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THE EXISTENCE AND NON-EXISTENCE OF POSITIVE 
SOLUTIONS OF ELLIPTIC SYSTEMS IN RN 

YUAN-WEI QI* 

Abstract. In this paper, we study elliptic system Au+ |£|0'1/(ti,i;) = 0, Av + \x\a2g(u,v) = 0 
and its quasilinear counterpart, where x G Rn, o"i, (72 > —2. Under the assumption that there exists 
a Hamiltonian H(u, v) such that f(u, v) = Hv(u, v) and g(u} v) = Hu(u, v), we establish a number of 
existence and non-existence results which was previously available mainly for the rather special case 
of / = f(v) and g = g(u) and <JI = <T2 = 0. The main tools are a priori estimates and a Pohozaev 
identity. 

1. Introduction. In a previous paper (see [13]) we studied the elliptic system 

Av + g(u,v) = 0 

and its quasilinear counterpart 

div(j4(vu, V*>) V u) + /(u, v) = 0, 

div(B(v^, Vv) Vv)+ 9{u, v) = 0 

in i?71, where / and g are C1 functions with /(u,0) = ^(0, v) — 0, A(5,t) and B(s,t) 
are functions which are positive and smooth for s,t G Rn \ {0}. In particular, we 
established a number of results on existence and non-existence of ground state, mostly 
when /(u, v) — f(v) and g(u, v) = ^(w). A ground state is a positive classical solution 
in Rn which tends to zero at oo. 

The main purpose of present study is to extend those results to systems which 
take the form 

(1.1) Au + r^ffav) =0, 

Av + ra2g(u,v) = 0 

and 

(1.2) div(A(vu, Vv) V u) 4- raif(u, v) = 0, 

div(B( v^, V^) V v) + r^u, i;) = 0, 

where r = |a;|, (7i,c72 > —2 and /, # will take the general form of f(u^v) = Hv(u}v) 
and g(u,v) = Hu(u,v). Here H(u,v) is a C2 function for (w,v) > 0, Hu(u,v) and 
Hv{u,v) represent the partial derivative of H with respect to u and v respectively. 

There have been extensive studies of system (1) for both boundary value problems 
in bounded domain as well as in Rn in recent years. See [1], [2], [3], [5], [6], [7], [9], 
[12], [14], [15], [16], [17] and [18] for some results of the recent developement. 

The most important ingredients of the present study are a priori estimates and 
a generalized Pohozaev identity. In order to derive the desired a priori estimates we 
make the following 

Basic Assumption: 

f(u,v) > Cvp,   g{u,v) > Cuq        for (u,v) positive but close to zero, 
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where the constants C, p, q satisfy C > 0, p, q > 1 and pq > 1. 
The contents of this paper are as follows. In section 2, we derive the essential 

a priori estimates under only the basic assumption and show that if (p, q) satisfies 
max(2(p + 1) + cri + pcr2,2(g + 1) + qai + c^) > (n — 2)(pq — 1), then there exists no 
positive solution (u,v) of (1.1) in any exterior domain r > a > 0 and tends to zero 
as r —> oo, where r = |a:| is the radial variable in Rn (see Theorem 1). Nevertheless, 
if max(2(p + 1) + (Ji +po-2,2(g + 1) + gen + crs) < (n - 2)(pg - 1), then (1.1) can 
admit positive radial solutions in the exterior domain r > a > 0 for any a > 0, as 
demonstrated by the explicit singular solution 

u = Cir-[2(p+l)+<ri+P<r2]/(pg-l) ^ = C2r-l2(q+l)+q<Ti+cr2}/(pq-l) 

of (1.1) when /(u, v) = vp, g(u, v) = u9, where Ci and C2 are some positive constants. 
In addition, we establish a Pohozaev identity when f{u,v) = Hv(u)v)) g(u,v) = 
Hu(u,v) and CJI = cr2. 

In section 3, we explore further this special case and show that under mild as- 
sumptions of H{u,v), there exists no positive radial solution of (1.1) in Rn when 
(p, q) is subcritical (see Definition 1 in section 3), which are the contents of Theorem 
2 and Theorem 3. On the other hand, if (p, q) is supercritical or critical, we show 
existence of positive radial solutions of (1.1) by a shooting argument in Theorem 4 
and Theorem 5. 

In section 4, non-existence results for various cases of (1.2) are demonstrated. A 
case worth to mention is that when A = B = J4(|MV|) for a radial solution, a much 
sharper result is obtained since we have a Pohozaev identity when f{u, v) = Hv(u, v), 
g{u,v) = Hu(u,v) and cri = (72. 

A radial solution (w(r),'u(r)), with r = \x\ of (1.1) satisfies the following system: 

(1.3) (rn-V)' + rn-1+aif(u, v) = 0, for r > 0, 

(rn- V)' + rn-1+(T2£(u, v) = 0, for r > 0, 

7/(0) = 0,    i/(0) = 0. 

The equations for radial solution of (1.2), under appropriate conditions of A and B) 

are 

(1.4) (A(u\ i/)rn-V)' + rn-1+£Tl f(u, v) = 0, for r > 0, 

(£(?/, ?;>n-V)' + rn-1+£72s(u, u) = 0, for r > 0, 

u'(0) = 0,    i/(0) = 0. 

We note by passing that in the detailed proof of many results, various constants 
will not be distinguished because the minor role they play as well as our concern to 
simplify the notation. 

2. Asymptotic behaviour and preliminary results. The purpose of this 
section is twofolds. First, we state and prove some preliminary yet important results 
on asymptotic behaviour of positive radial solutions of semilinear system (1.1) on 
exterior domain \x\ > a > 0 which can be obtained using elementary analysis. These 
results culminate in giving an optimal asymptotic estimate in Lemma 2 which will be 
used later on to discuss existence and non-existence. A non-existence result as a direct 
consequence of Lemma 2 is proved in Theorem 1. Second, we derive a generalized 
Pohozaev type identity which is more general than the one we obtained in [13] for the 
case of f(u, v) = f(v), g(u, v) = g(v) and ai = 02 = 0. 
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LEMMA 1. Suppose f(%v) > 0, g(u,v) > 0 for (u,v) positive but sufficiently 
small, then there exist no positive radial solutions (u,v) of (1.1) defined for r > a > 0 
which tend to zero as \x\ —> oo ifn < 2. Furthermore, ifn>2 and (u,v) is a positive 
radial solutions of (1.1) defined for r > a and tends to zero as r —^ oo, then 

-u' > Crl-n,    u > Cr2-n,    -v' > Cr1"71,    v > Cr2'71 

for all r sufficiently large, where C > 0 is a positive constant. In addition, for all r 
sufficiently large, 

(2.1) ru' + {n- 2)u > 0,     rv' + (h - 2)v > 0. 

Proof. See [2] and [13]. 
D 

In what follows a more accurate asymptotics will be given using the basic as- 
sumption of this paper. 

LEMMA 2. Suppose f(u,v) > Cvp, g(u,v) > Cuq for (u,v) > 0 but small, (u,v) 
is a positive radial solution of (1.1) defined for r > a and tends to zero as r —> oo. 
Then, the following asymptotic estimates hold: 

(2.2) u = 0(r~Wp+1)+<Tl+p(J2V(<pq~1)),     v = 0(r"[2(9+'1)+9<ri+ff2l/(p9""1)), 

(2.3) \u'\ = 0(r~[2(p+1)+<ri+po'2]/(OT"1)~1),     \v'\ = 0(r"[2^+1)+9{ri+<r2]/(P9~1)-1), 

as r —> oo. 

Proof. Suppose ro > a is large enough so that 

f(u, v) > Cvp,    g(u, v) > Cuq, u! < 0,    v' < 0 

on [ro, oo), where C is a positive constant. Integrating the first equation of (1.3) gives 

rn-V(r)-rJ-V(ro) = - /  sn-1+(Tlf(u,v)ds<-c[  sn-1+<7lvp(s) ds 
Jro Jro 

< -Cvp(r) f sn-1+CTl ds < —(rn+crivp(r) -r^yPiro)). 
Jro Tl -\- CTi 

Noting that 1/(7*0) < 0, it follows that 

-u'(r) > -(r^^v13^) - r1-nr^aivp(ro)). 

But, by Lemma 1, —u'(r) > Cr1_n if r is large. Hence, 

(2.4) -V(r) > Cr1+<Tlvp(r) 

if r is sufficiently large. Integrating (2.4) from r to 00 one finds 

/oo n2r 

s1-{-aivpds >C        s1^<Tlvp(s) ds > Cvp(2r)r2+<71. 
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Hence, combining the above inequality with the fact that rn~2v is an increasing 
function for r > 1 from Lemma 1, one gets *z(r) > Cvp(r)r2']'(Tl. Similarly, ^(r) > 
Ci/qr(r)r2+C72. A combination of the above two inequalities yields that (2.2) holds. In 
turn, it implies (2.3) is valid when combined with Lemma 1. 

D 

COROLLARY 1. Suppose n>3 and 

(2.5) max(2(p + 1) + tn +p<72,2(q + 1) + 9^1 + ^2) > (n - 2){jpq - 1). 

Then there exists no positive radial solution of 

(2.6) (r^u')' + rn-1+<rif(u,v) < 0,   (r71"1^)7 + rn-l+(T*g(u,v) < 0, 

which tends to zero as r —> 00 on [a, 00) for any a > 0 if the conditions of Lemma 2 
on f(u, v) and g(u, v) are satisfied. 

Proof. It is similar to the case of cri = 02 = 0, see [13]. 
D 

REMARK. We note that (1.1) has a singular solution when max(2(p 4-1) + cri + 
pcr2, 2(q 4- 1) + qo^i -f 0-2) < (n — 2){pq — 1) which has the exact decaying rate as in 
Lemma 2. 

THEOREM 1. Suppose f{u,v) > Cvp, g(u,v) > Cuq for {u,v) > 0 but small, 
n > 3 and (2.5) holds. Then there exists nopositive solution of (1.1) which tends to 
zero as \x\ —> 00 in an exterior domain \x\ > a for any a > 0. 

Proof. Suppose by contradiction that there exists such a solution (u,v). Let 
7*0 > a be so taken that f(u(x),v(x)) > Cvp(x), g(u(x),v(x)) > Cuq(x) for all 
x G Rn \ Bro, where Bro is the ball with radius ro which centered at origin. Let 

u(r) = —  /        u(r,6)ds, v(r) = —  /       v(r,9)dsJ      r > a, 
^n Js™-1 ^n Js™-1 

where 5n~1 is the unit sphere in Rn, ds is the (n-l)-dimensional area element of S71-1 

and un is the area of Sn~1. Then, 

— /      f(u,v)ds >— f      vpds > Cvp(r),   — [      g{u,v)ds > Cv?(r) 

for r > ro by Jensen's inequality. Consequently, (u,v) is a solution of (2.6) for r > ro- 
But this is impossible by Lemmas 1, 2 and Corollary 1. 

D 
In the rest of this section we shall restrict our attention to the narrow case of 

(2.7) f(u,v) = Hv(u,v)i       g(u, v) = Hu(u, v) and ai = 02 = c, 

where H = H{u, v) is a C2 function of (u, v) G R2 with iJ(0,0) = 0. We begin by 
deriving a generalized Pohozaev identity of (1.1). It is clear that if f(u, v) = f{v) and 
g(u,v) = g(u), we can simply take H(u,v) = F(v) + G(u), where F(v) = JQ f(s) ds 
and G(u) = fQ g(s) ds. 

PROPOSITION 1. Let (u,v) be positive on [iZi,i?2), where 0 < i?i < R2 < 00. 
Suppose it is a solution of the following system 

(2.8) u" + ^—-u' + raHv = 0, 
r 
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for re [i?i,i?2). Then, 

^ rw      /     / n-r-r, X ^^ feW v 
£• = rn{ufv' + r^ff^, v) + + ) 

satisfies 

(2.9)       ^P- = r^fta + b + 2 - n)uV + ^((n + a)iJ - avHv - buHu)} 
ar 

for r e [Ri, R2). Here a and b are two constants. 

Proof It is a simple exercise and we omit it. 
D 

3. Existence and non-existence theorems. In this section, we assume 
f(u,v), g(u,v) and (<Ji,(J2) are as specified in (2.7). For this special case of 
ai = 02 = <J, we may define what we mean a pair (p, q) is subcritical or supercritical 
for system (1.1) in parallel with the case of ai = 02 =0. 

DEFINITION 1. A "pair (p,q) withp,q > 1 and pq > 1 is called subcritical if 

{d-l) Pq-l
+pq-l

> 2 + a' 

whereas the above inequality is reversed, it is called supercritical. If (p, q) is so given 
that the equality holds in (3.1), it is said to be critical. 

THEOREM 2. Let n > 2, ai = <T2 = v, where a > —2. Suppose that f(u,v) > 0, 
g(u, v) > 0 for all u, v > 0 and moreover, 

(3.2) f(u, v) > Cvp,    g(u, v) > Cuq,    H(u, v) < C(^*+1 + ^*+1) 

for all sufficiently small u and v, where p, p*, q, q* are constants binding the following 
inequalities 

(3-3)   j2T^T){n + a)-l<q^^   (2+%1
+i){n + a)-1<p^p- 

Assume further that there exists (a, /?) which is not supercritical such that 

(3.4) —-vHv(u, v) + ——uHu(u, v) < H(u, v) 

for all u > 0 and v > 0, then there does not exist any positive radial solution of 
equation (1.1) in Rn. 

REMARK. The assumption that p,q,p* and g* satisfy the relations given in (3.3) 
implies that (p, q) is subcritical. In addition, p* < a, q* < j3. 

Proof of Theorem 2. It is clear that any positive radial solution (u, v) satisfies 
^'(r) < 0, v'^r) < 0 for r > 0 and (u,v) tends to zero as r —> oo. Suppose to the 
contrary that there exists a radial positive solution. Thus, let a = (n + cr)/(a + 1), 
b = (n + cr)/(/3 -|-1) in the identity (2.9), 

a + & + 2-n>0,        (n + <r)H - avHv - buHu > 0 
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by (3.1) and (3.4). Consequently, one has, after an integration, 

(3.5) rn(uV + raH(u, v) + — + —) > C2 

r r 

for sufficiently large r, where C > 0 (see Proposition 2 in [13]). Consequently, rn(uV+ 
^H^.v)) > C2. By (3.2) and Lemma 2, one gets that if r is sufficiently large, 

H{u,v)<C(vp*+1+uq*+1) 
< C(r-(2+^)(P*+1)(g+l)/(P9-l) +r-(2+(r)(g*+l)(p+l)/(p9-lh 

Hence, by (3.3), 

(3.6) H(u, v) = oir-"-*)        as r -> oo. 

It then follows that u'v' > C2r~n for r > 1. But, from rv! + (n - 2)u > 0, rv' + (n - 
2)t; > 0, one deduces ?xV < Cr~2uv. Thus, wv > Cr2~n. But, on the other hand, one 
gets using the estimates in Lemma 2, 

U < O-^XH-1)/^-!^       v ^ c,r-(2+ff)(g+l)/(p9-l)< 

Therefore, it must be true that 

(2 + (T)(p+l)    |    (2 + Cr)((Z + l):;n       2 

pq-i pq-i 

But this is in clear contradiction with our hypothesis that (p, q) is subcritical. Hence, 
no positive radial solution exists for (1) if (p, q) is subcritical. 

D 
REMARK. The conclusion of Theorem 2 is true for a wide class of nonlinear 

functions f(u,v) and g{u,v). In particular if f{u,v) = Xu + Aii> + i>p, g(u,v) = 
Xv + A2^ + it9, where the three constants A, Ai and A2 are non-negative, and (p, q) 
is subcritical, then there exists no positive radial solution (u, v) to (1.1) in Rn. In 
addition, we note the condition H{u,v) < C(n9*+1 +i;p*+1) with (p*,g*) bound by 
(3.3) can be weakened substantially to guarantee the validity of Theorem 2. For 
example, if 

p+l g+l      jy 
H{u,v) = C1-—+C2—— + Tciv

Piu^ 
P + 1       9 + 1   ^ 

with (p,g) subcritical and {p^Qi) satisfying (2+(T)[pi(q+l)-\-qi(p+l)} > (n+a)(pq-l), 
i = 3,4,..., N, then there exists no radial ground state provided 

p =  max Pi,      o =  max a, 
3<z<Ar 3<i<iV 

is a pair not supercritical. 
Another way in which this theorem can be extended is to drop the upper bound 

assumption on H{u,v), and estimate the decay of H(u(r),v(r)) as a function of r 
from that of f(u,v) and g(u,v) under some monotonicity assumption on f(u,v) and 
g(u,v). The following is a result in this direction. 

THEOREM 3. Let n > 2, ai = 02 = cr, where a > —2. Suppose that f(u,v) > 0, 
g(u, v) > 0 for all u, v > 0, f{u, v) and g(u, v) are monotone increasing in (u, v), and 

f{u,v)>Cvp,    g(u,v)>Cuq 
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for all sufficiently small u and v, where (p, q) is subcritical Assume further that there 
exists (a,/3) which is not supercritical such that (34) holds for all u > 0 and v > 0, 
then there exists no positive radial solution of equation (1.1) in Rn. 

Proof It is clear from the proof of Theorem 2 that the only place H(u, v) < 
C(uq*+1-[-vp*+1) with (p*, g*) satisfying (3.3) is used is to show (3.6) holds if (u, v) is 
a ground state solution. So, we shall show that (3.6) is valid under our assumptions 
on f{u,v) and g{u,v). The rest will follow exactly as in Theorem 2. 

Choose ro > 0 sufficiently large such that f(u(r),v(r)) is a monotone decreasing 
function of r for all r > ro and -^'(r) > Cr1-71 (Lemma 1). This is possible since 
by our hypothesis f{u,v) is monotone increasing in (ix, v) for (u, v) > 0 small and 
(u(r),v(r)) is decreasing in r. Following the same procedure as in Lemma 2, we get 

-rn-V(r) +r£-V(ro) = f s71'1^f(u,v) ds 

> Mr), v(r)) [ ,-»* ds > ^t+^V^ - r; 
ro 

1-n Using the fact that iz'(ro) < 0 and -u'(r) > Cr1 n, we have 

-i/(r) > Cr1+a/(u(r),*;(r)). 

Consequently, by (2.3), 

f(u{r),v(r)) < Cr-^-V+^+V^-'l 

Similarly, 

Hence, 

g(u(r),v(r)) < Cr^2^-^^^1^^'^. 

ru(r) rv(r) nu{r) r>v\r) 

H{u(r),v(r)) = /        g(s,0) ds + /        /Mr),s) ds 
Jo Jo 

< f{u{r),v(r))v(r) + g(u{r),v{r))u{r) < Cr-(2+C7)-(2+CT)(p+(7+2)/(p9-1) 

by (2.2).  This, when combined with our hypothesis that (p,q) is subcritical, shows 
(3.6) is valid. 

Then, by repeating the same argument as in Theorem 2, we establish the theorem. 
D 

We now turn our attention to prove the existence of ground state solutions when 
/ and g exhibit supercritical nonlinear growth when u and v are small. 

PROPOSITION 2. Suppose Hu > 0 and Hv > 0 for 0 < u < UQ and for 0 < v < VQ, 

and 

(3.7) (n + a)H(u,v) - avHv(u,v) - buHu(u,v) < 0,    0 < u < UQ, 0<v<vo, 

n-2-a-b>0 

for some positive constants a, 6, UQ and VQ.   Then there exists no radial solution to 
the following boundary value problem 

Au + Hv(u,v) = Q,x e B, 
(BVP) {   Av 4- Hu(u, v)=0, xeB, 

0 < u < UQ, 0 < v < VQ    in B and u = v — 0    on OB, 



564 Y. w. Qi 

where B — BR is a ball centered at origin with radius R > 0. 

REMARK. The above result is a special case of a more general identity proved 
for all solutions of (BVP), not necessarily radial ones in [12] by Peletier and Van Der 
Vorst. For related results, see [17]. 

THEOREM 4. Suppose f and g satisfy, forO<u<M,0<v<M, f(u,v) > 0, 
g(u, v) > 0 and there exists a C2 function H1 such that 

(3.8) f{u,v) = 0^ + Hl{u,v), with    limsup    vK  '   y = 0, 
(u,<;)-»0 vP 

H1^ v) 
(3.9) g(u,v) = C2Uq + Hl{u,v),        with     limsup    nV  '   } = 0, 

(u,v)->0        uQ 

where M, ci, and C2 positive constants. Then there exists an infinite number of radial 
ground state solution of (1) if (p, q) is supercritical. 

Proof. Apparently, u^r) < 0, vr(r) < 0 for r > 0 before the product uv reaches 
zero. Let ^o > 0 and ^o > 0 be sufficiently small such that the conditions (3.7) in 
Proposition 2 are satisfied with a close to (n + a)/(p+l) and b close to (n + (T)/(q + l). 
This is possible because of the assumption that (p, q) is supercritical and f(u,v) and 
g(u,v) are small perturbation of civp and C2Uq respectively. Consequently, there 
exists no radial solution of the boundary value problem (BVP) with initial value 
0 < iz(0) < wo, 0 < i;(0) < ^o for any R > 0. Define 

(3.10) A = {(u(0),v(0)) | 0 < u(0) < UQ, 0 < i;(0) < M 

which has the property that there exists R > 0 such that the corresponding solution 
(iz, v) satisfies v(r) > 0, ^(r) < 0 and u'(r) < 0 in (0, R], u{r) > 0 for 0 < r < R but 
u(R) = 0. Similarly, let 

(3.11) B = {(u(0),v(p)) | 0 < u(0) < UQ, 0 < t;(0) < ^o} 

such that for the corresponding solution (u.v) there exists R > 0 with u(r) > 0, 
^(r) < 0 and ^(r) < 0 in (0,i?], v(r) > 0 for 0 < r < R but t;(iJ) = 0. It is clear 
from Lemmas 3 and 4 in [13] that A and B are non-empty. In addition, they are both 
open by the classical theory of continuous dependence of solutions on initial values. 
Let L be a straight line segment starting from a point in A and ending at a point in 
B. It is clear that there exists a point P = (a, ft) > 0 on L which does not belong 
to either A or B. Therefore, there are only two possibilities: (i) the corresponding 
solution with initial values u(0) = a, i;(0) = 0 is a solution of the boundary value 
problem or (ii) it is a ground state solution. But, the first case is impossible. Hence, 
the corresponding solution is a ground state solution. 

By taking different lines L with different end points from A and B, we can obtain 
an infinite number of ground state solutions. 

D 
Another case where there exists a a ground state solution is when 

M N 

(3.12) f(u,v) = A^ + J2CivPi* + 5Zdifo + iK'^"1"1' 

M N 

g(u,v) = A2Uq + 5^** + J2d^ + lKi+1^\ 
i=l 3=1 
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where (p, q) is critical, p^* > p, qi* > q, i = 1,2, ...AT, p^ > p and gj > q, j = 1,2, ...JV. 
Here Ai, A2, fy, e^ and (ij are positive constants. 

In this case, 

V      7     p+1 <7 + l f-(   Pi*+1     ^    qi*+l     4-r J 

THEOREM 5. Suppose f and g are as given in (3.12) with (p,q) critical. Then 
there exists an infinite number of radial ground state solutions. 

Proof. It is clear that the conditions (3.7) in Proposition 2 are satisfied with 
a = (n 4- cr)/(p + 1) and b = (n + cr)/(q + 1). In particular, since (p,q) is critical, 
a -j- b = TT, — 2. The rest follows the same line of argument as in Theorem 4. We invite 
the reader to fill the details. 

D 

4. Non-existence theorems for quasilinear systems. In this section we 
shall consider the special cases of quasilinear system (1.2) where for a radial solution 
(u, v), A = A(hi) is a C1 function of a single variable hi, in the range of hi > 0 and 
it is bounded around hi = 0, and B — B(h2) is a C1 function of a single variable /i2 
in the range of /i2 > 0 and is bounded around /12 = 0. Here /ii and /12 maybe different 
combinations of u' and ?/. The primary difficulty is to get estimates as those given in 
(2.2) in Lemma 2. 

LEMMA 3. Suppose all conditions of Lemma 2 on f(u,v) and g(u,v) are satisfied, 
and (u,v) is a positive radial solution of (1.2) defined for r > a and tends to zero 
as r —» 00. Assume in addition that A{u'\r), v'\r)) -f B(u'(r), v'(r)) < M for all 
r > a > 0.  Then, for any e > 0, 

(4.1)     u = o(r~[2(p+1)+cri+pcr2l/(p<7~1)+e),     v = o(r"[2(9+1)+<7cri+CT2]/(p9~1)+e) 

as r —> 00. 

Proof It is similar to the case of ai = 02 = 0, see [13]. 
D 

Given the situation as it is, the natural thing to do is to show that under various 
different forms of A and B, A(u/, vf) and B(u\ vf) are bounded in [a, 00) for a positive 
radial solution (u^v) of (1.2) in r > a. We cite the following result which is obtained 
in [13]: 

LEMMA 4. Let f{u,v), g(u,v) satisfy the conditions of Lemma 1. Suppose u(r) 
and v(r) are positive radial solutions of (1.2) for r > a > 0, which tend to zero as r —> 
00, then A(uf,vf) and B{u'^v') are bounded on [a, 00) provided A and B satisfy one 
of the following conditions: [(i)] A = B = Qflu'j + \v'\); [(ii)] A = B = f2(|uV|); 
[(iii)]    A = A(|ti'(r)|), B = A(\u'(r)\) or B = B(\v<(r)\). 

Proof See the proof of Lemmas 5 and 6 in [13]. 
D 

THEOREM 6.  Suppose A and B in (1.2) satisfy one of the following conditions 
when (u,v) is a radial solution: [(a)]    A = Adu'l), B = Adu'l) or B = £?(|?/|); 
[(b)]   A = B = n(\u'\ + H); [(c)] A = B = Q(\ufvf\). 

Assume in addition that A(h) and B(h) are C1 functions for h > 0 and are 
bounded around h = 0. Then for any positive radial solution (u,v) of (1.2) which is 
defined for r > a > 0 and tends to zero as r —> 00, the following results hold: 
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(i) Suppose f(u,v) > 0, g(u,v) > 0 for (u,v) near 0. Then, 

u>Cr2-n,   u'K-Cr1-71,   v>Cr2-n,   v1 < -Cr1'71 

for all r sufficiently large. Consequently no such solution is possible if n < 2. 
(ii) Suppose f(u,v) > Cvp, g(u,v) > Cuq and both of them are increasing function 

of (u,v) for (u,v) near 0.  Then, the estimates in (4-1) hold. 
(iii) Supposen>2 and max(2(p+l)H-cr1+p(J2,2(g + l) +qai +0-2) > (n-2)(pq-l). 

Then there exists no positive radial solution of (1.2) on [a, 00) for any a > 0 
if the conditions on f and g in (ii) are satisfied. 

Proof The proof of (i) is essentially same as in Lemma 1. (ii) is shown in Lemma 
3. (iii) follows directly from (i) and (ii). 

□ 
In the rest of this section we shall concentrate on the particular case where A = B 

and A = Adu'v'l). In addition, the hypothesis (2.7) on f(u,v), g(u,v) and cri, <72 
is in force. The purpose is to derive a non-existence result comparable to that of 
Theorem 2 which is stronger than the above theorem. First, a generalized version of 
the identity in Proposition 1 is in order for the quasilinear system under consideration. 

PROPOSITION 3. Let (u,v) be positive decreasing functions on [0,00). Suppose 

(4.2) (rn-V.4(|uV|))' + rn-1+af(u, v) = 0, 

(rn-VA(|uV|)), + rn-1+ag(u, v)=0 

for r e (i?i, R2), where 0 < Ri < R2 < 00. Then, 

(fh ami' /)77?/\ 
/   D(p) dp + r*2I(u,i;) + A(|uV|)— +A(|i/i/|)—] 

satisfies 

(4.3) ^P- = r^ffa + 6 + 2 - 2n)A(\u'v'\)u,v' + n [  D(p) dp 
dr J0 

ra((n-f a)H(u,v) — avf(u,v) — bug(u,v))]. 

Here a and b are two constants, h = u'v' and D{h) = A(h) + 2hA/(h). 

Proof The calculation is tedious and we omit it. 
D 

THEOREM 7. Let n > 2, <JI = 02 = a, where a > —2. Suppose that 
A(^JU,\JV) = B(\/u,\/v) = A(\ V u ' S/v\) and ^CO ^s positive for all h > 0 and 
bounded for h close to zero. Assume also that f(u, v) > 0, g(u, v) > 0 for all u, v > 0 
and they satisfy the conditions (3.2) and (3.3) of Theorem 2. At last assume that 

(4.4) —rTvf(u> ^ + tf~TTw#(w' ^ - H(u'v) a + 1 p + 1 

for all u > 0 and v > 0, where (a, /?) satisfies 
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and 2/n < d < 2 is a constant such that 

(4.6) /  A(p) dp<dhA(h). 
Jo 

Then there does not exist any positive radial solution of (1.2) in Rn. 

REMARK. If A^ = dA/dh > 0, we can obviously take d = 1 and condition (4.5) 
then reduces to the case of semilinear system in Theorem 1. As in the case of Theorem 
2, there is no need to consider the case (2 + <T) max(p + 1, q + 1) > (n — 2)(pq — 1) 
since it is covered in Theorem 6. On the other hand, by letting u = 0 and by an 
integration of (4.4) we get that H(0,v) > C^"1"1 for v > 0 small. Similarly, we get 
H(u, 0) > Cu^1 for u > 0 small. Hence, using (3.2) and (3.3) we find 

u>q >—«, 0>p >—5 n — 2 n — 2 

when (2 -f a) max(p + 1, q -f 1) < (n — 2){pq — 1). Consequently, 

n + <7      n + cr 

Thus, it follows from (4.5) that it is only for values d < 2(n — l)/n that Theorem 7 
provide a stronger result than that of Theorem 6. 

Proof of Theorem 7. Suppose to the contrary that there exists a positive radial 
solution of (1.2) in Rn. Then, as in Theorem 1, such a solution must tend to zero as 
r -> oo. Since D(h) = A + 2hAf(h), it follows that 

rh ph 

/   jD(p) dp = 2hA(h) - /   i4(p) dp>{2- d)hA(h). 
Jo Jo 

Combining the above inequality with the result of Proposition 3, we obtain 

fh 

(2-2n + a + b)A(\u'v'\) + n /   D(p) dp > (2 - 2n + a + b + 2n - nd)A(\u'v'\) 
Jo 

= (2 + a + b - nd)A(\ufv'\) > 0. 

In addition, (n + a)H(u, v) - avf(u, v) - bug(u, v) > 0 by our hypothesis on /(u, v), 
g(u, v) and the choice of a = (n + cr)/(a + 1), b = (n + a)/(0 + 1). Consequently, 

(4.7) rn[[  D(p) dp + raH(u,v) + A(\u,vf\)—+A(\ufv,\)—}>C2 

Jo r r 

for all r sufficiently large, where h = u'vf, and C is a positive constant. A detailed 
demonstration of the fact that C is positive is exact like that of Proposition 2 and 
is omitted. Prom our previous discussion on the asymptotic behaviour of positive 
solutions it follows that {vl\vf) —> 0 as r —> oo. Consequently using the boundedness 
of A(h) near h = 0, we have that for some M > 0, 

ph nh 

/   D{p) dp = 2hA{h) - /   A{p) dp < 2hA{h) < Mh, 
Jo Jo 
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for h sufficiently small. Using the above inequality and (4.7) we find that for r 
sufficiently large, rn[Mu/v/ + r^H^u, v)) > C2. Nonetheless, argue as in Theorem 2, 
but this time using (4.1) instead of (2.2), we get H(u,v) = o(r~n~(T) as r —> oo. 
It then follows that u'v' > C2r~n for r ^> 1. Hence, for any /i, 

(4.8) -V(rK - ^(r)r-^ > Cr^2 

for r ^> 1.   Clearly, /x can be chosen appropriately to satisfy ^(r)rAt-1+^/2 _> Q, 
^y-V-l+n/2   _,   Q   and   r-l Jo

r
u(5)sM-l+n/2   _,   Q,   T^ J^ v(s)s-^-1+n/2   ->   0   as 

r —> oo, by the fact (p, q) is subcritical and by the estimates in (4.1). But, an 
integration of of (4.8) would yield otherwise. Thus, we reach a contradiction. 

D 
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