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GENERALIZED HODOGRAPH TRANSFORMATION AND ITS 
APPLICATION TO FREE BOUNDARY PROBLEMS 

SHUXING CHEN* AND DENING Lit 

1. Generalized Hodograph Transformation. In the study of free boundary 
problems for partial differential equations the moving boundary often causes much 
difficulty. One way to deal with this difficulty is to introduce a transformation to 
fix the boundary. In this paper we would like to introduce a generalized hodograph 
transformation which has been successively applied to treat the problems of supersonic 
flow passing a pointed body. 

Hodograph transformation was first introduced in the study of gas dynamics (for 
instance, see [2]). For steady two-dimensional irrotational flow, the governing system 
of differential equations is 

/i n ( vx-Uy = 0 
[     ; I  (pu)x + (pv)y = 0, 

where (w, v) is the velocity in the flow field, and p is the density. The second equation 
can also be written as 

(1.2) (c2 - u2)ux - uv(uy + vx) + (c2 - v2)vy = 0, 

where c stands for the sonic speed. (1.1) is a quasilinear differential system. Many 
problems in gas dynamics demand its solution, for instance, the determination of the 
flow field around a given wing in aerodynamics. It is often difficult to solve directly 
boundary value problems of such a nonlinear differential system. Fortunately, this 
system is reducible to a pair of linear differential equations by introducing x and y as 
functions of the velocity components u and v, provided that the Jacobian 

j  — tLxvy        'Vx'lLy 

does not vanish. By means of the relations ux = jyv, Uy = —jxv and vx = 
—JVu,    Vy = jxU) system (1.1) is transformed into a linear differential system 

(c2 - u2)yv + uv{xv + yu) + (c2 - v2)xu = 0 V     '    / I       (r>^     ni^\oi     _J_ viiifrr      _!_ m    ^  _L  (s*^     0,2 

Generally, solving the boundary value problem of (1.3) is easier than solving the 
corresponding boundary value problem for the nonlinear system (1.1). 

In fact, this idea of interchanging the variables and unknown functions was often 
employed in the theory of ordinary differential equations. Let's look at, for instance, 
the second order equation 
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Regarding y as the independent variable and x(y) as the unknown function, one can 
reduce the equation into 

d2x ,dx.3j,,        ,dx._u a-5) ^ = -^ff^y^-.r1) 
Obviously, once a solution x = x(y) of (1.5) is obtained, then its inverse y = y(x) is 
the solution of (1.4), provided xf(y) ^ 0. 

This kind of transformation, which we will denote as T, can also be used to change 
a free boundary problem into a problem with fixed boundary. For instance, consider 
the boundary value problem of (1.4) with conditions 

(1.6) 2/= 2/1,    on    x = xi 

dy \ 
(1.7) y = y2,9{x,y,—)=0,    on    x = a 

where a is to be determined. Under the transformation T the boundary conditions 
are reduced to 

(1.8) x = xu    on   y = yi 

(1.9) g(x,y,(—)~1) = 0,    on   y = 2/2 

The problem (1.5) with (1.8),(1.9) is a normal boundary value problem of second 
order ordinary differential equation for function x(y) with fixed boundary, hence it 
can be treated easily. 

For partial differential equations, we can also interchange one variable with the 
unknown function while keeping all other variables unchanged. For instance, sup- 
pose a differential equation of the unknown function (/> be defined in the domain 
0(xi, • • • ,xn) > 0. If we can show that J^- > 0, then by introducing the transforma- 
tion 

/-|-ip|\ 2/i == %i      2 = 1, • • • , 71       1, 

^  '    > yn = <l)(xU'-,xn), 

we are able to fix the boundary. Meanwhile, the inverse transform xn = u{yi, • • •, 2/n) 
of the function yn = (/)(a;i, • • •, xn) will be regarded as the unknown function. 

Such a transformation as in (1.10) is called partial hodograph transformation. 
A nice property of this transformation is that it does not change the type of the 
equation. Recently, partial hodograph transformation has been successfully applied 
to prove the existence of solution to Cauchy problem of potential gas flow equation 
with discontinuous initial data (see [11,13]). 

In case when the condition on x = x\ takes the general non-Dirichlet form 

dv \ 
(1.11) /i(^2/,^) = 0, 

difficulty may arise by applying the transformation (1.10). In fact, if we perform the 
transformation (1.10), the previously fixed boundary x = xi will become a new free 
boundary in new coordinates. To avoid the appearance of any new free boundary, we 
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can use the method of domain decomposition. That is, decompose the interval (xi, a) 
into overlapping intervals, then solve sub boundary value problems alternatively like 
people does in Schwartz alternating method. The method is available if the function 
y(x) is a monotonically increasing function. If this is true, we can add Xa^i, in the 
interval (xi,a), such that xi < xa < x^ < a, and correspondingly, yi < Va < Vb < 1/2- 
Then we introduce two related problems defined on (xi,Xb) and (ya,y2) respectively. 
That is: 

W: 
( fi - f(x v±) 

y = 2/1 on x = x1, 

Dirichlet   condition  on  x = Xb', 

in) ■■ { 

d x . cix N o .,        f ax N _ i v 

h(x,y,(—)-1) = 0on  y = 2/2, 
dy 

Dirichlet  condition  on  y = ya. 

Both problems (I) and (II) are given on an interval with fixed boundary. Starting 
from an appropriate value y^ on x = x^, we can solve the problems (I) and (II) 
alternatively and construct two sequences of solutions by the following procedure 

(   d2y^ / N  dv^ 

dx2 

yi 

dx 

on   x = #1, 

), 

j(n) = (Inv(x(n  1^)(xi))    on    x = x^ 

h(xW,y,(-^-r1) = 0    on    y = ya, 

^ xW = (/n^(y(n))(2/a)    on    y = ya. 

If these sequences are convergent, the limits of (I) and (II) in the interval (xa, x^) (or 
(ya^Vb) ) will be inverse functions of each other. Then the problem (1.4),(1.9), (1.11) 
is solved. 

As we mentioned earlier that the above method can be employed only for the case 
when the expected solution is monotonically increasing or decreasing. However, in 
some cases such a condition may not be satisfied and this leads to another approach 
to apply the partial hodograph transformation as follows. 

In this new approach, we introduce the new variable and new unknown function in 
partial hodograph transformation by a combination of the original variable x and the 
unknown function y. For instance, in the problem (1.4),(1.9),(1.11), 6 = arctan(2/ — 
2/2)/'(x — xi) can be chosen as new variable, while r = y/(x — xi)2 + (y — 2/2)2 can be 
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chosen as new unknown function. In this case the equation (1.4) will be transformed 
into a second order equation for function r(0). A different choice is to introduce 

x — Xi 
(1.12) z=  ■ ,   w = x-xl+y-y2, 

x-x1+y-y2 

where z is regarded as a new variable, and w is regarded as the new unknown function. 
Obviously, the transformation will change the boundary x = xi and y = y1 to z = 
0 and z = 1 respectively. In the meantime, the troublesome computation caused 
by square roots can be avoided. Such a transformation is also called generalized 
hodograph transformation. 

Generalized hodograph transformation has been proved as an effective method in 
the discussion of the existence of solution to supersonic flow past a pointed body. In 
such problems the possible shock front is a free boundary which will be transformed 
into a fixed boundary by the generalized hodograph transformation. In the following 
two sections we will give applications of this transformation to both elliptic and hy- 
perbolic problems which arise in the study of supersonic flow past a pointed body. We 
believe that such transformation should be also useful in solving other free boundary 
value problems. 

2. Application to an elliptic problem. Consider a uniform supersonic flow 
passing a non-symmetric cone. We assume that the cone has straight generating 
lines and the cross section of a plane perpendicular to the axis of the cone is a slight 
perturbation to a circle. If the vertex angle of the cone is less than a critical value then 
the flow will produce a conical shock front attached on the tip of the cone. Assume 
that the incoming flow is uniform with velocity (goo50) and density p^ . The flow 
behind the shock front can be described by the following potential flow equation for 
the velocity potential (f>: 

3 

(2-1) J2dXi(<l>XiH) = 0 
i=l 

under the assumption that the flow is isentropic and irrotational. Such an assumption 
is reasonable for weak shock. 

Let the surface of the conical body be given by m(xi)X2^xs) = 0, and the shock 
attached to the tip of the body be given by IJ>(XI,X2,XS) = 0. Then on the surface 
m(xi,X2,Xs) = 0 , the boundary condition is 

(2.2) rnXl(j)Xl + mX2(j)X2 + mX3(j)X3 = 0. 

On the shock front, the potential (f> is continuous across the shock front 

(2.3) 0 = </>_(= goo^s), 

because the velocity of the coming flow is constant.  Moreover, the derivatives of </> 
satisfy Rankine-Hugoniot condition 

Since the problem is invariant under the dilation x^ —> aXi,(i = 1,2,3) with 
a > 0, we can introduce the homogeneous noordinates £ = xi/xs,7j = X2/X3 and set 
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<j)(xi,X2,Xs) = x^ip (f1, f2-) to obtain an equation for ip.   Moreover, by using the 

polar coordinates r = (^2 -f rj2) 2,6 = arctan(77/^), the equation is reduced to 

a2((l + r2)iprr + -ipr + -^ipee) 

2 
-((1 4 r2)T/v - n/>)2VVr - -j((1 + r2)Vv - r^e^re 

(2.5) -^Uoo - ^Mo + ^ (^(1 + r2) - r^) ^ = 0. 

Assume that the surface of the conical body is r = 6(0) which is close to a constant 
60, then the boundary conditions for the physical problem is 

(2.6) (1 4 &2)W - jpfo -b^ = 0 

on this surface and 

(2.7) ^ = ^o(=9oo), 

(2.8) ((1 4 s2)7/v - -2 V>0 - #(>)# + s^opoo = 0 

on the shock front. The shock front r = s(9) is a free boundary, which should be 
determined together with the solution ip. The nonlinear problem (2.5)-(2.8) will be 
called (NL) ( or {NL){b(6)} ). 

We emphasize that the boundary r = s(6) is unknown, which should be deter- 
mined together with the potential ip. To overcome the difficulty caused by the free 
boundary, we introduce a partial hodograph transformation T : (r, 9) H-> (p, cr): 

(2.9) 

Its inverse transform is T~ 

(2.10) 

a = 9 
p = il>(r,9). 

f 9 = a 
\ r = u{p,cr). 

In the new coordinates, the shock front becomes a fixed boundary p = I/JQ because the 
potential I/J outside the shock equals a constant ipQ. Meanwhile, the interior domain 
becomes {(p, a) : p < I/JQ} and u{p,cr) becomes the new unknown function which 
satisfies 11(1/10,(1) = s(9) on the shock front. 

The function w(p, a) satisfies a second order differential equation : 

2/     UPP /1    ,      2\   1       -*-       1     ^v -*- Ucr \ a ( TV1 + u ) H + -r-2uP° 2—U^ T-zu™) U* UUp       U^U^ U^Up uzu^ 

,1 + U2 .2Upp 2   A + U2 .Uff .Ha Up<T. 
4( up) -*%■ + -?( m—(-^upp - -^-) 

up u*      u2      up Up   u°   yy      u* 
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1 ul      iw      2ua ul ul 2    1 + u2 ul 
(2.11)         j-f (- + —TUpa ^upp) - -^-^ + -r( UP)-^ = 0- 

w4 u*      up       u^ u*   yy      u6u^     u6     up u^ 

The boundary conditions become 

(2.12) u = 6((7), 

(2.13) (1 + b2{a)) + ^^u* - b(a)pup = 0. 

Besides, on the shock front p = ipo 

u2 

(2.14) ((1 + u2) + -f - upUp)H + upuppoo = 0. 

The problem (2.11)-(2.14) will be called (NL)* which is equivalent to (NL). 
If b(6) — bo, the problem is with a regular right cone and its solution is known, 

see [2]. We will call this known solution as the background solution, and denote the 
corresponding ip = t/^r). We will look for the solution of (NL) near the background 
solution ipsfr). 

As we mentioned in the section 1, we use the method of domain decomposition 
to avoid the situation that the boundary r = b(6) becomes a new free boundary. 
Introduce two constants ri and r2, satisfying 

(2.15) bo<r2<ru    1P20 < ipio < ipo 

where -010 = ^B^i) and foo = ^3(^2)- Then we consider two boundary value 
problems in the interior ring S7a : b(6) <r<ri,O<0<27r and exterior ring 
Qb '• "020 < p < ipO)0 < 9 < 27r respectively. 

equation (2.5)    in    fia, 
(2.16) (NL)^ : {   boundarycondition (2.6)    on    r = b(9), 

ip = d(0)    on   r = ri; 

{equation (2.11)    in    fit, 
boundarycondition (2.14)    on   p = ^o, 
tj) = g(a-)    on   p = foo- 

We will see that the solvability and estimates for the solutions of (iVX)M and (NL)^ 
will lead to the solution of problem (NL) ( and (NL)* ). 

To emphasize our main idea, we assume |ri — fcoMVto — V^ol be so small that the 
comparison principle applies. Otherwise we will have to decompose the domain to a 
set of sufficient small overlapped rings and introduce a corresponding set of auxiliary 
problems to solve (NL). The details can be found in [3]. 

The problem (JVX)W can be linearized at the background solution ^ = 
^B(r),b(d) = 60 and d(8) = ^IQ. The linearized problem for the perturbation ip 
is 

(2.18) LW^ = An^Prr + A22ipee + ^i^r + CiP = f, 

with boundary conditions 

(2.19) (I + bDipr - hip = g       on    r = 60, 
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(2.20) ip = h       on    r = r1. 

The equation (2.18) is elliptic and there exists a unique solution provided |ri — 6o| 
being small. Moreover, the estimates of Schauder type for the solution are available, 
i.e., 

LEMMA 2.1.  There is 5i > 0; such that the solution ofL^ uniquely exists, and 

(2.21) IMIc^I&o.rijO^Tr]  < C'ldl/llc-Ibo.njO^Tr] + hWc^+^iO^Tv) + ||^||c2+«(0,27r)), 

(2.22) ||^||C2+a[6ojri_^;0)27r] < C2(||/||c«[6o,ri;0,27r] + ||^||ci+«(0,27r) + ||^||c0(0,27r)) 

provided \ri — 6o| < ^i- 

Then by the implicit theorem in Banach space, we obtain the existence of solution 
for (NL)^\ In addition, we have the following comparison principle. 

LEMMA 2.2. Denote by (NL)M{b(0),d(0)} the solution of (2.17) and let 
^(r,0) = (NI,)M{&(0),dj(0)}.  Then efc > d1 implies fo^ipi- 

By the same argument we can establish the existence and estimates of the solution 
to the problem (NL)^ in the exterior ring, and also the comparison principle provided 
l^o — ^ol being small. 

Similarly as in section 1, we can establish two sequences {ijj^} and {u^} be- 
ginning from the background solution I/JB- The iteration process is as follows. 

^1)(r,0) = JVLW{6(0)>^fl(ri)} 
u(n\p)(T) = NLW{(Inv(^))(ilj2o,a)}    for    n>l 
^n+i)(r,6) = NLW{b{6),{Inv(uW)){r1,e)}    for    n>l 

Using Lemmas 2.1 and 2.2, we can prove the following facts inductively: 
1. each ilj(n\r,6) and u(n\p, a) are bounded from above and below; 
2. each ^^{ri.O) is in a C2+cx neighborhood of ^(ri), while each i^n)(^2O>0") 

is in a C2+a neighborhood of u3(1/120)] 
3. {^/A71)} is monotonically decreasing with respect to u, while {u^} is monoton- 

ically increstsing. 
Combining these facts we can easily arrive at the conclusion that the sequences 

{i/jW} and {u^} are convergent. The limit functions ip and u are inverse functions 
of each other in the overlapped domain ri < r < r2 (ipio >ip> ^20 )• Therefore the 
original problem (NL) is solved. 

3. Application to a hyperbolic problem. Consider the supersonic flow past 
a more general pointed solid body with a non-symmetrically curved conic surface. 
Since the curved cone does not have straight generating lines, the homogeneous co- 
ordinates does not reduce the problem into a two-dimensional one. We introduce 
instead coordinates 

r = ((^)2 + (^)2)i)  ^arctan^),  z = x3. 

Correspondingly, the surface of the body and the shock front are denoted by r = b(z, 6) 
and r = s(z,0) respectively. Consider the equation in the region b(z,0) < r < s(z,0) 
and employ the transformation t = log z to blow up the vertex, we can change the 
problem into the form 
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(3.1) 
Lx = aooUt + xtt) + cinXrr + 022X00 + 2aoiXtr + ZawXte + la^Xre 

+(ai + 2aoi)Xr + (02 + 2ao2)X0 = 0, 

(3.2) £X = (6 + bt)(x + Xt) + %X6 - (1 + r(6 + 6*)) Xr = 0, 

(3.3) G(x) = [xl + r-2xl + (x* - ^Xr)2] H + (xt - rXr) qoo(H - p^) = 0, 

where x = (p/xs, and where the fact (j) = q^ on the shock front has been employed. 
The equation (3.1) is hyperbolic with respect to t and the method of domain 

decomposition does not work here. Therefore, we use the generalized hodograph 
transformation like (1.11), i.e., 

(3.4) yo = t,  yi = 0,  y2 
r-b + qoo-x 

Under the transformation, it is obvious that the boundary r = b(zy9) and r = s(z,6) 
are transformed to 2/2 = 0 and 2/2 = 1 respectively. Meanwhile, we choose 

(3.5) w(yo-, yi, 2/2) = d(yo, 2/1, r(yo, 2/1,2/2)) 

as new unknown function, where d(t,9,r) = r — b{t,6) + ^00 — x(£j0>r)> r(yoiyi,y2) 
is the inverse function determined by the last equation of (3.4). We notice that the 
choice of the independent variables and the new unknown function is equivalent to 
the combination of the following transformations: 

1) Transformation of unknown function 

(3.6) H(t,e,r) 
r — b 

r-b + qoo- x(t, r, 6) 

2) Partial hodograph transformation 

(3.7) y0=t,y1 = 8,y2 = H(t,r,9) 

3) Transformation of unknown function 

(3.8) u(yo,y1,y2) = (r-b(yo,yi))/y2> 

Therefore, denoting (t,0,r) by (^0,^1^2)5 
IK&tub)) by J) and dj^oy^) by 

9(2/0,2/1,1/2) d{dio,d^,dh) 

J, Xr(r - b) + qoo - x by di, we have 

/I 

(3.9) 

0 
(dbt + dt(r-b))d  \ 

df 
_d     {dbg + de{r - b))d 
di dl 

0      0 dl 

_ d   T 
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The equation (3.1) is then reduced to a quasilinear equation for u 

(3.10) PCJEE    ^   aij(uj,Vuj)ujyiyj+R(uj)VLj)=0. 
2,j=0,l,2 

in the domain (-oo, —T) x [0,27r] x (0,1). Here the relation■(aij) and (a^) is 

(3.11) (a^) = JTK) J 

Therefore, it is easy to see that the generalized hodograph transformation (3.4) 
does not change the hyperbolicity of the equation as well as the time-like direction. 

The corresponding boundary condition on the surface of the body is 

(3.12) Qbu; = MVyU + Rb(uj) = 0   on   2/2 = 0, 

where M = M(Jr)~1, M is the vector formed by the coefficients of V^x m (3.2). On 
the other hand, the boundary condition on the shock front is 

(3.13) Qsuj = G{uj1Uyo)ujy1,ujy2) = 0    on    2/2 = 1. 

We notice here that the relation 

(3.14) V^G-VpGJ"1 

holds, where q,p stand for the arguments V^o;, V^x in the nonlinear functions G and 
Gi. 

The problem (3.9)-(3.11) is a boundary value problem of a quasilinear hyperbolic 
equation with fixed boundary. It can be solved by using Newton's iterative scheme 
combining with the energy method in a suitably weighted Sobolev space. We will use 
the result in the previous section to obtain the the approximate solution used as the 
first term in the iteration process. 

For a given pointed body, we make its tangent cone. This tangential cone is 
generally non-symmetric. The solution of the same upstream supersonic flow passing 
the tangent cone can be obtained by the method in Section 2. When the given pointed 
body and its tangent cone are osculatory at the tip up to sufficiently high order, the 
solution & corresponding to the tangent cone can be taken as the first approximation 
in the linear iteration of the nonlinear problem. By inductively solving the following 
linearized problem 

(3.15) 1,3=0, 
2 

+]Pay(u> + u^dyjUk+i + a(u) + tikfyk+i = fk in 0 < 2/2 < 1, 
3=0 

2 

(3.16) Qb(w + LJk)vk+i = ^Pij dyjVk+i +/?o   a>;fe+i = 9ik on 2/2 = 0, 
3=0 

(3.17) Qaiv+Wktyk+i = Ylnfifdy.Uk+i +70*^+1 = 92k on 2/2 = 1, 
j=Q 
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with UJQ = 0, we can construct a sequence {tj/c}, which is bounded in higher weighted 
Sobolev norm and is convergent in lower weighted Sobolev norm by the energy esti- 
mate of linearized problem. The limit of u 4- ^k is the solution of (3.11)-(3.13). 

We remark that when the above-mentioned high order osculation is not satisfied, 
an additional treatment is necessary. This treatment involves introducing a finite 
power expansion and solving a set of related boundary value problem in order to 
modify the first approximation. The details can be found in [4] and [7]. 

The method of generalized hodograph transformation can also be applied to other 
free boundary problems. For instance, to Stefen problem of parabolic equation in 
multidimensional space (see [8,12]), to the problem of determination of a shock front 
produced by a supersonic flow inside a duct, see [5]. 
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