field 
Theory. This is because there exists no theory of quantum gravity, and no under- 
standing of "Planck-scale" physics; that is, physics at "Planck-lengths", where the 
Planck-length is given by 

G7A1/2 03 
— 1       ^10 ^cm , 

where G is Newton's gravitational constant, h is Planck's constant, and c denotes the 
speed of light. 

Before discussing our results, we think that it is worthwhile to see what is the 
difficulty in making a theory of quantum gravity. In order to understand why a 
solution to the problem of reconciling gravity and quantum mechanics has been so 
elusive, we must consider the implications of the Heisenberg Uncertainty Principle 
(HUP) at small distance scales. 

Recall that the HUP states that "the more precisely a spatial measurement is 
made, the less precisely the momentum (or the energy) of the system being mea- 
sured, is known". When the spatial measurement Ax « 10~13 cm, there are large 
uncertainties in the energy E. These are realized as "fluctuations" at small distances. 
Since E = rac2, the energy of these fluctuations can give rise to "virtual" particles 
and anti-particles, which arise out of the vacuum for short times before annihilating 
each other, and give rise to a "sea of virtual particles". When Ax « ICT33 cm (Planck 
length), the energy fluctuations are quite large over small distances, and general rel- 
ativistic effects become important. In fact, from a theorem of Schoen and Yau [12], 
singularities must form, and these are believed to be black holes. Thus space-time be- 
comes very curved at small distance scales; physicists say that space-time is "foamy" 
(not smooth). This invalidates the usual computational techniques of Quantum Field 
Theory, where small curvature is needed - the calculations break down at high ener- 
gies. This suggests that at high energies, General Relativity, or Quantum Mechanics, 
(or both) must be modified. The unsolved problem is, how is this to be done? 

In order to set the background for our discussion, we shall briefly review what we 
consider to be some of the most important results concerning the coupling of gravity 
to other fields. The first such result is due to Reissner, and Nordstrom (1918, 1919) 
whereby they coupled gravity to electromagnetism, and this led to the celebrated 
Reissner-Nordstrom solution, about which we shall have more to say in the next 
sections. In the 1920's, Einstein, de Sitter, Friedmann, and others coupled gravity 
to perfect fluids, in order to study problems in Cosmology, the large scale structure 
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of the Universe. In the 1930's Oppenheimer, Tolman, Snyder, Volkoff, Landau, and 
others also coupled gravity to perfect fluids in order to study problems connected with 
stellar formation and collapse. (All of the above results are classical and can be found 
in most standard textbooks on General Relativity; see e.g. [1].) 

In the more modern era, the first important ideas stem from the 1988 paper of 
R. Bartnik and J. McKinnon, [2]. These authors coupled Einstein's equations to an 
5(7(2) Yang-Mills field (that is, gravity to the weak nuclear force), and they found, 
numerically, particle-like solutions. In the papers [15, 16], Smoller, Wasserman, and 
Yau rigorously proved the existence of both particle-like and black-hole solutions for 
the SU(2) Einstein/Yang-Mills equations. Also in recent years, Smoller and Temple 
[13, 14] coupled gravity to perfect fluids and they constructed a theory of shock- 
waves in General Relativity, with applications to Cosmology and stellar structure. 
In the present paper, we couple gravity to both spinors and electromagnetism; i.e., 
we couple Einstein's equations to both the Dirac equation and Maxwell's equations 
and we investigate the existence of black-hole solutions; (in the works [4, 5], we 
consider particle-like solutions of these equations). We shall show here that in all 
cases considered, black-hole solutions do not exist; for complete details, see [6, 7], and 
also [8, 9] for related work. 

2. Background. In this section we shall give a short discussion of Einstein's 
equations of General Relativity, Maxwell's equations of electromagnetism, and Dirac's 
equation of relativistic Quantum Mechanics. For more details, the reader should 
consult the standard textbooks, e.g. [1, 11]. 

We begin with General Relativity (GR). The subject of GR is based on Einstein's 
three important hypotheses: 

(J^i) The gravitational field is described by the metric gij in 4-d space-time; gij is 
assumed to be symmetric: g^ = gji,   i,j = 0,1,2,3. 

{E2) At each point, the 4x4 symmetric matrix [gij] can be diagonalized as g^ = 
diag (1, -1, -1, -1). 

(£3) The equations of GR should be independent of the choice of coordinate sys- 
tem. 

The hypothesis (Ei) is Einstein's great insight, whereby he "geometrizes" the grav- 
itational field. (£2) means that there should exist "inertial frames" at each point, 
so that Special Relativity is included in GR, and (£3) implies that the gravitational 
field equations should be tensor equations. 

The metric g^ — gij{x), i,j = 0,...,3,x = (a;0, a;1, x2, z3), x0 = ct, is the metric 
tensor defined on 4-d space-time. Einstein's equations are ten (tensor) equations for 
the metric (gravitational field) and take the form 

(2.1) Rij — — R g^ = cfTij . 

The left-hand side Gij = Rij — \ Rgij is the Einstein tensor, and is a geometric object, 
while Tij the energy-momentum tensor, represents the source of the gravitational field 
and encodes the distribution of matter. The word "matter" in general relativity refers 
to everything which can produce a gravitational field. The tensor T^ is required to 
satisfy the relation T-;i = 0, (it's covariant divergence vanishes), and this in turn 
expresses the laws of conservation of energy and momentum. The quantities which 
comprise the Einstein tensor Gij are given as follows: First from the metric tensor 
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gij, we form the Levi-Civita connection F^: 

rk = - nki f^i .  d9ie     d9iJ 
ij     2 y    V dxi      dxi      dx* 

where [g^] — [gkiT1, and summation convention is employed; namely an index which 
appears as both a subscript and superscript is to be summed form 0 to 3. Having F^-, 
we then construct the Riemann curvature tensor Rl

qkf 

JDI    _      qt gfe  , pi pp      pi pp 
qke ~ ~dxk ~ ~dxr       pk qi      pe qk' 

Finally, we can explain the terms Rij and R in 2?^-; namely Rij = Rs
isj is the Ricci 

tensor, and the scalar R — g^Rij, is called the scalar curvature. 
The quantity a is a universal constant defined by 

STTG 

where G is the gravitational constant, and c is the speed of light. From these defi- 
nitions, one immediately sees the enormous complexity of the equations (2.1) for the 
unknown quantities gij. For this reason, one seeks solutions which are highly sym- 
metric, and in what follows, we shall only consider solutions which are spherically 
symmetric; i.e. the metric has the form 

(2.2) ds2 = T-2(r) dt2 - A'1^) dr2 - r2 dft2, 

where dQ2 = dd2 4- sin2 d tp2 is the standard metric on the 2-sphere, (r, $, (/?) are 
the usual polar coordinates, and t denotes time. Such metrics turn out to be quite 
interesting mathematically, in addition to having physical interest. 

Now consider the problem of finding the gravitational field exterior to a ball in 
IR3; that is, there is no matter exterior to the ball. This actually models well our 
solar system, where we think of the Sun as the 3-ball, and we ignore the masses of 
the planets. In this case the Einstein equations become R^ — \ R gtj = 0, and we 
seek spherically symmetric solutions. This problem was solved by K. Schwarzschild 
in 1916, and its solution is called the Schwarzschild metric: 

ds2 =  (l - ^) C2^2 - (l - v) ^ ^ - ^^ 

Here m = GM/c2 and M is the mass of the 3-ball. Since 2m has dimension of length, 
it is called the Schwarzschild radius. One sees immediately that the Schwarzschild 
metric is singular at r = 2m; namely goo = 0 and gu = oo. For r < 2m, the signs 
of the metric components change: goo > 0 and gn < 0. So we must reconsider the 
physical meaning of t and r inside the Schwarzschild radius. 

To investigate the mathematical and physical nature of the Schwarzschild radius, 
we introduce Kruskal coordinates (r,t) —► (w, v), and we seek a transformed metric 
of the form 

ds2 = f(u, v)(dv2 - du2) + r2 dQ2. 

This yields the following in the region r > 2m, (see Figure 2.1) 
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t= const 

r= const 

FIG. 2.1. Kruskal Coordinates 

u = JL_ler/4mcosh^L 
2m 4m 

v = J— -ler/4msinh^ 
2m 4m 

/ 
32m3 

0r/477i 

with similar expressions in the region r < 2m. 
We can use Kruskal coordinates to study light rays traveling radially inward 

towards the Schwarzschild radius, starting at a point P outside of the Schwarzschild 
radius; i.e., in the region r > 2m; see Figure 1. In u/v coordinates, the light ray leaves 
at the point P in r > 2m, t finite, and travels inward towards the Schwarzschild radius 
r = 2m, as t —> oo. It crosses the line t = oo into the interior of the Schwarzschild 
sphere. Incoming light is thus in effect, totally absorbed by the Schwarzschild sphere. 

We can also study light emitted from inside the Schwarzschild sphere starting at 
a point Q in the region r < 2m; again see Figure 1. The trajectory starts at some 
r < 2m and finite t, travels through increasing r but decreasing t, and crosses the 
Schwarzschild radius t = — oo to the exterior of the Schwarzschild sphere, where its 
evolution is normal. Thus, light emerging from the Schwarzschild sphere must have 
been traveling since before t = —oo; in effect since before the beginning of time. It 
is questionable whether such light is physically observable. If not, the Schwarzschild 
sphere has the physical properties of a black-hole: it absorbs all light and emits none. 

In general, for a metric of the form (2.2), we define a black-hole solution to be a 
solution of Einstein's equations which satisfies 

(2.3) A(py= 0,        and       A(r) > 0    if   r > p, 

for some p > 0; p is the radius of the black-hole and is referred to as the "event 
horizon". 

We now consider, in a coordinate invariant way, Maxwell's equations for an elec- 
tromagnetic field. First we let1 

1 Throughout this paper we use summation convention. 
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A  =   Aidx* 

be a 1-form, called the electromagnetic potential (connection), and the 2-form F = dA 
is the associated electromagnetic field; in coordinates 

F = F ■dxi A dxj F- ■ = ^ - — r - rlj ax /\ ax   ,       rl3 - . 

Maxwell's energy momentum tensor is 

T   —  
ll3 " 47r 

g      FizFjm, — -F£mF     Qij 

where as usual, we always use the metric to raise the indices; thus F^m = g^g^Fij. 
Maxwell's equations are the pair of equations 

dF = 0 (automatic) 

d*F = 0  , 

where "*" denotes the Hodge star operator, mapping 2-forms into themselves, defined 
by 

eF)ki = l>/\9\eiikiFi*, 

where g = det(g^), and £ijke is the completely anti-symmetric symbol defined as 
£ijke — sgn(^J,\^5^)- It is important to notice that the *-operator depends on the 
metric (gij). The question we now ask is the following: Find the solution of the 
Einstein/Maxwell equations outside of a charged ball in IR3. That is, we seek the 
spherically symmetric static, exterior (gravitational and electromagnetic) field of a 
charged distribution of matter. This problem was solved in 1918-1920 by Reissner 
and Nordstrom, and the gravitational field is described by the metric 

*'-(i-£+£)*'-(i-£+£)",*'-.'.tf. 
where m = GM/c2, q = 27rGQ2/c4] M and Q denote the mass and charge respectively, 
of the ball. Notice that if Q is sufficiently large, the metric coefficient A(r) = 1 — 
^r + ^ is never zero; otherwise there are two possibilities (see Figure 2.2). Case 
(a) is called a non-extreme Reissner-Nordstrom solution and Case (b) is called an 
extreme Reissner-Nordstrom solution; these black-hole solutions will come up again 
in the next sections. 

We now turn to the Dirac equation. The Dirac equation brings in Quantum 
Mechanics and particles into our work, and it also describes the intrinsic "spin" of 
the particle (fermion). The Dirac equation can be written as 

(2.4) (G - m) * = 0 

where G is the Dirac operator, and ^ is the wave function of a fermion (proton, 
anti-proton, electron, positron, neutrino, etc.) having (rest) mass m. ^ is a complex 
4-vector and is called a spinor. The Dirac operator G takes the form 

G = iGHx)^ + B{x), 
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A(r)A 

rho 

(a) (b) 

FIG. 2.2.  The Reissner-Nordstrom Black Hole 

where the 4x4 matrices G-7 are called Dirac matrices, and B is a 4 x 4 matrix. The 
Dirac matrices and the Lorentzian metric gik are related by the anti-commutation 
relations 

(2.5) g}kI = i{GJ', Gk} = hGjGk + GkGj). 

Now let H be a space-like hypersurface with a future directed normal vector field v, 
and define an inner product on solutions of the Dirac equation by 

(* Jn 
dfi 

where 

$ = $* 
/     0 
0    -/ 

is called the adjoint spinor, * denotes complex conjugation, and /i is the invariant 
measure on H induced by the metric. This inner product is positive definite and 
independent of Ti because of current conservation, 

Vilfe** = 0. 

From a direct generalization of ^7°^ in Mf  (Minkowski space),  where 70   = 

, ^iG^Vj is interpreted as a probability density and for non-black-hole 
0    -/ 

solutions, we normalize solutions of the Dirac equation by the requirement 

(*,*) = !. 

For a black-hole solution with event horizon p, we demand that (cf. [6,7]), 

(2.6) / 
j{t = const., r>ro} 

^G^Vj dfi < 00,   for all  ro > p. 

Now a result in [3] allows us to choose the Dirac matrices G^ to be any 4x4 
matrices which are Hermitian with respect to the inner product 

Jn4 
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and satisfy (2.5). Here B(x) is defined by 

B(x) = Gj(x)Ej{x) + Gj(x)Aj{x), 

where Aidx1 is the em potential, 

Ej = \ Pidjp)- ^ TriCTVjG") GmGn + l- TripGjVmG^p 

is the spin connection, and 

p=lV\9\£ijkiG
i&GkGe. 

In this framework, the Einstein-Dirac-Maxwell (EDM) equations for one particle 
are 

(G-m)* = 0 

where Tij is the Dirac energy-momentum tensor, and where e denotes the charge of the 
Dirac particles. These are 18 PDE's for the 18 unknowns g^(10), Aj(4), and \I/(4); 
where \I/ is complex. In this generality, the equations are hopelessly complicated, 
and are impossible to analyze. We thus specialize by imposing certain symmetry 
conditions; see [5, 6] for complete details. 

For j = ^, |,.... we consider a static, spherically symmetric system of (2j -f 1) 
Dirac particles, each having angular momentum j. (In the language of atomic physics, 
we consider the completely filled shell of states with angular momentum j. Classically, 
one can think of this multi-particle system as several Dirac particles rotating around 
a common center such that their total angular momentum is zero.) Since the system 
of fermions is spherically symmetric, we can obtain a consistent set of equations by 
assuming that both the gravitational and em fields are spherically symmetric. This 
allows us to separate out the angular dependence and reduce the problem to a system 
of nonlinear ODE's. Thus taking the metric in the form (2.2) and the em potential 
in the Coulomb gauge, A = (j)(r) dt, we can take for the Dirac matrices the following: 

G* = T70 

Gr = vA^y1 cos fl + 72 sin i9 cos ip + 73 sin 1} sin </?) 

G0 = - ( — 71 sin $ + 72 cos i? cos ip + 73 sin $ sin ip) 

G^ = —:—- ( — 72 sin ip + 73 cos (p) 
rsmvK ' 

where 

and cr1,^-2,^3 are the Pauli matrices (the standard basis for su(2)). 
By using a suitable ansatz and taking the wave functions in the form \I/ = e'luJtf(r)1 

we can reduce the complex 4-spinors to real two spinors 

$ =  (a,/?),      a,/?    real. 
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The Dirac equations become 

(2.7) y/A a' = ^^ a - [(w - e(j))T + m]/3 

(2.8) v^I/?' = [(w - ecj) - m)T - m] a - ~^/3 , 

2r 
2 

_ ^J/A — rr)^/7~, — nm\  r\ — — 
2r 

and the normalization condition (2.6) is the requirement that 

/•oo f7p 

(2.9) /    (a2+/32) ^-r-dr < oo, 

for every ro > p where r = p defines the event horizon. 
The full EDM equations consist of (2.7), (2.8), together with the Einstein equa- 

tions 

(2.10) rA' = l-A- 2(2j + 1)(LJ - etfy T2 (a2 + p2) - r2AT2(^)2 

rpf (On -L. 1)2 

(2.11) 2rA^ = 1 - A - 2(2j + l)(a; - e0) T2 (a2 + /32) + 2 V J ^   )   T a/3 

+ 2(2i + 1) mT (a2 + (52) + r2Ar2 {(j>,)2, 

and Maxwell's equation 

(2.12) T
2A(t>" = -(2j + 1) e (a2 + /32) - (2rA + r2A |J + y A^ ^. 

Notice that the EDM equations are invariant under the gauge transformations 

cf) —► 0 + A:,   u; —> a; + efc,      A: € IR. 

Finally, in addition to (2.9), it is required that the following conditions hold: 

(2.13) lim r (1 - A(r)) < oo , 

(finite total mass), 

(2.14) lim T(r) = 1 

(asymptotic flatness), 

(2.15) lim 0(r) = 0 
v ' i ►CO 

(em potential vanishes at infinity). 
We make the following 3 assumptions on the regularity properties of the event 

horizon r = p: 
(I) The volume element ^det \g\ is smooth and non-zero on the horizon: T~2 A-1 

andT2AGC00([p,oo)). 
(II) By definition, the strength of the em field is the scalar FyF1' = -2(<//)2AT2. 

We assume this to be bounded near r = p, so that in view of (I), we have 

|0'(r)l<ci>      P<r<p + e1. 
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(III) A(r) satisfies a power law near r = p, 

A{r) = c (r - p)s + 0(r - p)s+1,        5 > 0. 

We remark that if (I) or (II) were violated, then an observer freely falling into the 
black-hole would encounter strong forces when crossing the event horizon; such as an 
effect is seen to be false when one passes to Kruskal coordinates. Hypothesis (III) 
is a technical condition which includes all known physically relevant horizons; s = 1 
for Schwarzschild and Reissner-Nordstrom black-holes, and s = 2 for the extreme 
Reissner-Nordstrom black-hole. This condition could probably be weakened. 

Here is our main result. 

THEOREM. Every black-hole solution of the EDM equations satisfying Assump- 
tions (I) - (III) is either 

a) a non-extreme Reissner-Nordstrom solutions with a{r) = 0 = /3(r); for all 
r > p, or 

b) 5 = 2 and we find numerically that either the normalization condition (2.9) 
fails, or the solution is not regular everywhere outside the event horizon. 

Thus the only black-hole solutions of the EDM equations are Reissner-Nordstrom 
solutions: the spinors vanish identically, and so are not normalizable. Thus these 
"quantum effects" dis-allow (stationary) black-holes. The result indicates too that 
the Dirac particles must either disappear inside the event horizon, or tend to infinity; 
namely there is zero probability for the particles to remain in a finite region outside 
of the black hole. 

We now give some ideas of the proof; the reader should consult [6] for the full 
details. We assume that the EDM equations admit a solution outside of the event 
horizon r = p, with (o;(r),/3(r)) ^ (0,0), and we shall obtain a contradiction. We 
begin with the case s < 2. 

LEMMA 1. If s < 2, then there exist constants c > 0 and e > 0 such that 

(2.16) c < a2(r)+/32(r)  <-,        p<r<p + e. 
c 

Proof. Prom the Dirac equations (2.7), (2.8) we have 

yi(a2 + /32)'=2(a)/3)[     * )  | )   <  An2 + fcil! (a2 + ft   . 
V -m   agi )\ p)      V 

By uniqueness, (a2 4- P2)(r) > 0 on p < r < p + e for any e > 0. Dividing by 
y/A(a2 + /32), integrating from r > p to p + e, and noting that A~ 1/2 is integrable 
near p gives 

log(a*+tP)(p + e) 
(a2 + /?2)(r) 

< I'*' (im* + 2111)!')I/2 A- "2(i)<a < oo, 

which implies the result. 

PROPOSITION 2. 5 < 2 cannot hold. 
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Proof. Prom Einstein's equations (2.10), (2.11), we can write 
r{AT2y = -4{2j + l){uj-e(t))(a2+P2)T4 

+ 2(2jH~1)2a/3 + 2{2j + l)m(a2 - p2) rp3 

By (I), the Ihs is bounded, and T —> oo as r \ p. Thus, in view of (2.16), we must 
have 

(2.17) lim (CJ - e0(r)) = 0. 

We next write Maxwell's equation (2.12) in the form 

(2.18) f = 4^^ [a2 + ^1 - (^= [r'TVAy 0') . 

Since the term ( ) is bounded near r = p, and 5 > 1 implies A~1 is not integrable, 
we would conclude if 5 > 1 that (j)' is unbounded, thereby violating (II). It follows 
that we must have s < 1. 

Now if we integrate (2.18), we obtain, for r near p, 

4/(r)  = c1(r-/3)-*+1+c2 + 0((r-p;r+2). 

Integrating again, and using (2.17) gives 

4>{r) = ci (r - p)-^2 + c2(r - p) + ^ + 0((r - p)-s+3)   , 

and thus (u; — e0) = 0{r — p). Now from (2.10) 

rA' = {l-A)- 2(2j + 1)(UJ - e<p) [T2(a2 + p2)} - [r2(Ar2)(^)2] 

= 0(l)-0((r-p)1-)-0(l) 

so that the rhs is bounded, but 5 < 1 implies that the Ihs blows up. This contradiction 
shows that 5 < 2 cannot hold. 

PROPOSITION 3. 5 > 2 cannot hold. 

Proof. In [6], we prove the following estimates 

(2.19) lim(r-p)-t(a2(r)+/32(r))  = 0, 

and 

(2.20) lim0'(r)2 =  -^ lim A'1 (r)T-2{r) > 0. 
r\p pz r\p 

Then (2.19) shows that near r = p, 

(u - e(/))(r) = c + d (r - p) + o(r - p),       dj^O, 

and 

[(« - e4>)T\' = (r - p)-s [d + c(r - p)"1], 
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so that as r \ /?, 

[(u — e0)r] —> oo     monotonically. 

Now the Dirac equations (2.7), (2.8) can be written as 

2iti .-[(cj-e^)r + m] 

[(uj-e^T-m] ^thl 

a    —b\/a 

b    -a ) \ (3 

for r near p, where 6 /^ oo. The eigenvalues of this last matrix satisfy A2 w a2 — b2 —> 
—oo as r \ p. This suggests that the vector (a,/?) spins around the origin faster and 
faster as r \ p, and that (a,/3)(r) 7A (0,0). In fact, we prove that 

limr^(a2(r)+/32(r))>0) 

but this contradicts (2.19). Thus Proposition 3 holds. 
The remaining case is 5 = 2. In this case the metric and electric field behave near 

the horizon like the extreme Reissner-Nordstrom solution. Physically, this means that 
the electric charge of the black-hole is so large that the electric repulsion balances 
the gravitational attraction and prevents the Dirac particles from entering the black 
hole. Obviously, this is not the physical situation which one can expect, say, from 
the gravitational collapse of a star. On the other hand, extreme Reissner-Nordstrom 
black-holes have zero temperature [10, 17], and can be considered as end-states of 
black-holes emitting Hawking radiation. It is thus interesting to see whether the 
case 5 = 2 can admit normalizable solutions of the EDM equations. Considering 
the Dirac equation in an extreme Reissner-Nordstrom black-hole background field, it 
was proved in [6] that the normalization condition (2.6) is violated. What we want to 
know here is whether the influence of the spinors on the gravitational and em fields can 
make the normalization condition finite. Clearly this is a very difficult mathematical 
problem. We have made numerical investigations, and from these we conclude that 
the solutions of the EDM equations either develop singularities at some finite r, or 
the normalization condition fails. Thus in the case 5 = 2, our numerical investigations 
show that there are no normalizable solutions of the EDM equations. 

Our results show that taking quantization and spin into account implies a break- 
down of the classical situation; namely, there cannot exist normalizable black-hole 
solutions of the EDM equations. Applied to the gravitational collapse of a "cloud" of 
spin-1/2 -particles to a black hole, our result indicates that the Dirac particles must 
either disappear into the black-hole, or escape to infinity. 

We remark that these results have been extended to the axisymmetric case includ- 
ing the Kerr-Newman rotating black hole [9]. In addition, we have recently proved 
that there are no normalizable solutions of the Einstein-Dirac-5i7(2) Yang/Mills equa- 
tions; this result holds under a more general condition than (III), and applies for every 
5 >0. 

We close with two facts. First, our results are basically a consequence of the 
Heisenberg Uncertainty Principle, together with the specific form of the Dirac current. 
Second, it is essential for our results that the particles have spin; spin is an important 
effect which must be considered in studying gravitational collapse. 
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