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THE SELECTIVE DECAY PRINCIPLE FOR BAROTROPIC 
GEOPHYSICAL FLOWS 

ANDREW MAJDA* AND XIAOMING WANGt 

Abstract. We prove rigorously here the selective decay principle for barotropic geophysical 
flows. In particular we proved that the long time behavior of the solutions after renormalization is 
the superposition of a shear flow and a Rossby wave, and the role of hyper-viscosity is to enhance 
the selective decay process and the role of beta plane is to generate Rossby waves. 

The purpose of this article is to study the long time behavior of the following 
freely decaying barotropic quasi-geostrophic equations 

(0.1) ^+^ + J(V»,A^) = P(A)V, 

where 

V(A) = YJdj(-Ay, 
3=1 

is the dissipation operator with 

k 

dj > 0, and J^ dj > 0, 
j=2 

i.e., we assume the presence of Newtonian viscosity and/or hyper-viscosity. 
It is apparent that all solutions converge to zero as time approaches infinity. 

However we would like to study in detail how solutions decay. We are particularly 
interested in the emergence of large scale structures, an interesting phenomena that 
frequently occurs in geophysical dynamics. 

Numerical investigation of the evolution of coherent structures for freely decaying 
2-D Navier-Stokes flows indicated that the enstrophy decay much more rapidly than 
the energy (see for instance Matthaeus et al 1991, Montgomery et al 1993, Holen 1995, 
Majda and Holen 1998). This suggests that one might find a suitable intermediate 
time scale over which the energy changes slightly so as to be regarded as nearly con- 
served, while the enstrophy sweeps down much more sharply. This lead physicists to 
hypothesize the following selection principle to characterize the large time asymptotic 
states of the flow 
Physicist's Selective Decay Principle: After a long time, solutions of the quasi- 
geostrophic equations and/or the two-dimensional incompressible Navier-Stokes equa- 
tions approach those states which minimize the enstrophy for a given energy. 

The appeal of such principle is that it reduces the calculation of the asymptotic 
states of the quasi-geostrophic equations and/or the Navier-Stokes system to a simpler 
problem in the calculus of variations. However, from the mathematical point of view 
the selective decay principle stated above is somewhat imprecise; the solution of the 
quasi-geostrophic equations and/or the Navier-Stokes equations may not approach 
only a minimizing state, but rather some critical point of the enstrophy. On the other 
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hand, the minimizing state is the only stable state. In any event, we include in the 
discussion all rather than just the enstrophy minimizers at constant energy. 

For conciseness we refer to such a critical point of the enstrophy at constant en- 
ergy as a selective decay state. We do not know a priori that selective decay states, 
so defined, are bona fide solutions to or invariant under the underlying equations. At 
the moment, a selective decay state is just a velocity or vorticity profile satisfying the 
variational principle. The selective decay hypothesis is that arbitrary initial velocity 
fields somehow approach the flow configuration of a selective decay state in the long 
time limit. It is hard to imagine the selective decay principle being valid unless the 
selective decay states turned out to be invariant under the Navier-Stokes equations 
and/or the quasi-geostrophic equations. More precisely, we are interested in asking if 
under time evolution via the quasi-geostrophic equations or the Navier-Stokes equa- 
tions, a selective decay state continues to minimize the enstrophy at its energy level 
at later times. Such a property will at least render the Selective Decay Principle 
meaningful. 

If such selective states are invariant under the barotropic quasi-geostrophic dy- 
namics, we then need to check if an arbitrary solution converge to some selective 
state. This is the key part of the selective decay principle. We also need to explain 
the numerical fact that all flows converge to the largest coherent structure allowed 
by the geometry. This is most likely to be explained using a stability argument. We 
also need to identify the geophysical effects (in our case it is the beta plane and the 
artificial hyper-viscosity) since we are interested in geophysical applications. 

To summaries, we have the following issues 
• Invariance. This is the one that make the selective decay state meaningful 
• Convergence. This is needed to justify the the selective decay principle. 
• Stability. This is useful in interpreting the numerical results which indicates 

all flows converge to some ground states. 
• /3-plane effect, hyper-viscosity effect.   This is useful since we would like to 

identify the geophysical effects. 
For the case of Navier-Stokes equations (no beta-plane, no hyper-viscosity) the 

selective decay phenomena were studied by Matthaeus et al 1991, Montgomery et al 
1993, Holen 1996, A. Majda and M. Holen 1998, C. Foias and J-C. Saut 1984 among 
others. 

Next we proceed to compute the selective decay states.   The computation is a 
simple application of the Lagrange multiplier method. 

Recall that the enstrophy functional is defined as 

and the energy functional is defined as 

E(v) = l\\v\\l = l\\y±i'\\2o 

The variational problem we have is to minimize £ with the following three con- 
straints: 

1. Incompressibility: V • v = 0 
2. Zero mean flow: /T2 v = 0 
3. Energy constraint: E(v) = E'', 
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where T2 = [0, In] x [0, 27r] 
According to the Lagrange multiplier method we deduce the following simultane- 

ous functional relations 

Efa) = E' 

— I    -A—I 
5v 5v 
V • v* = 0 

l v = 0, 

The derivatives of the quadratic energy and enstrophy functionals are 

5E_ _ _ 
8v 
S£- 
ov 

Hence we end up with a simultaneous system 

Eiv*) = E' 

Av* = -Ai7* 

V • v* = 0 

JT
2 

This implies that stream function -0* for the selective decay state must satisfy 

^(V^*) = E' 

-Aip* = AiP*. 

Hence it must be one of the eigenfunctions of the Laplace operator. 
It is interesting to notice that such eigenvalue-eigenfunction problems also emerge 

in the classical energy-enstrophy statistical mechanics in predicting the most probable 
states (see for instance R. Kraichnan and D. Montgomery 1980, A. Majda and M. 
Holen 1998 among others). 

The eigenfunctions of the Laplacian in the periodic setting can be easily calculated 
as the generalized Taylor vortices: 

^=    E   A^ + cc 

Vj = V^j 

where Aj = |&;|2, k G Z2 are the eigenvalues 
Recall that 

Sivj) = A^(^), 

hence we may conclude 
1. The ground state is the actual minimizer of the enstrophy with given energy. 

Other Taylor vortices are saddle points. 
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2. All flows will approach a Taylor vortex of the lowest eigenvalue A = A* 
permitted by the symmetries if the physicists' selective decay principle is 
true. 

We check the first issue for selective decay states, i.e., the invariance of these 
states under the barotropic quasi-geostrophic dynamics. 

The first thing we notice is that the nonlinear term drops for selective decay 
states, i.e., 

J(^, A^) = 0 

since 

Atp = -Ajip. 

Hence we end up with a linear equation 

The solutions can be computed easily as 

^(*)=    E   AiE(0)e*if-ifclt^c-:E^t 

|Ep=Ai 

It is then reasonable to speculate, based on this representation, that 
• The /? plane effect is to generate Rossby wave 
• The Rossby waves degenerate into generalized Taylor vortices at vanishing ft 

effect 
Of course these statements still need to be verified. 

Since we are studying freely decaying flows, it is natural to study the Normalized 
velocity field v(t) 

or the normalize (in H1) stream function 

Since the numerical results suggest the consistently more rapid decay of the en- 
strophy over the energy, we introduce the Dirichlet quotient A(t): 

^§§ 
We now state our main result 

THEOREM 1 (Math Form). For arbitrary initial data, the Dirichlet quotient A(t) 
monotonically decreases to an eigenvalue Aj of the Laplace operator, i. e. 

lim A(t) = Aj 
t-+oo 
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There exists a solution Vj(t) of the linearized barotropic quasi-geostrophic equation 
with motion restricted on the jth shell (this implies that it is a superposition of a shear 
flow and a Rossby wave) such that 

m-vjit) —> 0 as t —> oo. 
o 

The Rossby wave degenerates into a generalized Taylor vortices in the absence of the 
geophysical (3 plane effect. 

If the numerical results are true, we should have the decay of the Dirichlet quotient 
since enstrophy decay faster than energy 

dk(t) 
dt 

This is indeed the case. In fact we have 

LEMMA 1. 

dk(t) 1     * j~2 

<0 

In particular,    Jj.' < 0 with equality obtained only for the selective decay states. 

It seems worthwhile to point out two simple consequences of this lemma 
• Hyper-viscosity enhances selective decay process, 
• Ekman damping di has no selective decay effect. 1 

The original proof of the decay of Dirichlet quotient in the presence of hyper- 
viscosity is due to Z.P. Xin (1998). We present here an alternative proof. 

In order to prove the lemma, we recall the well-known optimal (independent of 
initial data) decay estimates for the energy and enstrophy 

E{t) < E(0)e-2-^r-\ 

s(t) < sioy-2^^1. 
We recall the definition of fractional power of the Laplace operator. Let 

k 

we then define 

(-A)>=X; E A?V
E

-* 
1    |£|2=Az 

It is easy to derive the dynamic equations for energy and enstrophy: 

3=1 

1If we take into consideration the effect of stratification in our barotropic model, the Ekman 
damping turns out has selective decay effect. 
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We then deduce the equation satisfied by the Dirichlet quotient: 

dA(t) _ d_ (£{t)\ 
dt    ~ dt \E(t)) 

__ £{t)     £(t)E(t) 

- E(t)       E*{t) 

k u 

3 

We observe (this is the key part of the proof of this lemma) that 

= ||(-A)i*1V-A(«)(-A)^Vilo2 

+2A(t)((-A)^iV,(-A)^iV) 

-K\t)\\{-^nt- m\\{-^)h\\i 

+2A(t)((-A)^,(-A)^) 

-^m-^nl- m\\{-&)h\\i 

+A(i)(||(-A)§V||2-A(i)||(-A)iiiVII^), 

||-A^||§-A(t)||(-A)iv||g = 0, 

wi-^nl- m\\(-*)h\\i 

1=0 

This completes the proof of the lemma. 

With this lemma in hand, we deduce the following 
1. ^^ < 0, ^^ = 0 if and only if v = V"1^ is one of the selective decay 

states, and A(t) = Aj for all succeeding times. 
2. A(t) > Ai = 1 by Poincare inequality 
3. Hence 

lim A(t) = A* > Ax 
t—>oo 

must exist. 

and 

thus 
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The natural question to ask is then if A* = Aj for some j, or if A* is one of the 
eigenvalues of the laplacian. 

Without loss of generality we assume cfe > 0. Notice 

2d2 [ 
Jo 

no 

= 2d2   / 
Jo 

<-rd4 -     Jo     dt 
= A(0) - lim A(t) 

t—>-oo 

= A(0) - A, 

< 00 

(-A-A(t))^ 
dt 

\(-A)H -A(t)(-A)H\\l 
living dt 

Let 

5X = min(|A^ — Aj\). 
j 

we have, for large enough t 

||(-A-A(t))»lg=||(_A_A(())-1g 
Ho 

>7r2(min(|A,-A,|))2 

J 

This contradicts the integrability of ll(~A~^))*ll° if 6X > 0. 

We are now able to prove a weak version of the selective decay theorem. Namely 
we will prove that there is a time sequence {tj} —> oo such that v{tj) converge to one 
of the selective decay states. We first notice that we have the following bound on the 
H1 norm of the normalized flow: 

m + W(i)     = 1 + A{t) < 1 + A(0) 

This together with the integrability of the function ||(-A - A(£))i7(£)||oimplies that 
we can take a sequence {tj} such that 

v(tj) —> v* weakly  £ if1, 

ll^i)llo = l = Kllo, 

and 

(-A-A(^)Mi,)->0. 
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Next we show that #* is a selective decay state. 
For this purpose let 0 be a test function (in the doubly periodic case it is any 

trigonometric polynomial). 
We check the divergence free property first 

(V • tf*, 0)o = -(#*, V^)o = - lim (fffa), V(/))o = lim(V • l/fo), 0)o = 0. 
t j —*oo tj 

The eigen equation can be checked in a similar fashion 

((-A - A*)u*, 4>)o = {$*, (-A - A*)$o 

= lim(^),(-A-A(^))0)o 

= lim((-A-A(iJ)M^)^)o 
t3 

= 0 

thanks to the integrability of (-A - A(t))v(t) and our choice of the subsequence {tj}. 
The mean zero property can be verified easily as 

/    v* = lim   /    v(tj) = 0 
7^2 J->00 j^ 

This proves a weak version of the selective decay principle which partially verifies 
the physicist's version of selective decay. Notice this weak version does not indicate 
the role of /? plane, nor the connections betwen the limiting behaviors of different 
sequences. These details are furnished by our main theorem. 

In order to prove our theorem we assume Newtonian viscosity for simplicity i.e. 

d2 = i/ > 0,and dj = 0\fj ^2 

Our intuition is that the motion is concentrated on the jth shell. 
To verify our intuition it is useful to introduce the following projection operators 

• PAJ : projection onto the jth shell; 
• QA-: projection onto the lower modes; 

j 

• QA
+

 ' projection onto the higher modes. 
j 

The normalized flow is 

v» = 
Mo 

Our main theorem is now equivalent to the combination of the following three 
properties 

• Decay of the lower modes 

QA-ip(t)^0   in   H1 

3 

• Decay of the higher modes 

QA+$(t)->0    in    iJ1 

• Linear dynamics on the jth shell, i.e., there exists ^ (solution to the linear 
barotropic quasi-geostrophic equation) such that 

P^m - bit)-+0   in   H1 
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To start with, we recall the well-known optimal (initial data dependent!) decay 
estimates for energy and enstrophy. 

Indeed, thanks to the energy equation 

ljt\\m\\l+^ml = ljt\\m\\l+^m\\m\\2o = o- 
we have 

since A(t) is non-increasing and the limit is A^. This implies 

\\mh < l|tf(to)||oe-'A'(*-to). 

Thus the enstrophy is bounded by 

IMOIIo < ||w(io)||oe-^(t-to)
) 

since 

IMt)||§ = A(t)||tr(t)||g 
<A(io)||i;(io)||oe-2^(t-to) 

= iHio)!^-2^'-'0). 

A lower bound on the energy decay rate can be derived as well.  In deed, since 
the Dirichlet quotient is non-increasing we have, thanks to the energy equation, 

ljt\Wml + vHt0)\\v(t)\\l>0, Vi>io 

Hence we have 

\\m\o>\m)\\oe-2''Mto)it-to\ Vt>to 
We may also derive a decay rate for VAT/J. 

For this purpose we multiply the barotropic quasi-geostrophic equation by —A2/0 
and integrate over T2. Notice for the nonlinear term we have 

iy J^A^A^I < IIVVMV^UollA^llo 

^cHVVCIIV^Ho'llA2^ 
<c||V^||l||AV||l||A2V||| 

<|||AV||§ + c||VV(t)||g||AV»(t)||g 

< ^||A^||§ + c||VV(to)||^||A^(i0)||«e-
10^(t-">) 

we we employed classical Sobolev imbedding, Agmon inequality, interpolation inequal- 
ity, Holder inequality and our decay estimates on the energy and enstrophy. Thus we 
deduce 

|||VA^||2 + H|A^||2 < cllV^llSllA^llge-10^-'"). 
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Notice, by interpolation inequality, 

l|A2V||S > IIVA^II^ii^0 I1VAV42 

l|A^||§ 

Hence 

dt 

= A(t)||VA^||§ 

>AJ||VAV||^ 

HVA^IIg + ^-HVAVIlg < c||VV(io)||^||AV(io)||ge-10^(t-'o) 

Applying a Gronwall type inequality we deduce 

||VA^(t)||0
2 < e-^C-^UVAtWoJIlg + c\\V^{t0)\\t\\^(tQ)\\te-v^t-^ 

This is the decay rate that we will use in the sequel. 

In order to carry out our three tasks regarding the normalized stream function it 
is useful to recall the equation satisfied by the normalized (in if1) stream function ^. 
It is easy to check that 

jt Ai>(t) + p^t + \\v{t) ||o JM M>) - vA2j> - vA(t)A$(t) = 0. 

We notice that the nonlinear effect decays as the time evolves for this normalized 
problem. 

We start the process with the simplest task among the three, namely the decay 
of higher modes. This is intuitively clear since we anticipate that higher modes decay 
faster if the nonlinear effect is negligible. 

Notice for the nonlinear term we have 

\JJ$M)QA+$\ = \J J$,QK+j>)M>\ 

< IIWMIV
X

QA+V;IMIAV;IIO 
3 

< cmwl m\\h II V
X

QA^II1 ii V^Q^UI, H A^HO 

<c||V^||o||WM|A^||o 
< cA(t). 

Hence we have (since A(£) is uniformly bounded), 

^IIVQA;V;IIO
2+HIAQ^IIO

2
 - ^UVQ^UO

2
 < c^mmh 
< ce~vKj("t~to\ 

Thanks to Poincare inequality, we have 

||AQA+Vi||2>A,-+1||VQA+^||2 
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thus 

||||VQA^II§ + KAi+i - A(t))||VQA^||§ < ce-^^l 

Now we take £o large enough so that 

A(t)<i(Aj+1 + A,-),    V   i>to 

we have 

4||VQA+^||^ + KA,+1 - A,)||VQAt^||§ < ce-'W-^,    V   t > to 
at J J 

This further implies, Gronwall type inequality, 

This proves the decay of the higher modes. 
We now proceed with the proof of the decay of the lower modes. This is less 

obvious. We employ here a Lyapunov-Perron type technique which is frequently used 
in the study of long time behavior of dynamical systems. 

Notice for the nonlinear term we have 

\Jj{i>,Ai>)QA7J>\<cA(t) 

just as in the case of higher modes. 
Hence we deduce 

— l|VQA-« + i>||AQA-« - ^A(i)||VQA-^ > -cA(t)||t;(t)||o :ii v«A7viio + vwAQ^mo - mmvQA-mro 
3 3 3 

Thanks to a reversed Poincare inequality on the range of QA- we have 
3 

HAQ^IIg^A^HVQ^IIg 

We then deduce 

|^||VQA7^||2 > KA(t) - A^OHVQ^-^Hg - ce-^-'o) 

> KA,- - K^WVQ^Wl - ce-'Mt-to) 

or 

^(e-2,(AJ-Aj_1)t||VQA_^W||2) > _ce-,(3AJ-2A,_1)t 

Integrating this inequality from t to T (T > t > to) we obtain 

e-2^(Ai-Ai_1)r||VQ      ^(T)||2 > e-2^(Ai-Ai-1)t||VQ      ^W||2 _ ce-,(3AJ-2AJ_1)t 

or equivalently 
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Letting T approach infinity (HV^Ho = 1) we get 

\\vQh7j>ml<<x-vhit 

This proves the decay of lower modes. 
We now concentrate on the dynamics on the jth shell. 
For convenience we introduce the notation 

We notice that ipj satisfies the equation 

d-l      ■    M.,    D.     TfJ.   A./A_„A2. 

or equivalently 

where 

-A,--</>,■ + 0-£ + PAJJW, AVO = vAPi 

dt*3   Aj dx +VAjy>j-e     J- 

gisAjt 

pAjJW,w). 
^3 

The equation can be written in the following form 

dt{e      V''     Aj       dx       ~/' 

It is easy to see that / satisfies the following estimate 

ll/Wllo^ce^llVV'IMIVAV'llo 

<ce^t||A^||o(l + logl^|)^||VA^||o 

p—vAjt 
< ce^\\A^||o(l + log ___)5e-^t/2 

where we applied the Brezis-Gallouet inequality , the optimal decay rate for the 
enstrophy and the lower bound on the decay rate for energy. This estimate implies 
that 

/6L1 

To better understand the situation, we invoke the Fourier series representation. 
Let 

^= E 4^ 

|£|2=A; 
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We then have 

<#£     i/3ki 

which is equivalent to 

dt        A>^ + ^ = e-^4 

-(e ^    ^) = e    A
J   f%. 

This suggest that we make a mode dependent phase shift and introduce the 
following new variable 

r,-     '       ^'-^V** 
|£p=Ai 

The new variable satisfies the equation 

dt 

with 

^j = #> 

where 

2 EL1, since ||^)||o = ||/Wllo 

Now the long time behavior of the shifted problem is easily derived. Let 

= (t)j(to)+ /    9(s)ds, 
I to 

we have the convergence of the shifted problem as 

|IM*)-0oo||o<ct*e-,'A't/2 

To translate the result back to our original variable we assume that ^oo has the 
representation 

|S|2=AJ. 

and we define 

|fc|2=Ai 

Notice that ^ solves the equation 
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and satisfies 

(I-PAi)Zi=0, 

and 

mM\o = nvvooiio. 
Thus we have the following convergence result 

which further implies 

^•'HV^(i)llo - ^ II^WIIo = HV^oollo, 

or 

e^'HWIIo^llV^oollo+oa) 

To complete the proof of our main theorem it remains to prove 

H  Mt)        &(*)  ,1 _n 

"livvwilo    liv^oollo110     ' 
since all norms on Ek are equivalent. 

Our estimates of the decay of motion off the jth shell implies 

IIVtfUoHIVVillo + J.o.t. 

where l.o.t. represents lower order terms. 
Thus 

V^-ffl    _e^VV>j(t)    ^   V^(t) 

||V^(*)||o      e^'UWHo       HV^oollo 

This completes the proof of the main theorem with 

3        IIV^ocllo' 

To summaries, we have established the following 
1. Selective decays states are eigenfunctions of the Laplacian. 
2. Selective decays states are invariant under the barotropic quasi-geostrophic 

dynamics. 
3. All solutions converge to the superposition of a Rossby wave and a shear flow, 

both of them consists of selective decay states. 
4. Hyper-viscosity enhances the selective decay process. 
5. The P plane generates Rossby wave. 

Thus the only thing left is to study the stability of the ground shell and the 
instability of higher shells. The stability of the ground shell is a well-known result 
(see for instance the lecture notes of Majda and Embid, 1995). We restate the theorem 
here for the sake of completeness. 
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THEOREM 2.   Let Ek be the kth shell, i.e., the eigenspace associated with the 
eigenvalue A/-.  Then Ek is unstable for k > 1 

Proof. Let Wk be a selective decay state on the kth shell, i.e., 

m e Ek. 

We now consider a small perturbation from lower eigenspaces(normalized): 

Wj G Ej,   with j < k 

Then for e small we have 

A(wk +£Wj) = 
^k\\wk\\0 + e2Aj 

ll^llo + ^2 

e2 

= kk + —-.-2—-(Aj-Ak) 
lF/c|lo + £ 

<Ak. 

Thus the limit of the Dirichlet quotient of the solution starting from Wk + SWJ must 
be something less than Afc since the Dirichlet quotient is non-increasing. This proves 
the instability of Ek, k > 1. This completes the proof of the theorem. 
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