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COUNTEREXAMPLES TO BILINEAR ESTIMATES 
RELATED WITH THE KDV EQUATION AND 

THE NONLINEAR SCHRODINGER EQUATION* 

KENJI NAKANISHI,* HIDEO TAKAOKA* AND YOSHIO TSUTSUMI§ 

1. Introduction and main results. The solvability of nonlinear evolution 
equations with quadratic nonlinearity is often reduced to the bilinear estimates corre- 
sponding to their nonlinearity. In other words, we can prove a new existence theorem 
of solution for the Cauchy problem of the quadratic nonlinear evolution equation, if 
we have a new bilinear estimate to control the nonlinearity. For nonlinear dispersive 
wave equations such as the nonlinear Schrodinger equation and the KdV equation, 
there has been a great progress in this direction. In [23], Strichartz did not only prove 
new space-time integrability estimates for the Schrodinger and the wave equations 
but also he pointed out that they were equivalent to the Fourier restriction theorem. 
Nowadays these space-time estimates are called the Strichartz estimates and it is well 
known that the Strichartz estimates are useful for the study of nonlinear dispersive 
wave equations. In [3] and [4], Bourgain further developed the Strichartz estimate 
and introduced the Fourier restriction norm method to solve the Cauchy problem 
of the nonlinear Schrodinger equation and the KdV equation in much weaker spaces 
than before. He directly evaluated the nonlinear term by using the argument in the 
proof of the Fourier restriction theorem (for the Fourier restriction theorem, see, e.g., 
Tomas [27]). One of the new ingredients in his papers [3] and [4] is a set of new 
bilinear estimates corresponding to the nonlinearity (see, e.g., Lemmas 7.41 and 7.42 
in [4]). These bilinear estimates effectively represent a kind of smoothing property 
produced by the oscillation of wave. For the quadratic nonlinearity, Bourgain's ar- 
gument is considered as a more powerful machine than the Strichartz estimate. In 
[9], [10] and [11], Kenig, Ponce and Vega simplified Bourgain's proof and improved 
the bilinear estimates. Recently, this method has been applied to various nonlinear 
evolution equations (see, e.g., [1], [2], [5], [7], [8], [15], [22], [24]-[26] and [28]-[30]). 
The related method for nonlinear wave equations was developed by Klainerman and 
Machedon [12]-[14] (see also Rauch and Reed [18]). In the present paper, we consider 
the optimality of the bilinear estimates obtained in [10] and [11]. 

We now list the notations, which will be used throughout this paper. For /(£, x) G 
tS^R2), we denote the Fourier transform in t and x of / by /. For 6, s £ R, we define 
the spaces X^5 and Yb,s as follows. 

XbiS = {/ € 5'(R2) ;     \\f\\Xb%M < oo}, 

Yb,3 = {/ G <S'(R2) ;     ||/||n,s < oo}, 
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where 

ll/IU,, = ( /   (1 + |r - £3|)26(1 + |C|)2s|/V,0|2 dTdi-f2, 

ll/lln. = ( /   (1 + |r - e\)2b(l + K|)
2
'|/(T,0|

2
 drdtf2. 

For z G C, we denote the complex conjugate of z by z. We put 

(/^) = /    f(t,x) g(t,x) dtdx. 
JR

2 

For two functions f(t,x) and g{t,x), let / * ^ denote the convolution with respect 
to the time and space variables. Let D = J-~l\^\J:', where J7 and J7-1 denote the 
Fourier transform and the inverse Fourier transform, respectively. For two functions 
P(ai, • • • ,an) and Q(ai, • • • ,an) with variables (ai, • • • , an) G Rn, we write P ~ Q if 
there exists a positive constant C such that 

C^IQCoi,-.- .On)) < l-P(«i,--- ,On)| <C|Q(ai,--- ,a„)| 

as |ai| + • • • 4- |an| —> oo. 
In [10] and [11], Kenig, Ponce and Vega proved the following theorem (see Theo- 

rems 1.1 and 1.3 in [10] and Theorems 1.1-1.4 in [11]). 

THEOREM 0.   (i) For any s G (-3/4,0], there exist b G (1/2,1) and C > 0 such 
that 

(1-1) \\D(uv)\\Xi_lt.<C\\u\\XhJv\\Xh,.. 

Furthermore, for any s < —3/4 and any b G R, the estimate (1.1) fails, 
(ii) For any s G (—3/4,0], there exist b G (1/2,1) and C > 0 such that 

(1-2) IMk-:,, ^CNInJMk.,, 
(1-3) Mn-.,. <c|Mln.>lk.- 
For any s 6 (—1/4,0], there exist b € (1/2,1) and C > 0 such that 

(i-4) IMk-^CHyjMK.,. 

Furthermore, for any s < —3/4 and any b G R, £/ie estimates (1.2) and (1.3) fail, and 
for any s < —1/4 and any b G R, £/ie estimate (1.4) fails. 

The estimate (1.1) leads to the local well-posedness of the Cauchy problem for 
the KdV equation in Hs with 5 > -3/4: 

(1.6) u(0,x) = uo(x),    x G R. 

The estimates (1.2), (1.3) and (1.4) also lead to the local well-posedness of the Cauchy 
problem for the following quadratic nonlinear Schrodinger equations in Hs with s > 
-3/4, 5 > -3/4 and 5 > —1/4, respectively: 

(1.7) i^ + ^=i;>'u)'    te[-T>T]<    x^    i = 1-2,3, 

(1.8) U{0,X)=UQ{X),    zeR, 
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where 

Fi(u,u) = u2,    F2(u,u) = u2,    Fs(u,u) =uu. 

However, it has been open whether the estimates (1.1)-(1.4) hold for critical 
indices s = -3/4, s = -3/4, 5 = -3/4 and 5 = -1/4, respectively. This problem is 
interesting and important from both viewpoints of partial differential equations and 
harmonic analysis. In this paper, we show that the estimates (1.1)-(1.4) break down 
for these critical indices s. We have the following theorem. 

THEOREM 1. 
(i) Let s = —3/4. For any b G R, the estimate (1.1) fails. 
(ii) Let s = —3/4. For any b G R, the estimates (1.2) and (1.3) fail. 
(Hi) Let s = —1/4. For any b with b > 1/2, the estimate (1.4) fails. 

REMARK 1. 
(i) Theorem 1 (i) shows that the Xb^ space is not sufficient for the proof of the 

local well-posedness in Hs, s = —3/4 of the KdV equation. But it does not necessarily 
imply the ill-posedness in Hs, s = —3/4 of the KdV equation. This is also the case 
with Theorem 1 (ii), when we consider (1.7)-(1.8) with j = 1,2 in Hs, s = -3/4. 

(ii) In fact, a stronger result holds than Theorem 1 (iii). That is, if a > —1/2, for 
any a, /? G R, the following estimate fails: 

(1-5) ll^l|y.,-1/4<C|l«l|yn._1/<1l|f||i'/,,_1/4 

There may be a chance that the estimate (1.4) holds with 5 = —1/4 and b < 1/2. But, 
even if this were true, it would be difficult that we apply this estimate to (1.7)-(1.8) 
with ,7 = 3. 

We conclude this section by giving a few remarks on the results for nonlinear wave 
equations, which are closely related to our problem. For nonlinear wave equations, 
the time local well-posedness in minimal regularity has been extensively studied (see, 
e.g., [8], [12]-[21], [26], [29] and [30]). In this context, not only have the bilinear 
estimates corresponding to nonlinearity been studied, but also sharp counterexamples 
are constructed in [16] and [17], which show actually the ill-posedness of the Cauchy 
problem in critical regularity. 

The plan of this paper is the following. In Section 2, we give a proof of Theorem 
1 (i). In Section 3, we show Theorem 1 (ii) and (iii). 

2. Proof of Theorem 1 (i). In this section we give a proof of Theorem 1 
(i). The proof of Theorem 1.3 in [10] implies that if the estimate (1.1) holds with 
s = —3/4, we must have b = 1/2 (see the relations (4.8) and (4.15) in [10]). Therefore, 
we have only to consider the case of s = —3/4 and b = 1/2. 

Let N and m be sufficiently large positive integers such that 4m+1 <$: N. We put 
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Aj, j = 0,1, • • • , m as follows. 

Am = {(T,£) G R2; (T,^) belongs to the inside of two parallelograms with 

vertices (N3 - 4m, N), (N3 - 4m+1, N), 

(JV3 - 4m+1 + 3j/V
r3/24(m+l)/2^ ^ _|_ 4(m+l)/2jy-l/2^ 

(jV3 - 4m + 37V3/24(m+1)/2, AT + 4(^+1)72^-1/2) 

and (-A^3 + 4m, -iV), (-A^3 + 4m+1, -N), 

(-JV3 + 4m+1 - 3j/V
3/24(m+1)/2, -AT - 4(m+l)/2jy-l/2^ 

(-AT3 + 4m - 3]V3/24(m+l)/25 _^Y _ 4(m+l)/2jy-l/2^ 

^m-i = {(T,0; 
N < ICI < Ar4-4(m+1)/2Ar-1/2, 4m-1 < |r-^3| < 4m

? 

(r,e)^^m}, 
AJ = {{T^); N<\£\ <Ar + 4(m+1)/2A^-1/2, 4J'<|r-e3|<4j+1}, 

0 < i < m - 2. 

Let JR denote the region consisting of two parallelograms similar to the parallelo- 
grams in the definition of Am with one fourth area, which are centered at the points 
(0?-X4(m+i)/2j/v-i/2) and (0, ^4(m+1)/2A^-1/2), respectively, and whose longest 

sides are parallel to the vector (3Ar3/24(m+1)/2,4(m+1)/2A/'-1/2). Here we note that 
the set Am translated by a vector of R intersects effectively each Aj, 0 < j < m. For 
a measurable set A C R2, we denote the area of A and the characteristic function of 
A by \A\ and XA, respectively. By the definitions of the sets Aj and R, we have 

^+4^/2^-1/2 

(2.1) 1^1 = 2 / [(e - 4') - (£3 - 4^1)] de 
JN 

~4?£n/2N-\l2^      0 < j < m - 1, 

(2.2) \Am\ ~ ±m\J— ^ i^N-W, 

(2.3) \R\ ~ 4:3m^N-1/2, 

(2.4) XA, * XAm > ClAj \XR,    0 < j < m, 

(2.5) j^k =>• AJnAk = 9. 

Let {aj}™=0 be an arbitrary sequence such that aj > 0 for 0 < j < m. We put 

Q<j<m 
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Then, a simple calculation yields 

(2.6) u*u = N2(  J2   4-''-m/4ajx^) * (   £   4-fc-m/<Wfc) 
0<j<m 0<k<m 

=K2 E  E 4->-fc-'»/v«^ * xAk 
0<k<mO<j<k 

+ N2   E      E   4-''-*-'"/VfeXA, * XA* 
0</c<m k<j<m 

^'E E 4-j-fe-m/Vfcx^*x^ 
k=m 0<j</c 

=iV2am(   ^   4^-3-/2a,X^)*XAm. 
0<j<m 

By (2.1)-(2.6), we obtain 

(2.7) |||e|(l + |e|)-3/4(l + |r - e\r1/2u * uWvw 
> C[(4m+1iV-1)(4-(m+1)/2iV-3/2)iV4a^ 

x /   (  E   ^-^ajiXA^XAj^drdt}1'2 

2
   0<j<m 

>C[4-5m/2iV3/2a2i(    ^     4-,^^2^1/2^ 2^/2^-1/2] 1/2 

0<j<m 

0<j<m 

(2.8) ||(1 + |^|)-3/4(1 + |T_ ^1)1/2^^^ 

= (/   (l + |^|)-3/2(l + |r-^|)iV2   Yl   i-^'alxA, *rdt)1/2 

<C(JV2   Y,   4-2^-m/2iV-3/24%2|^|)1/2 

0<i<m 

^^(iV1/2   J2   4-J-m/24J'4ro/2Ar1/2a2)1/2 

0<j<m 

<^(E ^)1/2- 
0<j<m 

Therefore, if the estimate (1.1) holds with 5 = —3/4 and b = 1/2, then we conclude 
by (2.7) and (2.8) that the following inequality must hold. 

(2.9) om(  £   aj)<C(  J2   ai)> 
0<j<m 0<j<m 

where C is a positive constant independent of m and iV. We now choose sequences 
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{4m)}yLo, m = 1,2, •. • such that aj"0 > 0, a^) - 1 and 

sup   ^2   (ajm))   < 00' 
m^10<j<m 

V^   a^m^   —>•  oo    (m —> oo). 
0<j<m 

For example, we can choose a:-     = (1 + j)_1, j = 0,1, • • • , ra — 1 and a™    = 1. We 

insert {dj } into the inequality (2.9) and let m —> oo in the resulting inequality to 
obtain a contradiction. This completes the proof of Theorem 1 (i). D 

REMARK 2. The above proof shows that when 5 = —3/4 and b = 1/2, the 
breakdown of the estimate (1.1) is caused by the function u with its support in the 
region distant from the curve {r = £3} in contrast to the other case (see the proof of 
Theorem 1.3 in [10]). 

3. Proof of Theorem 1 (ii) and (iii). In this section, we show Theorem 1 (ii) 
and (iii). 

Proof of Theorem 1 (ii). We only prove that when s = —3/4, the estimate (1.2) 
fails for any b £ R. Because the failure of (1.3) with s = —3/4 can be proved in the 
same way. By the duality argument and the Plancherel theorem, the estimate (1.2) is 
equivalent to the following: 

(3.1) (w,u*v) <C'|H|yi_6,_JMInfallvlln,-- 

The proof of Theorem 1.4 (i) in [11] implies that if the estimate (3.1) holds with 
s = —3/4, we must have b = 1/2 (see the relations (2.59) and (2.62) in [11]). Therefore, 
we have only to consider the case of s = —3/4 and b = 1/2. We can construct a 
counterexample similar to that in Section 2, but we here present a counterexample of 
slightly different type. 

Let iV be a sufficiently large positive integer and let rj be a sufficiently small 
positive number independent of N. We define three functions u, v and w as follows. 

A/     .      (1,    -N<S<-N-1,    |T-£
2
|<1, 

{ 0,    otherwise, 

_   t.      fl,    N<€<N + 1,    |T + £
2
|<1, 

V(T, £) = < 
[ 0,     otherwise, 

A/    ^      /(l + r)"1,     |T + 2JV£|<77,     l<r<77iV, 

[ 0,     otherwise. 

By the definitions of u and £, we have 

supp (ii * v) D {(r, ^);  |r + 2^| < 77,     1 < r < r\N}. 

Therefore, 

(3.2) (w,u *v)>C (1 + r)"1 / d^dr 
Jl J-r/(2N)-r1/(2N) 

r^N'1 /     (l + r)"1 dr^N-HogN. 
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On the other hand, since |£| < C for (r, £) G supp i&, simple calculations yield 

(3.3) Hk/,^/       / (l+rr2(l + |e|)3/2 

7l       J-T/(2N)-T)I(2N) 

x(l + |T-^|)^dr)1/2 

(l+r)-1^)172 

-iV-^^logiV)1/2, 

(3.4) ||u||y1/2._,/4 ~iV-3/4, 

(3-5) ||t;||yl/2,_3/4~iV-3/4iV~iV1/4. 

If the estimate (3.1) holds with s = —3/4 and b = 1/2, we must obtain by (3.2)-(3.5) 

(3.6) N"1 log TV < CN-^ilogN)1'2 x iV"3/4 x N1'4 

= CN-1{logN)1/2, 

where C is a positive constant independent of iV. Hence, we let A^ —> oo in (3.6) to 
obtain a contradiction. This shows that when 5 = —3/4 and b = 1/2, the estimate 
(3.1) fails. 

In the same way as above, we can prove the rest of Theorem 1 (ii). In fact, the 
proof of Theorem 1.4 (iii) in [11] implies that if the estimate (1.3) holds with s = —3/4, 
we must have b = 1/2 (see the relations (4.32) and (4.35) in [11]). Therefore, we have 
only to consider the case of 5 = —3/4 and b = 1/2. We next note by the duality 
argument and the Plancherel theorem that the estimate (1.3) is equivalent to the 
following: 

(3.7) (w,u*v) < C'||w||Y1_,_JH|Yb)JH|YbiS. 

In this case, if we put ui = u, vi = v and wi = w for functions u, v and w defined as 
above, these three functions ui, vi and wi yield a contradiction to the estimate (3.7) 
with s = -3/4 and b = 1/2. D 

Proof of Theorem 1 (iii). We show that if a > —1/2, then for any a, /? € R the 
following estimate fails: 

(3-8) IMI|ya._1/4<C|H|y„._1/4||«||yfli_1/4, 

which is stronger than Theorem 1 (iii) as is stated in Remark 1 (ii). We first note by 
the duality argument and the Plancherel theorem that the estimate (3.8) is equivalent 
to the following: 

(3-9) (w,u*v) <Cf||7i;||Y_ail/4||^||YQi_1/4||v||Y/3)_1/4. 

Let TV be a sufficiently large positive number again. Let u and v be defined as in the 
above proof of Theorem 1 (i)-(ii). We choose ui—u and §! = #. We put 

^(r,^/1'     b- + 2^l<l/2,     \t\<\, 
\ 0,     otherwise. 

Let A = {(T,0; \r + 2iV£| < 1/10, |£| < 1/10}. By the definitions of iix and vu 

we easily see that for each (r7,^) G A, the support of ^(r' — r, £' — £) intersects 
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effectively the support of Si(r, £). Therefore, we have 

(fli*ui)(r,0~l,     {r^)eA. 

Accordingly, since supp wi D A, we obtain 

(3.10) (wi,ui*vi) >C|i4| ~1. 

On the other hand, simple calculations yield 

(3.11) IMr_0|1/4 ~ [I^PP ibi] x iV-2a]1/2 ~ N-a, 

(3.12) ll«i||ra._1/4,    ll«i||rl3._1/4~iV-1/4. 

Here we note that the power of iV in the right hand side of (3.12) does not depend on 
a and /?. If the estimate (3.9) holds, then we must have by (3.10)-(3.12) 

(3.13) 1 < CN-a x (AT"1/4)2 = CN-*-1'2 

where C is a positive constant independent of N. Since iV is an arbitrary large positive 
integer, we conclude by (3.13) that the following relation must hold: 

a < -1/2. 

Thus, it remains only to exclude the case of a = —1/2. We change the function 
wi to another one, while we leave ui and vi as they are. Let rj be a sufficiently small 
positive number independent of N. We next put 

„,    ^      ,  (1+r)-1,     |r + 2iVe|<77,     1 < r < rjN, 
0,     otherwise. 

Then, we have by the definitions of u?2, ^i and vi 

(3.14) <i&2,fii*vi)~ /     (l + r)"1 / dgdr 
^1 J-T/(2N)-71/(2N) 

r^N-1 /     (l + r)"1 dT~J\r1logJV. 

On the other hand, since \^\ < C for (T,£) G supp ^2, a simple calculation yields 

(3.15) IM|Y1/2)1/4~(/ 7 (l + rr2(l + |e|)1/2 

Jl    J-T/(2N)-n/(2N) 

x(l + \T-e\)dZdT)1/2 

/r)N 

(l + r)-1^)172 

-iV-^aogiV)1/2, 

Therefore, if the estimate (3.9) holds with a = -1/2, we must have by (3.12), (3.14) 
and (3.15) 

(3.16) iV"1 log iV < CN-WQog N)1'2 x (AT1/4)2 

^CAT-^logiV)1/2, 
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where C is a positive constant independent of iV. We let N —> oo in (3.16) to obtain 
a contradiction. This completes the proof of Theorem 1 (iii). D 

REFERENCES 

[1]. D. BEKIRANOV, T. OGAWA AND G. PONCE, Weak solvability and well posedness of the 
coupled Schrodinger Korteweg-de Vries equations in the capillary-gravity interaction 
waves, Proc. Amer. Math. Soc, 125 (1997), pp. 2907-2919. 

[2] D. BEKIRANOV, T. OGAWA AND G. PONCE, Interaction equations for short and long disper- 
sive waves, J. Funct. Anal., 158 (1998), pp. 357-388. 

[3] J. BoURGAIN, Fourier restriction phenomena for certain lattice subsets and applications to 
nonlinear dispersive equations. I Schrodinger equations, Geom. Funct. Anal., 3 (1993), 
pp. 107-156. 

[4] J. BOURGAIN, Fourier restriction phenomena for certain lattice subsets and applications to 
nonlinear dispersive equations. II The KdV equation, Geom. Funct. Anal., 3 (1993), 
pp. 209-262. 

[5] J. BOURGAIN AND J. CoLLIANDER, On well-posedness of the Zakharov system, Int. Math. 
Res. Not. (1996), pp. 515-546. 

[6]  J.  GlNIBRE, Le probleme de Cauchy pour des EDP semi-lineaires periodiques en variables 
d'espace (d'apres Bourgain), Seminaire Bourbaki no. 796, Asterisque, 237 (1996), pp. 
163-187. 

GlNIBRE, Y. TSUTSUMI AND G. VELO, On the Cauchy problem for the Zakharov system, 
J. Funct. Anal., 151 (1997), pp. 384-436. 

KEEL AND T. TAO, Local and global well-posedness of wave maps on R1+1 for rough 
data, Int. Math. Res. Not. (1998), pp. 1117-1156. 

E. KENIG, G. PONCE AND L. VEGA,   The Cauchy problem for the Korteweg-de Vries 
equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), pp. 1-21. 

KENIG,   G.  PONCE AND L.  VEGA,  A  bilinear estimate with applications to the KdV 
equation, J. Amer. Math. Soc, 9 (1996), pp. 573-603. 

KENIG, G. PONCE AND L. VEGA, Quadratic forms for the 1-D semilinear Schrodinger 
equation, Trans. Amer. Math. Soc, 348 (1996), pp. 3323-3353. 

KLAINERMAN AND M.  MACHEDON,  Space time estimates for null forms and the local 
existence theorem, Comm. Pure Appl. Math., 46 (1993), pp. 1221-1268. 

13] S. KLAINERMAN AND M. MACHEDON, Smoothing estimates for null forms and applications, 
Duke Math. J., 81 (1995), pp. 96-103. 

14] S. KLAINERMAN AND M. MACHEDON, Estimates for null forms and the space Hsj, Int. Math. 
Res. Not. (1996), pp. 853-365. 

15] S. KLAINERMAN AND S. SELBERG, Remark on the optimal regularity for equations of wave 
map in 3D, Comm. Part. Diff. Eqs., 22 (1997), pp. 901-918. 

16] H. LlNDBLAD, A sharp counterexample to the local existence of low regularity solutions to 
nonlinear wave equations, Duke Math. J., 72 (1993), pp. 503-539. 

17] H. LlNDBLAD, Counterexamples to local existence for semi-linear wave equations, Amer. J. 
Math., 118 (1996), pp. 1-16. 

18] J. RAUCH AND M. REED, Nonlinear microlocal analysis of semilinear hyperbolic systems in 
one space dimension, Duke Math. J., 49 (1982), pp. 397-475. 

19] T. OZAWA, K. TSUTAYA AND Y. TsUTSUMI, Well-posedness in energy space for the Cauchy 
problem of the Klein-Gordon-Zakharov equations with different propagation speeds in 
three space dimensions, Math. Annalen, 313 (1999), pp. 127-140. 

20] T. OZAWA, K. TSUTAYA AND Y. TsUTSUMI, On the coupled system of nonlinear wave equa- 
tions with different propagation speeds, in Proceedings of the conference "Evolution 
Equations: Existence, Regularity and Singularities", Banach Center Publications, War- 
saw, 52 (2000), pp. 181-188. 

21] G. PONCE AND T. SlDERIS, Local regularity of nonlinear wave equations in three space di- 
mensions, Comm. Part. Diff. Eqs., 18 (1993), pp. 169-177. 

22]  G. STAFFILANI, Quadratic forms for a 2-D semilinear Schrodinger equation, Duke Math. J., 

[7] J. 

[8] M 

[9] C. 

10] C. 

11] C. 

12] S. 



578 K. NAKANISHI, H. TAKAOKA AND Y. TSUTSUMI 

86 (1997), pp. 79-107. 
[23]  R.  S.  STRICHARTZ, Restrictions of Fourier transforms to quadratic surfaces and decay of 

solutions of wave equations, Duke Math. J., 44 (1977), pp. 705-714. 
[24]  H. TAKAOKA,  Well-posedness for the one dimensional nonlinear Schrodinger equation with 

the derivative nonlinearity, Adv. Diff. Eqns., 4 (1999), pp. 561-580. 
[25]  H. TAKAOKA AND N. TZVETKOV, On the local regularity of the Kadomtsev-Petviashvili-II 

equation, Int. Math. Res. Not. (2001), pp. 77-114. 
[26] D. TATARU, Local and global results for wave maps I, Comm. Part. Diff. Eqs., 23 (1998), 

pp. 1781-1793. 
[27]  P. A. TOMAS, Restriction theorems for the Fourier transform, Proc. Symp. Pure Math., 35, 

Part I (1979), pp. 111-114. 
[28] N. TZVETKOV, On the Cauchy problem for Kadomtsev-Petviashvili equation, Comm. Part. 

Diff. Eqs., 24 (1999), pp. 1367-1397. 
[29]  K.  TSUGAWA,   Well-posedness in the energy space for the Cauchy problem of the coupled 

system of complex scalar field and Maxwell equations, Fukcialaj Ekvacioj, 43 (2000), 
pp. 127-161. 

[30]  Y.  ZHOU, Local existence with minimal regularity for nonlinear wave equations, Amer. J. 
Math., 119 (1997), pp. 671-703. 


