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A NOTE TO THE REGULARITY OF SOLUTIONS FOR THE
EVOLUTION P-LAPLACIAN EQUATIONS

JUNNING ZHAO*

In this note we consider the following Cauchy problem:

1) { = din(VuP V) (@) € Qr=RY x (0,T)
u(z,0) = ug(z) z € RN,

where p > 2, ug € L}, .(R") satisfies that there exist constants 7 > 0 and pp > 0 such
that

zoER

@ ol = sup /B . [w@)de < o0, By(an) = o ~zol < p}.
po (Zo

It is well known that there exists a solution v € C{.(Qr) N L{o.(Qr), Vu €
8 g
o (Qr) to (1) (see [C],[DF],[DH]). The proofs of Vu € o (Qr) are very com-

loc loc
plex and difficult. In this note we use another approach to prove the Hélder continuity

B
of Vu. We prove u; € L§s.(Qr), Vu € CZ'C”'” (Qr), where the Holder index to t is
great than g

DEFINITION. A function u(z,t) defined in Qr is called a weak solution of (1),
if uweC2(Qr)NLPO0,T: WEP(RNYN L®(Qr) o € (0,1) and for any ¢(z,t) €

loc

CY(Qr) ¢ =0 if |z| large enough,
Jan (@, O)(z, 8)dz + [ [rn[—uds + |VulP~2Vu - Voldedt
= [p~ uo(2)¢(z,0)dz.

We obtain the following result.

(3)

THEOREM 1. Let ug > 0, |||uo(z)|||r,p, < 0o for some py > 0. Then there exist
constants C > 0 and 8 € (0,1) such that the solution of (1) satisfies

N(p—-1)+ 2 B8
= luolllf,, Vu e CF TR (Qr),

(4) sup |u¢(z,t)| < Ct™
RN
where «= N(p—2)+p.
Proof. let u be the solution of (1). Acoording to [WZYL], for V6§ € (0,7),
u(z,t + 9) is the limit of the solutions of the following boundary value problems

% = div((|Vo|P~2) V) (z,t) € B, x (0,T — §)
(5) u(z,t) = u(z, §) (z,t) € 8B, x (0,T — 6)
v(z,0) = u(z, §) z € B,
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where B, = {|z| < n}. Let v, be the solution of (5). Set
1
n(Z,t) = Aop(z, ML), A>1, y=—.
wp(z,t) Un(x,At), A>1, v P

Then w,, satisfies

%_‘: = div(|Vw|P~2Vw) (2,%) € Ba x (0, 55°)
(6) w(z,t) = Nu(z, 5) (,t) € 9B, x (0, 152
’LU(.’L', O) = /\'Yu(a:, (5) S Bn

Set g, = w, — v,. By Comparison principle g, > 0 and

- S5, 9n(@, )8, t)dz — [} [5 gndedadr + f§ [5 (IVwnlP~2Vew,—
~ [V, [P2Vuy,) - Vodzdr = [ (AT — L)u(z, §)¢(x, 0)dz
where ¢ € C'(B,, x (0,T)) ¢ =0 near 8B, Notice that (see [DH])
lue, )l (amy < C5 % o |1 po-
In (7), we take
¢=(9n —k)+ k=" =1Dlu(z,0)llLe(rr)-
Using Steklov averaging process, we get
an (9n — k)_%_d:c
+2 J5 5. nqwsry (VWalP2Vwr — Vo, [P~2V0,) (Vwy, — Vun)dzdr = 0.
This implies g, < k a.e. on B, x (0, %) Thus
(8) 0 < XNup(z, At) — v (z,t) < (XY = 1)|Ju(z, 0)|| oo (rN)-
Divided (8) by A — 1 and let A — 1%, we get
[7vn(2,t) + tune(z, )] < vllu(z, 6)[| Loo (rM)-

This inequality implies

Cll|ulz, )|
o+ < Wiz

Let § — t, we get the first estimate of (4).
We now prove the second estimate of (4). Notice that for fixed ¢ € (0,T) u(z,t)

is a solution of the following elliptic equations
div(|VulP~2Vu) = us(z,t) =z € RN.

By [T], there exist constants 3 € (0,1), C > 0 dependent only on |u¢|re, |u|Le~ such
that

(9) |Vu(z1,t) — Vu(za,t)| < Clz1 — :1:2|ﬁ.
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We now prove that Vu is Holder cotinuous to t. For convernience, we assume that v is
a smooth solution, otherwise by uniqueness of solution we can consider the regularized
problem. Take the z;-derivative in (1) to obtain

Oug, B

(10) at

(div(|VulP~> V).,

Let 2o € RN, 0 < t; < to, At =ty — t1, B(At) = B(atys(wo). Integrating (10) over
B(At) x (t1,t2) and by integrating by parts, we get

fB(At) (uwj (z,t2) — Ug; (z,t1))dz
= tt12 faB(At)(div(WuI”'zVu))xjdxdt

(11) N ' .
=y faB(At)dw(|VU|p Vu)vjdodt

t
tlz faB(At) wvjdodt.

where v = (v1, v, ..., vy) is the unit outward normal vector of 0B(At). By the mean
value theorem, there exists z* € B(At) such that

(12) g, (2%, 2) — ug, (2%, 11)| < C(AY' 2

Combining (9) and (12) and taking § = ﬁﬁ, we get

[ug; (%o, t2) — Us,; (To, t1)] < |Ua, (To, t2) — Ug, (*,12)]

+|uzj (l‘*,tz) — Ug; (x*atl)l + |u$j (w*7t1) - U‘Ij(zo’tl)l < C(At)n%

ﬁyi'% N .
Therefore u,; € C;,;'*” (R") and Theorem 1 is proved.

[

REMARK 1. If the initial value ug is bounded, Theorem 1 holds for ug of variable
sign. In fact if u is a solution of (1), by the uniqueness of solution v = u+||ug || oo (rr)
is a nonnegative solution of (1) with initial value ug + [|uo| Lo (g~). Thus Theorem 1
holds for v, so does wu.

REMARK 2. For the first boundary value problem, similar theorem holds.
Consider the following problem

%% =div(|Vul*Vu)  (z,t) € Q x (0,T)
(13) u(z, t) = (z,t) (z,t) € 80 x (0,T)
u(z,0) = up(z) z € RN

where 2 € RV is a smooth bounded region.

THEOREM 2. Let ug € L®(RYN), 4,4 € L%(8Q x (0,T)). Then the solution
u of (13) satisfies

B.t45
Vu € Clu T (Q % (0,T)).

[

e, ) < %
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Proof. Without loss of generality, we assume u > 0, and u large enough, otherwise
replace u by v+ C, C > ||lul|p~. Set

'U(.’E,t) = X’u(.’r,)\t), A> 1, Y= 1—71—2

Then v is the solution of (13) with
v(z,t) = \T(x, M) (z,t) €02 x (0,T), v(z,0) = Nug(z) = € RV,
Notice that if A — 1 is small enough, 1) large enough, we have
AY(z, At) — (z,t) = (A — )bz, At) + i (2, §) (A — 1)t
= (A = D(XF9(z, At) + (2, €)) > 0.

By comparison principle Au(z, At) > u(z,t). Hence similar to the proof in Theorem
1, we can prove Theorem 2.
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