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MULTIPLE TRAVELLING WAVE SOLUTIONS OF 
THREE-COMPONENT SYSTEMS WITH COMPETITION AND 

DIFFUSION 

HIDEO IKEDA* 

Abstract. Travelling wave solutions of three-component systems with competition and diffusion 
in which the first two species diffuse slowly but react fast than the third species are considered. Under 
the assumption that these systems have two stable equilibrium states, F±, the multiple existence and 
stability of travelling wave solutions connecting P_ with P+ are shown by using analytical singular 
perturbation method and the SLEP method. Velocity of a travelling wave solution surely depends 
on the third species. For the multiple existence of stable solutions, the dependency of its velocity on 
the third species is important. 

1. Introduction. In this article, we study the following 3-component reaction- 
diffusion systems for three competing species: 

{srut     =     e2Duxx + f (u, v) 
,(t,x) eR+ xR, (1.1) 

vt =     vxx+g(u,v) 

where D = diag {l,d} and 

Ul *]    f(u v\= ( ^^'^ \ ^ f ci(l-ui- ai2U2 - aisv)ui 
U2   ) ' V   /2(u^)   / V   K1 ~ ^21^1 - U2 - a23V)u2 

g(u,v) = (1 - asiui - a32U2 - v)v. 

That is, (u,i;)(^,a:) denote the population densities of three competing species at 
time t and spatial position x. Without loss of generality, it is assumed here that the 
intrinsic growth rates of each species are a, b and 1 and the intraspecific competition 
rates of each one (say an with z = 1,2,3) are all one. aij(i ^ j) are the interspecific 
competition rates, which are positive constants, r, d are also positive constants. Here 
we assume that two species -ui and U2 diffuse slowly but react fast relative to the 
third species v. 

(HI) e > 0 is sufficiently small. 

Null sets of the nonlinearities of /i, /2 and g are given in Fig. 1.1. Here we assume 
the following: If the ui species is absent, the U2 and the v species coexist. That is, 
we may say that if the competition between the U2 and the v species is not so strong, 
they can coexist. Similarly if the U2 species is absent, the ui and the v species coexist. 
Thus, we assume 

(H2) a13 < 1, #23 < 1, asi < 1, ^32 < 1. 

Let q- - (1 - a2i)/(a23 - ^21^13) and g+ .= (1 - ai2)/(ai3 - a^a^) be the 
third components of Q- and (2+, and p_ = (1 — a3i)/(l - OLIZ^ZI) and p+ = 
(1 — a32)/(l — 0^23^32) be the third components of P_ and P+ (see Fig. 1.1), re- 
spectively. And we use the symbol /(a ~ b) = (a, b) if a < 6,  = {a} if a = 6,  = (6, a) 
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if b < a. We assume that 1 — ai^co > 0 and 1 — o^stj > 0 for any UJ G I(p- ~ p+) (see 
Fig.2.1). That is, 

(H3) max{p_,p+} < min{l/ai3,1/^23} 

is assumed. Furthermore we assume the one of the following three conditions depend- 
ing on the relation between ai2,0:13,0^21, #23: 

(H4-a) /(p. ~ p+) C (q-,q+)   when max{a2i, I/0L12} < ^23/^13; 

(H4-b) I(p- ~ p+) C (g+,g-)  when c^s/ais < min{a2i, 1/0:12}; 

(H4-c) max{p_,p4-} < min{g_,g+}  when l/a^ < 0:23/^13 < a2i. 

The term (H4) is used in a sense that any condition of the above three is taken. 
Every case of (H4) guarantees both relations 1 — 0:130; > (1 — a23w)/^2i and 
1 - 0:23^ > (1 - QIISU)/OLI2 for any u G I(p- ~ p+) (see Fig.2.1). 

Under the assumptions (H2), (H3) and (H4), the equilibrium states P_ and P+ 

are both asymptotically stable (Fig. 1.1 corresponds to the case satisfying (H2), (H3) 
and (H4-a)). 

FIG. 1.1. Null sets o//i,/2 and g. 
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This system is already discussed by Miller [Ml], [M2] when r = ^ (r is sufficiently 
large). Under the same assumptions in this paper, that is, (H1),(H2),(H3) and (H4), 
he shows the existence and stability of a travelling wave solution connecting the states 
P_ with P+. Furthermore it looks like unique numerically. On the other hand, 
we study the activator-inhibitor system in [IMN] and [NMIF], and show that the 
introduction of small positive parameter er in fornt of ut causes the multiple existence 
of stable travelling wave solutions. Keeping these situations in mind, we solve (1.1) 
numerically for small r. These are shown in Fig.1.2 and Fig.1.3. Fig.1.2 implies 
that (1.1) has two stable travelling wave solutions for small r. For the parameters in 
Fig.1.3, we can find only one stable travelling wave solution. That is, Fig.1.3 denies 
the above assertion. Then what is a difference between these two ? 

U^x) 

U^x) 

FIG. 1.2. Numerical solutions of u\-component of (1.1) with e = 0.01, r = 0.1, a = b = 1.0, d = 
2.0. Two stable travelling wave solutions with au = 1.3, ais = 0.7,0:21 = 0.95,0:23 = 0.8, 0:31 = 
0.8, a32 = 0.5. 

This motivates us to study the existence and stability of travelling fronts con- 
necting the states P_ with P+ rigorously. First, we should note that our system (1.1) 
does not fall into the category of activator-inhibitor systems.  But u will act as an 
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FIG. 1.3. Numerical solutions ofui- component of (1.1) with e = 0.01, r = 0.1, a — b= 1.0, d = 
2.0. One stable travelling wave solution with ai2 = 0.95, 0:13 = 0.7,0:21 = 1.5, 0:23 = 0.5,0:31 = 
0.8, 032 = 0.6. 

activator and v will do as an inhibitor in our analysis.  Our conlusion is as follows: 
Let us consider the velocity of travelling wave solutions of a bistable subsystem 

Tut  =  Duxx +f(u,u;), 

where u is arbitrarily fixed in some interval. When we write its velocity by 8(T;UJ), 

the sign of the derivative ^.(TJCJO) is important, where CJQ satisfies 9(T\LJQ) = 0. That 
is, its sign is negative in Fig.1.2 but that is positive in Fig.1.3. Fortunately, its sign 
is negative definite in the activator-inhibitor system of [IMN]. These basic study will 
be important for pattern formation in higher dimensional spaces. 

We use the following function spaces. Let e and a be positive numbers, 0 < s < 1 
and n be an nonnegative integer. Let 

X;i£(R±) = L e C"(R±) I \\u\\XSc{R±) = £ sup e*l*l| (e^Yu(s)l < °4 , 

X?tS(R±) = {ue X^(R±) I «(0) = 0} ,    X»e(R) = XCT"]£(R_)(J^(11+), 

HS(R) = the interpolation space [iJ1(R),L2(R)]1_s, 

BC(R) = the set of bounded and uniformly continuous functions defined on R, 

(Hn)t(R) = the dual space of Hn(R),    (H')*(R) = the dual space of HS(R). 
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2. Travelling Front Solutions. Introducing the travelling coordinate z = x + 
Qt, we see that travelling front solutions with velocity 0 satisfy 

E2DviZZ - erOuz + f (u, v) = 0 
,2 GR 

^22 -0vz+0(u,i;) = 0 

(u,v)(-oo)=P-, (u,t;)(+oo) = P+. 

To avoid the phase ambiguity, we impose the condition on Ui(z): 

ui(0)=i8, 

where /? is an arbitrarily fixed value in some interval. Moreover, we put 

(U2,v)(0) = (z/jtj) 

(2.1) 

(2.2) 

(2.3) 

for i/ and a;, which will be determined later. 
We devide the whole interval R into two subintervals R_ and R+. First, fix 9, 

v and uo arbitrarily, and look for solutions (u^i^) = {uf ,w^,i'±) of the following 
boundary value problem on each subinterval R± with the aid of outer and inner 
approximations: 

,*€ R± 
f    e2Dufz - ereuf + f (u*, v±) = 0 

vfz-6vf + g(u±,v±)=0 

(n±
>f;±)(0) = (i8,i/,a;) 

L  (u-,t;-)(-oo)=P-, (U
+
,T;+)(+OO) = P+. 

(2.4)d 

Second, we derive three relations between 9, v and UJ through C1-matching of the 
solutions of (2.4)± at z = 0, and solve these relations to obtain 9 = 0(T; e), u = I/(T; e) 
and c<; = c<;(r;6:). 

2.1. Outer Approximations. We assume that z = 0 is only the layer position 
of solutions. This implies that the derivatives of v^ are moderate in the region away 
from z = 0. Therefore, solutions of the following limiting equations of (2.4)± as e I 0 
could become good approximations there: 

,z e R± 
f(u±,t;±) = 0 

v±z-9v±+g(u±,v±)=0 

v~(—oo) = p-^^O) = CJ, i>+(+oo) = p+. 

(2.5)d 

If p_ = p+j (2.5)± have trivial solutions v±(z) = p_ with u = p_. If p_ 7^ p+, we 
choose a; arbitrarily in the interval /(p_ ~ p+) and fix it. Hereafter we assume p_ < 
p+ because the other case is treated similarly. As particular solutions off(\i±,v±) — 0, 
we take the following relations 

f u" = (uf ,w^) = (1 - Q:i3V",0) 
\ u+ = «,4) = (0,l-a23^+). 
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Substituting these into the second equations, we find that (2.5)± are reduced to 

f vz-z-ev-+g(i-a13v-,o,v-) = o,   zeK- 

F+-^++^(0,l-a23F+,y+)=0)    zGR+ (2.6)± 

^ V-(-oo)=p-,V±(0)=oj)V+(+oo)=p+. 

For this equation, we have the following lemma: 

LEMMA 2.1.([IMN, Lemma 2.1])      For any fixed 9 6 R and u e (p-,p+), (2.6)± 
have unique monotone increasing solutions V:

^(Z]61UJ) satisfying 

where <7o = min{cr_,cr+}; cr_ = y/1 — asi and (7+ = y/1 — 0^32. Moreover they satisfy 
(i) V±(z;0,u>) are uniformly continuous with respect to (0,UJ) G R X (p_,p+) in the 
XZ0il(Rrk)'topology, 

w| 

w i 

*.v-m»)-£;v+m») 

*.v-mu)-±v+mu>) 

> 0, 

> 0. 

By this lemma, we directly obtain the following relation which is important for 
the existence and stability of travelling wave solutions. 

LEMMA 2.2.       For any fixed 0 £ R, there uniquely exists co = u)o(9) satisfying 

±V-(0;0,uo(8)) - jV(O;#,u,o(0)) = 0, 

which is a strictly monotone decreasing function of 6 G R and converges to p± as 
0 -> =FOO, respectively. 

Define 1U±(z] 0,UJ) by 

V-(Z',0,LJ) = (U^,U^)(Z;0,UJ) = (1- a13V-{z;0,u),O)    for x G R_ 

U
+
(Z;0,UJ) = (C/1

+,C/2
+)(z;l9,a;) = (0,1 - a23F+(^;6>,a;))    for x G R+. 

We have outer approximations of (2.4)± as (XJ
±
,V

±
)(Z;0,(JJ). 

2.2. Inner Approximations. Since the outer approximations \J±(z]0,u) do 
not satisfy the bounbary conditions at z = 0, we must remedy them in a neighborhood 
of z = 0. For this purpose, it is convenient to introduce the stretched variable f = z/e. 
Substituting (XJ± + u^1, V^) into (2.4)± with remedy terms tr*1, and putting e = 0, 
we have the following problems for ir^f) = (wf ,^)(0: 

JDU^ -r^ +f(U:t(0;l9,a;) + u±,a;) = 0    ,C € R± 

u±(0) = (i8,i/)-.U±(0;fl,a;) 

u±(dboo) =0. 

(2.7), 
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That is, the inner approximations are stretched on the half lines R±.    First, we 
consider the problem on the whole line. 

' DVLI& -0ue + f(u,tc;) = 0    ,££R 

Si(0)=/?' 

u(-oo) = (1 - aisw, 0), u(+oo) = (0,1 - 0:23^). 

(2.8) 

Fix /? G (0,1 - aiso;) arbitrarily. The assumptions (H3) and (H4) imply that (2.8) is 
the bistable system (see Fig.2.1). Then we have the following lemma: 

• stable equilibrium point 

O unstable equilibrium point 

fi = 0 

FIG. 2.1. Isoclines of fi(ui,U2,w) = 0 and f2(ui,U2,(jj) = 0. 

LEMMA 2.3.([K, Theorem 2.1]) For any fixed u G (p_,p+); there exists © 
= Q(LU) such that (2.8) has a strictly monotone solution u(£;tt;) = (ui,U2)(£]w) with 
u^fau) < 0,U2A&«>) > 0- *&u>)-UH0'Mu),u) e (X20jl(R±))2 for some 
ro > 0. 

Define 0J(T;U) by 0I(T;U) = Q(UJ)/T for any u G (p_,p+). When we define the 
linearized operator of (2.8) around u(£;a;) by 

L(p)  = Dptf - ep^ + fuP, 

we know that L(u^)  — 0. The adjoint operator of L, say L*, is defined by 



486 H. IKEDA 

where tA stands for the transpose of a matrix A. For this operator, [KY] showed 
that any non-trivial bounded solution p*(f) = (Pi,P2)(0 of ^*(P) 

= 0 satisfies 
Pl(Orf(O<0foraUf €R. 

LEMMA 2.4.([I, Lemma 2.5])      Q(LU) is a smooth function and satisfies 

dQ{ _ f-00{
aai3U<iPi + ba23U2P2}d€ 

°™ QH + ^    ^3-^3)       ? 

2(l-ai3w)    V  J     ^(l-a^)3/2 

where S > 0. 

Here we arbitrarily fix CJ* G (p-,p+) and define 0*{T) and z/* G (0,1 - 0^23^*) by 
0*(T) = 6I(T',UJ*) and iZ2(0;a;*) = z/*, respectively. 

LEMMA 2.5.([I, Lemma 3.2])       T/iere ea»5te Co > 0 such that for any (0,a;,i/) 
satisfying \0 - fl*(r)| + |a; - a;*| + |z/ - i/*| < CQ, (2.7)± /ia^e wmgwe strictly monotone 
solutions u±(^;r;<9,u;,z/) = (Ctf ,i2^)(^;r;e,a;,i/) G (X20jl(R±))2 5wc/i ^ftat 
(i)      u^^jTjfljO;,*/)   are   uniformly   continuous   with   respect   to   (0,u,i/)   in   the 

(X*0il(Il±))2-topology, 
(ii)   uf(O;r;0*(r)Ja;*,i/*)-u+(O;r;r(r),a;*,i/*)=O, 

(hi)   {^^(0;r;r(r),u;*,i/*) - ^iZ^(0;r;r(r),a;*,i/*)K(0) 

+d{^fi^(0;r;tf*(r)>a;*>i/*) - ^^(Ojrs^M.a;*,!/*))}^^) 

= rfZoi^dOpm+^(0P5(0}^ 
(iv)   {^u(0;r;^(r),a;*^*) - £ti+€(0;r;fl*(r),a;*li/*)}pl(0) 

+d{^€(0;r;a;*>«*(r),i/*) - ^^(Ojrja;*,^^),!/*))}^^) 

= /^{aai3fii(OPi(0 + to23i22(OP2(0}de, 
(v)   {|7%-4(0;r;r(r),a;*^*) - ^^(Ojr;^^)^*^*)}^^) 

+d{^ti^(0;r;»*(r),a;*>i/*) - ^ti^(0;r;e*(r),a;*,i/*))}ri(0) 
= 0. 

2.3. Solutions of (2.4)± on R±. In this subsection, we show the existence of 
solutions of (2.4)±. Fix CQ to be positive and small, and put ECo = {p = (Q,u, v)\\0 - 
0*(T)| + |a;-a;*| + |i/-z/*| < CQ}. For any p = (<9,a;,i/) G ECo, define 

f ir^terjp)   =  U=t(^;0,a;) + u±(f;r;/9) 

I ^'a(z;r;p)  =  ^(zj^o;) + £2 {^(fjrjp) - e-^Wy±(0;r;p)} 

where      YHZ\T\P) = " /L iLi^HO'Au)    +    UHSIT;p)9u>)    - 
g^iO^O.^.oj^dsdt. We will find that (U^IT^XJZJT;/)) are good approxi- 
mate solutions of (2.4)±. Therefore we seek exact solutions of (2.4)± with the 
forms 

f u±(^;r;^p)  =  u^^jrjp) +r±(*;T;e,p) - b^^s^^^jr;^^) 
^ ,^eR±, 

(2.9)± 
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where Y±(z;T\e,p) = t{rf ,rf)(z',T',e,p), b~ = ^(^13,0) and b+ = ^(0^23). Fix 
r > 0 arbitrarily. Substituting (2.9)± into (2.4)±, we define the following operators 
for (r^s1*1): 

/ e
2Diit-eT9ut + f(u±,v±)\ 

with the boundary conditions 

(r±,s±)(0;£)/>) = (r±,S
±)(±oo;£,p) = 0. 

T±(r±,s±) are differential operators from Xe(R±) into y(R±), where 

Xe(R±) = Xls(R±) x Xle(R±) x Xli(R±), 

y(R±) = ^(Ri) x X0
atl(R±) x ^(Ri). 

Here cr is an arbitrarily fixed constant satisfying 0 < a < CTQ. T^r^s^;^,/)) have 
the same properties as in [I, Lemma 3.3]. Thus, we can apply the implicit function 
theorem to 

T±(r±,s±;e,p) = 0, (2.10)± 

and we have the following lemma: 

LEMMA 2.6. There are So > 0,co > 0 such that for any e G (0,£o) and P £ SCo; 

t/iere ercistf (r±,5±)(£,p) G Xe(R±) satisfying (2.10)±. Moreover (r:±:,5±)(£:,p); 

d(r±,s±)/d9(e,p), d(v±,s±)lduj{e,p) and d(r±,oS
±)/du(s,p) are uniformly contin- 

uous with respect to (e,p) G (0,£o) x ^co zrz ^e X£(Il±)-topology and satisfy 

||(r±,5±)(e,p)||^(R±)=o(l) 

||a(r±,S
±)/^(£,p)||l£(R±)=o(l) 

||a(r±
)S

±)/aW(£)p)|U£(R±)=o(l) 

^  ||a(r±,S±)/aI/(e,p)IU,(R±)=o(l) 

a5 £ | 0 uniformly in p e Uco • 

2.4. Travelling Wave Solutions. We construct a solution of (2.1),(2.2) 
and (2.3) in the whole interval R, matching (r"~,s~) (Z;T;£,0,a;,j/) and 
(r+,s+)(z]T;s,9,uj,i') at z = 0 in the C1-sense. For this purpose, we define three 
functions $, \I/ and IT by 

*(r; e; 9, u, v) = e^wf (0; r; 5,0, a;, i/) - £^Wi"(0; r; e, 6>, CJ, i/) 

*(r;e;fl,a;,i/)=e^(0;r;e,fl,a;,i/)-e^^(0;r;e,fl,a;,i/) (2.11) 

n(r;£;<9,^,z/) = ^u-(0;r;e,e,a;,i/) - ^v+(0;r;e,fi,a;,i/) 

and determine 5, CJ and i/ as functions of r and £ such that 

($,*,n)(r;e;fl,a;,i/)=0. (2.12) 
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Setting E as E = {(e,0,u, i/)\e e (O,£o),(0>w,i/) e X!Co}, we know form Lemma 2.6 
that ($,^f,n)(r;£:;^,c<;,z/) is uniformly continuous in E. Therefore, $, * and 11 can 
be continuously extended so as to be defined for E. Setting e = 0 in (2.11), we put 

(*o,tfo,no)(T;0,a;,i/) = ($,*,n)(r;0;fl,a;,i/). 

Then we easily find that 

$o(T;0,a;,z/) = w^(O;r;0,a;,i/) - fZ^(0;r;5,a;, v) 

<   *o(7";0,w,z/) = ifc^(O;r;0,a;,z/) - ii^(0;r;fl,a;,i/) 

w  IIo(r;fl,a;,i/)=y-(O;0,a;)-y+(O;e,a;). 

Lemmas 2.2 and 2.5 show that the relation ($o?*o»no)(r;fl,a;, z/) = 0 is equivalent 
to the conditions 

LJ = CUO(0),        6 = eI(T;u) = 6(u)/T 

and i/ = ^(O;UJ). By Lemma 2.2, we can rewrite u = (JOO(0) inversely as 9 = 6o{w) 
for u G (p_,P4-). We know the shape of the curve 0 — do(w) well. Let us examine 
that of the curve 9 = #/(T;CJ) = 0(cj)/r. By short computation, we find that the 
case (H4-a) (resp. (H4-b)) implies 0^23 > 0:13 (resp. 0^13 > 0:23). In these two 
cases, we know that ©(#-) > 0 and Q(q+) < 0 because the state (0,1 — #230;) is 
dominant when to = g_ and the state (1 — ai3C<;,0) is dominant when LJ = g+ for 
the subsystem erxit = s2D\ixx + f(u,u;). Furthermore we easily find that there exits 
only one CJQ £ -^((7- ~ <1+) such that ©(CJQ) = 0 by virtue of Lemma 2.4 (see Fig.2.2, 
Fig.2.3, Fig.2.4 and Fig.2.5). 

First, let us consider the case (H4-a). If CJQ € (q-,q+)\I(p- ~ p+), there exists 
only one intersection of the curves 9 = 9O{OJ) and 9 — 9I{T\UJ) at which these intersect 
transversally for small or large r > 0 (see Fig.2.2). On the other hand, if CJQ € I(jp- ~ 
p+), there exists one transversal intersection for large r > 0 and three transversal 
intersections for small r > 0 (see Fig.2.3). In the case (H4-b), there exists one 
transversal intersection for small or large r > 0 (see Fig.2.4 and Fig.2.5). Finally, let 
us consider the case (H4-c) in which there are several possibility. When ais > 0:23, 
we know that min{g_,g_|_} = <?_ and ©(#-) > 0, which implies that there exists one 
transversal intersection for small or large r > 0 (see Fig.2.6). When 0:13 < (223, we 
find that min{g_,g+} = g+ and 0(g+) < 0. Then if there exists CJQ £ I{p- ~ p+) 
such that Q{UJQ) = 0, there exists one transversal intersection for large r > 0 and 
three transversal intersections for small r > 0 (see Fig.2.7). For other cases, there 
exists one transversal intersection for small or large r > 0. On the above discussion, 
we used the following property: 9 = 9I(T\UJ) behaves like a monotone function of u 
in a neighborhood of intersections when r > 0 is small or large. But we can not say 
the number of intersections exactly for intermediate r > 0. 

We fix r > 0 small or large and let (#*(T),C<;*(T)) be an arbitrary intersection of 
the curves 9 = 9o{u) and 9 = 0/(T; a;) at which these intersect transversally. Moreover 
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q. p. 13.    % 
.e=0,(x;co)(T«i) 

e=e,( 

FIG. 2.2.   The graphs of 6 = 6o(v) and 
0 = OJ{T\UJ) for small or large r > 0.   UJQ 6 
(q-,q+)\I(P- ~P+) in (H4-a). 

G 
%    P- P+   > 

x'e=e|(T;o))(i:«1) 

6=61 (T;CI)) (T»1) 

FIG. 2.4. The graphs of 9 = ^o(^) a^rf 
^ = 0I{T\UJ) for small or large r > 0. c^o G 
(9-,9+)V(P- ~P+) *" (H4-b). 

FIG. 2.3. T/ie ^rap/is of 0 - 0o(u) 
and 9 = 9J(T\(JJ) for small or large r > 0. 
^0 E I(p- ~ P4-) «w (H4-a). 

0 «*    p. P+    q. 

/G=0|(T;Q))(T«1) 

0=0,(x;co) (x»1) 

0=Gb(co)\ ; 

FIG. 2.5. 77*e prap/is 0/ 9 = Qo(u) 
and 9 — 9J(T](JJ) for small or large r > 0. 
^o € I(p- ~ p+) in (H4-b). 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

we define U*(T) = U2(0;U>*(T)). Then from Lemmas 2.1, 2.2, 2.3 and 2.5, we find that 

$o(r;r(r),a;*(r),i/*(T))=0, ^(T^'W.W^T),!/*^)) = 0, 

IIO(T;(9*(T),W*(T),I/*(T))=0, 

^Uo(T;e*(T),oj*(T),u*(T)) > O.^noCrj^M.w'Cr),./'^)) > 0, 

|;no(r;6l*(r)>w*(r),i/*(T))=0, 

f$o(r;^(T)^*(T),^(r))pI(0) + d^*o(r;r(T),a;*(r),^(TM(0) 

= /^{aaistiUOPKO + ba23u2^)pm}^, 

^*o(T;e*(r)>a;'(T),i/*(T))pi(0)+d|;*o(T;«*(T),w*(r),i/*(r))p3(0) = 0l 

£(9/(r;a;*(r))-£Mw*(T))^0. 
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% q. ^ 

\e=eb(G)) 

^e,^;©) (T«1) 

p+ %. *. 

:ei(t;0))(T»1) 

FIG. 2.6. The graphs of 6 — do(u) and 
0 = 0J{T\UJ) for small or large r > 0. ais > 
a23 and UQ 0 I(p- ~ £>+) m (H4-c). 

FIG. 2.7.    T/ie praj?/i5 o/ ^ = d0(a;) 
and 6 = 9I(T',LJ) for small or large r > 0. 

These imply that 

det{    6(0^u)    {T;e {T)^ {TU (r))}  = 

+fi2,€(Ori(0}de {£*/(*-;a;*(T)) - ^o(a;*(r))} M(0) 7^ 0. 

Here we used the relation -I^^Q(T',Q*(T),(JO*(T),V*(T)) 7^ 0. Therefore we can apply 
the implicit function theorem to (2.12) and we have the next lemma. 

LEMMA 2.7. Let (#*(T),6J*(T))  be an arbitrary intersection of the curves 
0 — 8Q(UJ) and 9 = 9j(r;uj) at which these intersect transversally,and define iy*(r) = 
U2(0;UJ*(T)). Then there is SQ > 0 such that for any e G [0,£o)> there exist 9(T\E), 

oj{T\e) andv{r\£) satisfying 

and 

($,*,n)(r;e;fl(r;e),a;(r;e),i/(r;e))=0 

Yim9(T\e) - 0*(T), lima;(r;e) = a;*(r), limi/(r;e) = i/*(r). 
£4-0 £4-0 ^4-0 

We obtain our results. 

THEOREM 2.8. Suppose that (H1),(H2),(H3)  and (H4) hold.    When UJQ G 
/(p_ ~ p+) m (H4-a) or ais < a23 ano? UJQ E /(p- ~ p+) in (H4-c), where UJQ satisfies 
Q((JOO) = 0, ttere is £o > 0 such that for any e G (0,£o), there exists 9 = 9i(T\e)(91 < 
92 < 9sy9i9s < 0) such that the problem (2.1), (2.2) and (2.3) has three solutions 
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(ui, Vi)(z;r;£) with velocity ^(r;s) ->> 0*(T) as e I 0 /or sraa/Z r > 0(z = 1,2,3), 
on/y one solution for large r > 0.  For o^/ier cases m (H4), the problem (2.1), (2.2) 
and (2.3) has only one solution for small or large r > 0. 

3. Stability. By the travelling coordinate system (t,z) = (t,x + Ot), (1.3) takes 
the form 

{erut  = e2Duzz - eT6nz + f(u, v) 
,{t,z) GR+ XR. (3.1) 

Then, the travelling front solution (u,v)(z;£) obtained in the previous section is a 
stationary solution of (3.1). Here we will study the stability of this stationary solution. 
For this purpose, it is enough to examine the distribution of isolated eigenvalues of 
the following linearized eigenvalue problem of (3.1) around (u,u)(z;£): 

CTAW = s2Dvtzz - ST6vfz + fu(^)w + iy{z)y 

< ,zeR (3.2) 

, Ay = yzz - 0yz + g£
u(z) • w + g£

v(z)y 

and (w,2/)(z;e;A) G (£C(R))3, where w = t(w1,W2), u = t(uuU2), f = *(/i,/2), 

p/^x  ^   /" /imCii^je),!;^;^))    /itia(u(^;e),t;(^e)) \ 
u^ ; V ^xK^e),^;^))    /2u2(u(2;£),i;(2:;£)) y ' 

and the other functions fy(z), g^iz) and gl(z) are similarly defined. • means the usual 
inner product in R2. 

We define the operators L£ and L£'* by 

L£w = s2Dwzz - eT0wz +' fu(^)w    and   i/'*w = £2Dw22 + ST9WZ + tfS(z)w, 

respectively. Let {C£, ^} (resp. {Cn*» ^n*}) ^e eigenpairs of the eigenvalue problem 

L^ = ($, zen (        f L^*r = c*r, z e R 
0, ^, <f)zz  €SC7(R),       lreSp' 1   0*, </>*, ^  €BC(R), 

where {0^} and {<^*} are normalized as   ||^||L2(R)   = 1 and < <^,<^'* >L2(R)= 

1 (n = 0,1,2,...). Assume that ReQ^ < ReQ (n > 1). Then we easily find that 

C*   =  ft    (n > 0). 

LEMMA 3.1.       {C^} satisfy the following properties: 
(i)   -Re^o   =  sL(s)   and  ImQ   =  0(6) as e —>- 0, ^/iere 

L(0)  =  -{6l*(r)(a;*(T)-p_) 

-J0   g(V-(z;e%T),U*(T))tV-{z;e*(T),U%T)))dz^(U*(T)). 

(ii)    T/iere are So > 0 and do > 0 5uc/i £/ia£   i?e^   <   —do   /or any e G (0,£o) 
n> 1. 
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We can prove this in a way similar to that of Lemma 3.2 in [NMIF], so we omit 
it. 

REMARK 3.2. The sign of 1,(0) is not definite (cf. [NMIF, Lemma 3.2]). In 
fact, 

sgn{L(Q)} =  -^{^(^(r))}, 

where sgn{a} = 1 for a > 0, = — 1 for a < 0, = 0 for a = 0. 

Suppose that there is an isolated eigenvalue A G Cd0 = {A 6 C|i?eA > -do} 
(do > 0) of (3.2) with the corresponding eigenfunction (w,y)(z;£;A) G (i?C(R))3. 
Then (w,y) must decay with the exponential order as \z\ -» oo by (H2),(H3) and 
(H4). This guarantees us that we will be able to work in much more convenient 
Hilbert spase iJ1(R) for isolated eigenvalues. Applying the SLEP method which is 
developed by Nishiura and Fujii [NF] (see also [T]), we will calculate the distribution of 
isolated eigenvalues of (3.2). Let E£ be the set of all eigenvalues of (3.2) for e G (0, eo). 
Lemma 2.1 in [NF] says that Q/sr £ 17 for e G (0,£o)- Then we can solve the first 
equation of (3.2) with respect to w for A G C^o H S£: 

w =■(£* - erXrH-tty). 

Let P£ be the projection operator onto the eigenspace {</>o}* 

and decompose (L£  — erX)"1 into two parts 

(L£  - erXyH-)  =   ^-i-^O)  + (Le  - £rA)t(.). 

Then we know that there exists a positive constant M satisfying 

\\(L£  - 6rX^\\L2{n)_L2{K)   <  M 

for any s G (0,£o)> A G Cd0 fl S£. w is represented explicitly as 

w =  - ^jj^hrtt - (Le - ^A)t(f^). (3.3) 

Substituting (3.3) into the second equation of (3.2), we have the eigenvalue prob- 
lem with respect to y G i/'1(R): 

V** - Vy* - <S-fiA>^u • *6 - && - erXy(f£y) +g£
vy = \y    ,* G R.     (3.4) 

The core of the SLEP method consists of the following two key lemmas, which char- 
acterize the asymptotic behaviours of the second and the third terms of the left-hand 
side of (3.4). 

LEMMA 3.3. (The first key lemma.) ([T, Theorem 2]) For any y G I/2(R) and 
any s £ (0,1/2) , 

(L£  - erA)t(f^) —> (fg)-1^y) as e -+ 0 
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strongly in (iIs)tf(R)-sense and uniformly in A G Cdo; where 

f" = ( hZU   hllU ) ' f° = ^^W'^W)' * = V^'V^izU e R±. 

Moreover, the above convergence is uniform on a bounded set in Cd0 x I/2(R). 

LEMMA 3.4.(The second key lemma.) ([NF, Lemma 2.3])      As e -+ 0, 

(i)     ^n-tr -»• ^(w*(r))io, 

(ii) Tf^-^g   —>   [ff(0,l-«23W*W.w*W)-5(l-ais«*W,0,W(T))]ao 

m (f/'1),J(R)-5en5e uniformly for A G Cdo; w/iere JQ — ^(^) ^ a Dime's 5-function 
atO. 

Then we can take the limit e -> 0 of (3.4) in (iJ1)^!!), and get the singular limit 
eigenvalue problem (SLEP): 

yzz - nr)yz - ci$^TSo - gKO-^y + 90
vy = *y,y£ ^(R),        (3.5) 

where 

c*  =  ^(cj*(T))[g(0,l-a23u*(T),uj*(T))-g(l-a13uJ*(T),0,oJ*(T))}, 

which is identical to the relation 

yzz - e*(T)yz - ?$0Y5O + det*y =  Xy, y G H^B*), (3.6) 

where 

det* = g0
v - g0

u(i
0

urX < 0, 

and g^ and g® are defined similarly to f£ and f°. Without loss of generality, we 
can normalize the limiting eigenfunction y as < y,6o >= 2/(0) = 1. Then (3.6) is 
equivalent to the following equations: 

itv* -e*(T)£y±+ det*y± = ^y*. y±e^(K±) 
y-(0)  =  1  = y+(0) (3.7) 

£y+(0) - &v-{0) - T^X, 

where 

c* 
1,(0) - rA 

[g(0,l-a23^(T),(>;*(T))-g(l-ai3a;«(T),0,t«;*(T))] 

^    5(yr^;W*(r)),t/2-(^;W*(r)))y-(z;a;*(r)))^-TA/^(a;*(r)) 
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To get an information of the dependency of A on e > 0, we convert the SLEP equation 
(3.5) into the equivalent transcendental equation. Let us introduce the differential 
operator T*'7"'* : tf^R) -> (^(R); 

Tx^  =  -&+^+fli(ie-erA)t(^.)-^ + A. (3.8) 

LEMMA 3.5. ([NF, Lemma 3.1],[NMIF, Lemma 3.6]) There exists a positive 
constant eo such that the differential operator T^'r' has a uniformly bounded inverse 

K^Tl : (if1)^(R) —>• i^1(R) for any e G (0,£o)> which is continuous on e G [0,eo) 
anrf analytic on A G C in £/ie operator norm sense. 

(3.4) is rewritten as 

rA    y = "   Cs_£rX   du'to- 

Then, applying the operator i^,T'   to this equation, we have 

V  =  -^I'llf*KxT'8(9l ■ tt/yft, (3-9) 

which imples that y is a constant multiple of Ke
x
,r' (g^ • (fro/y/e), that is, for a constant 

a 

y = aK^^-^ly/i)  Z&(R). (3.10) 

Substituting (3.10) into (3.9), we see that a nontrivial solution y of (3.9) exists if and 
only if A satisfies the algebraic-like equation 

?-TA =  (AT'Ofc-^),-^). (3-11) 

Then we put 

H^rAe)  =  f -rX-fa*'9 (&.$),-%!$-) = 0. (3.12) 

Lemmas 3.1, 3.4 and 3.5 guarantee us to be able to take the limit e -» 0 in (3.12). 
Thus the limiting equation is give by 

FO(\;T,0*(T))  = F(\;T,e*(T),0) = L(0)-T\ + c* <KO
x'
T'e'{T)5o,6o>=0. 

(3.13) 
Applying the same method as in the proof of Lemma 3.7 in [NMIF], we can show 
that ^(A; r, 0*(T)) = 0 has no complex roots in Cd0. In order to examine real roots, 

we put G(A;T,0*(T)) = -c* < i^'r,r(r)Jo,£o >. Then we have the next lemma. 

LEMMA 3.6. ([NMIF, Lemma 3.8]) If L(0) = 0, G(A;T,0*(T)) = 0. Suppose 
that L(0) T^ 0. G(A;r,0*(r)) is a strictly monotone and convex function of real 
X for X   >   -do,   and satisfies G(O;T,0*(T))   =  L(0)  and   lim G(A;r,r(r)) = 0 

A—>oo 
(see Fig.3.1 and Fig.3.2). 
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y=L(0)-x>, 

FIG. 3.1. The graphs ofy = G(A;T, 

and y = 1/(0) — rA when L(0) > 0 

-do y 

"(r)) FIG. 3.2. The graphs ofy = G(A;T,^*(T)) 

and y = L(0) — rA when L(0) < 0 

If 1/(0) < 0 (i.e., |§(w*(r)) > 0), (3.13) has only the zero solution which comes 
from the translation invariance. On the other hand, if 1/(0) > 0, there exist two 
solutions. One is the zero and the other is called the critical eigenvalue. We denote 
this by A*(T,0*(T)) (see Fig.3.1 and Fig.3.2). For the sign of the critical eigenvalue, 
we easily have the following lemma: 

LEMMA 3.7. 

sgn{\*(T,e*(T))} = sgn{- -r-^G(0;r,r(r))}. 

REMARK 3.8. ([NMIF, Theorem 4.1]) 

d 

Furthermore we know that 

sgn{- dAG(0;r,fl*(r))} = sgn{— MW*(T)) JJMT-VM)}. 

Then we know that 5^n{A*(r,r(r))} = sgn{£0o(w*(T)) - £^(r;a;*(r))}. 
Using the technique similar to that in [NMIF], we can also solve the equation (3.12). 

THEOREM 3.9. For small e > 0; the following holds: (3.12) has only the zero 
solution when 1/(0) < 0. When L(0) > 0, (3.12) has two solutions. One is the zero and 
the other is a critical solution A(£;T,0(T;£)), which satisfies lim^-^o A(e;r, #(T;£)) = 
X*(T,e*(T)) and sgn{X(e;T,9(T;e))} = S5n{£^o(a;*(r)) - £0/(T;W*(T))}. More- 
over (3.12) has no other solutions in Cd0. 

COROLLARY 3.10. Suppose that (H1),(H2),(H3)  and (H4)  hold.     When 
uo G I(p- ~ p+) in (H4-a) or ais < a23 and UQ G I(p- ~ p+) in (H4-c); for small 
r > 0 (\ii,Vi)(z;T]€)(i = 1,3) are stable and (\i2,V2)(z]T;e) is unstable. For other 
cases in Theorem 2.8, the unique solution is stable for small or large r > 0. 

Our numerical example Fig.1.2 corresponds to the case when OJQ G I(p- ~ p+) in 
(H4-a) and Fig. 1.3 does to the case (H4-b). 

4. Concluding Remarks. We considered two-component activator-inhibitor 
systems in [IMN] and [NMIF] and showed that there always exist three travelling 
wave solutions,two of them are stable and one is unstable, for small r > 0 when 
coo G I(p- ~ p+)(9(cJo) = 0). But not only the smallness of r but also the sign of 
f^(wo) is important for our system. That is, the condition §^(^0) < 0 is necessary 
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in the case of p_ < p+. (Similarly the condition f^(^o) > 0 is necessary in the 
case of p- > p+.) Comparing Fig.2.3 with Fig.2.5, this reason is clarifed mathe- 
matically. But we don't know this necessity ecologically. This is a future problem. 
Indeed, the sign §^7(^0) is not changeable and always negative in two-component 

activator-inhibitor systems [IMN]. On the other hand, the positive sign of f^(^o) 
plays interesting phenomena for the same problem in 2-dimensional space. For this, 
we will show somewhere. 
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