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STABILITY OF TRAVELING CURVED FRONTS IN A CURVATURE 
FLOW WITH DRIVING FORCE* 

HIROKAZU NINOMIYAt  AND MASAHARU TANIGUCHI* 

Abstract. This paper is concerned with asymptotical stability of traveling curved fronts to a 
mean curvature flow with a constant driving force term in the two-dimensional Euclidean space. Our 
first result shows that, if a suitable bounded perturbation is added to a traveling curved front, it does 
not recover its shape at any positive time. This fact implies that boundedness of given perturbations 
is not enough for asymptotical stability. Then we prove that, if a given bounded perturbation decays 
at infinity, the perturbed traveling curved fronts always recover their shapes as time goes on. This 
fact holds true for any large perturbation if it decays at infinity. 

1. Introduction. Pattern formation is one of the most attractive fields in ap- 
plied mathematics. Since traveling waves play important roles on the pattern for- 
mation, many researchers have studied them. Traveling waves in an one-dimensional 
media or planar traveling fronts in the plane seem to be mainly investigated so far. 
Fife [6] studied corner layers in the Allen-Cahn dynamics, which gives a first step to 
study traveling waves with more complicated shapes. 

This paper is concerned with the asymptotical stability of traveling curved fronts 
for a curvature flow with a constant driving force term in R2. Let D(t) be a domain 
(connected open set) in R2. Define r(t) = dD(i). Let 1/ be the normal vector on r(t) 
pointing from D(t) to D(t)c. The curvature H is given by H = —divi*. A pair of 
(JT, 1/) is often called an interface or a phase boundary. We study the traveling curved 
fronts of the following equation 

(1.1) V = H + k. 

This equation appears in the several fields. For example, this equation describes the 
phase boundary in in the Belousov-Zhabotinsky reaction ([1], [2], [5] [8]), and also 
in the Allen-Cahn model in Chemistry ([6], [3], [11]). It also describes the motion of 
filamentary vortex of the Ginzburg-Landau model if it is confined in a plane ([5]). 

In this paper we are interested in traveling waves with non-simple shapes, and we 
study the stability for the simplest one as a first step to study that of more complicated 
ones. 

If r(t) is represented by the graph y = u(x,t) with D(t) = {(x,y) | y < u(x,t)}, 
(1.1) is rewritten as 

(1.2) ut = -^+kVlT^x. 

If the traveling front is represented by 'ix(x, t) = (p(x) + ct for the suitable coordinate 
where c is a speed of the traveling front. Then (p and c satisfy 

(1.3) c=-^ + kJTTvl. 
'      r X 

This equation (1.3) has a special solution called V-form waves or traveling curved 
fronts ([1], [2], [8], [9]). 
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FIG.   1.1.      The graph  of a traveling  curved front.     The  dotted lines represents y   — 
Wc2-k2lk)\x\ + b + ct. 

PROPOSITION 1.1 ([9]) For c > k > 0, there exists a solution <p(x]c) of (1.3) 
with ^(0;c) = 0, ^(Ojc) = 0. The graph of y = <p(x]c) can be parametrized by 
6 = aicta,n<px(x]c) as 

(1.4) X{e;C):=c + ^^WlOS 

/c + A;       $ 
l + i/_taa- 

c+A;       9 
 rtan « c-k       2 

for 9 e {-00,00), where 0o := arctan(\/c2 - k2/k) € (0,7r/2) (see Fig. 1.1 ). 

We denote the interface defined by <p by 

TF±(*;c,aro,ffo):={(a?(«;|c|)+aro,±y(«;|c|)±|c|* + »b) I -0o<0<0o}. 

In [9, Theorem 1.2], all the traveling waves are classified into the following three types: 
lines, stationary circles and traveling curved fronts TF±(£; c,Xo,yo)' This fact suggest 
that traveling curved fronts play an important role for (1.2). 
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Hereafter we assume 

0 < k < c. 

We consider the stability of traveling curved fronts. We study (1.2) with an initial 
condition 

(1.6) u(x,0) = ip(x',c) + il>(x). 

Here ip(x) is a given perturbation. We introduce 

BC1 := | ip(x) e C^M) | sup |^(x)| < oo, sup 1^(^)1 < oo I. 

If the given perturbation is unbounded at infinity and change the asymptotic lines 
of y — (p(x)c), then the solution may converges to another traveling curved front 
y — (p(x; d) with a different speed. For bounded perturbations, it is easily seen that 
the traveling curved front y = ip{x)-\-cb is stable in L00(R). So, we concentrate on the 
asymptotical stability for bounded perturbations. If ^{x) G BC1, then the Cauchy 
problem (1.2)-(1.6) is well defined and has a unique classical solution up to t = +oo. 
For the proof see [9]. See also [7] and [4]. Deckelnick, Elliott and Richardson [5] 
studied the stability problem in the half plane equipped with a boundary condition 
on the y-axis. Unfortunately only restricted perturbations are studied. 

We should study more general perturbations including the ones with non-compact 
supports, which gives us a difficult problem, that is, what perturbations are admissible 
for asymptotical stability. This stability problem is not simple. In §4 we present an 
example where the given perturbation is bounded in BC1 and the solution u(x,t) 
does not converges to ip(x] c) + a + ct for any a. So we have to add another condition 
for ip(x). The following is the main assertion in this paper. 

THEOREM 1.1 For any given ip(x) G BC1 with lim^i^oo ^(x) = 0, the solution 
u(x,t) of (1.2) with an initial data 

u(x, 0) = (p(x; c) + ip(x) 

converges to ip(x;c) + ct in L00(R) as t —> oo. Namely, for any given e > 0, there 
exists a positive constant T such that 

sup     \u(x, t) — ((/?(#; c) + ct)\ < e 
— oo<a:<oo 

holds true for all t > T. 

That is, the traveling curved front y = ip(x] c) + ct is asymptotically stable for 
all ^(x) G BC1 which decay at infinity. This implies the asymptotical stability of 
y = (p(x] c) + ct globally in space. 

We also remark that if 

lim   ip(x) = p± 
x—>±oo 

exist, then u(x, t) converges to (p(x — XQ; C) + ct + yo, where 

fe(p- -,p+) m    P++P- 
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This paper is organized as follows. In §2 we study the asymptotical stability for 
traveling curved fronts locally in space. In §3 we prove the main theorem. In §4 
we present an example where the given perturbation is bounded in L00(R), and the 
solution u(x,t) does not converges to <p(#; c) + a + ct for any a. 

2. Asymptotical stability locally in space. Let y = ip(x;c) be the traveling 
curved front as in Proposition 1.1. Hereafter we denote it simply by y — (p(x). In this 
section we study the asymptotical stability of y = ip(x) locally in space. 

Define 
W.T 

L[u] := ut - —^ - VT+v*. 

We call w+(x, t) a supersolution if L[w+(x, t)] > 0 for x G M and t > 0. A subsolution 
w_(x,t) can be defined similarly by using L[w_(x,t)] < 0 instead of L[w+(x,i)] > 0. 
We search for a supersolution and a subsolution of the following form 

w± fa t) = —77T^(a± W^) + ct + P± W cx±{t) 

with suitable a±(t) and P±(t). 
We begin with several lemmas. 

LEMMA 2.1 The following properties hold true for <p(x). 
(i)   The following asymptotic estimates 

>X(X) = ± v^IEZ + Q^-cSttiM/k)       asx__ ±00} 

tpfr) = ^     k2\x\ + b + 0{\x\e'cV^r:]SI^k)        asx->±oo 
k 

hold {see Fig. 1.1 ), where 

Vc2 - k2 Vc2 - k2      1        2(c + /c)      ^ 
6 := ; arctan log —  < 0. 

ck k c c 

(ii) A function x(px(x) — <p(x) is strictly monotone increasing in \x\ with 

0 < Xipx(x) — yfa) < \b\       for all x G M, 

{xipx{x)-ip{x)}\x^ = Q, 

lim (x^x{x) - ipfa)) = \b\. 
\x\-^oo 

(hi) A function c — k^/l + (px(x)2 is strictly monotone decreasing in \x\ with 

{c - ky/l + (px(x)2}\x=o = c - k, 

lim (c - ky/l+*px(x)2) = 0. 
|a;|—>oo 

(iv) For 0 < a < 1, ip(x) — a~l^p{ax) is strictly monotone increasing in \x\ with 

0< (pfa) ip(ax) <\b\\ 1 ) /or0<a< 1, x G M. 
a \a       J 

For a > 1, a~1(p(ax) — ip(x) is strictly monotone increasing in \x\ with 

0 < -ip(ax) - <p(x) < 161 (1 - - ) fora>l,xe E. 
a \       a J 
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Proof. The first statement (i) is a direct consequence from [9, Proposition 2.5]. 
For the second statement (ii) we use 

(x(px(x) - (p(x))x = xipxx(x), 

and 

Vxxix) > 0       for a: E M. 

See [9] for this proof. Then we have 

(x(px(x) - <p(x))x > 0 if x > 0, 

(x(px(x) - (p(x))x = 0 if x = 0, 

(x(px(x) - (p(x))x < 0   if x < 0. 

Using (i) we obtain (ii).   Since 1^(^)1 is strictly monotone increasing in |x|, the 
statement (iii) follows. For a > 0, we have 

^u ^(x) - -<p(aa:) =  /   — ( 7v(^a;) ) <% 

-f J ex. z \ixyx{£x) - ipdx)) di. 

Then using (ii) we obtain (iv).     □ 
We search for a supersolution and a subsolution of the following type: 

1 

We set 

Then we have 

w[x, t) = —-v(a(t)x) + ct + /?(*). 
a(t) 

z = a(t)x. 

L[w} = wt 
wx k^/TT wi 

(2-1) 

1 + wl 

= ^(zMz) - <p(z)) +c + Pt- ^zz% - kj\ + ipx{zy 

= 4 ^«(«) - v(«) + -—— C-A;\/I+^w2 + ^— • 

We define it>±(:r,i) as follows. 

(2.2) 

(2.3) 

where 

w+(x,t) = 

w_(x,t) = 

«+(*) 

a_(t) 

^(a+(t)a;)+/3+(i) + ct, 

¥»(a_(t)a;)+/9_(*) + ct, 

/3+(t) 

«-(*) 

= 1 - 5e-7i, 

1 
= a 

a+(t) 

= 1 + 66-^, 

-1    + 1-8    ' 

(H-g)g 
1 + 5    ' 
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We also define 

(2.4) S(7,«) :=       inf       {z<pz(z) - <p(z) + ^—^-(c - ky/l + Vz(z)2)}. 
—oo<z<oo  L 'Y J 7 

By Lemma 2.1 (ii) and (iii), we have 

0<S(7,«)<|6|, 
lim 2(7,5) = |6|. 

7—»-f-0 

Then we have the following assertion. 

LEMMA 2.2 //a,7,6 satisfy 

(2.5) 7>0,    0<<T<E(7,<S),    0<«<1, 

then w±(x,t) defined in (2.2) and (2.3) are a supersolution and a subsolution to (1.1), 
respectively. Moreover one has 

w_ (x, 0) < (^(x) < iu+ (x, 0)        /or all x eR, 

and 

lim   |'u;±(x,0) — (p(x)\ = 0. 
|x|—>CXD 

Proof. Substituting a±(t) and ^±(t) into (2.1) yields 

L[W±) = ±^^{zVz(z) - <p(z) + ^-{C - ky/l + <pM2) - ^}- 

By Lemma 2.1 (ii) and (iii), £(7,8) > 0. If 0 < a < £(7,8), 

a±(t)2 

zipz(z) - <p(z) + ^^^(c - ky/l + ipz(z)*) -<T> E(7,8) - a > 0. 
7 

Thus Wj. is a supersolution and a subsolution, respectively. 
Next we study for w+(x, 0) - <p(x). We have 

ti;+(x,0) - (^(x) - j^v((l " W - <P(*) + j^- 

By Lemma 2.1 (iv), 

w+(x,0) - (p(x) > 0 

follows. Similarly, we have 

w.(x, 0) - <p(x) = Y^V((1 + S)x) - ^x) - J^ < 0. 

The estimate lim|x|_00 \w±(x,0) - (p(x)\ = 0 is a direct consequence of Lemma 2.1. 
D 
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By Lemma 2.1 (iv), 

/     x       ,     N Sae-i*        (\b\ - a)6 
(2.6) 0 < w+(x,t) - ip(x,t) -ct< 1 _ Se_it + "[_$    , 

(2.7) o<V(x>t) + c*-Mx,*)<I^ + ^^. 

Then we have the following theorem. 

THEOREM 2.1 (ASYMPTOTICAL STABILITY LOCALLY IN SPACE) Let e > 0 be 
arbitrarily given. If 8,7, a satisfy 

(2.8) 0<g<2|6|-g2<7 + £'    0<ff<Sfr>*)>    ^>0' 

anrf u(x, 0) G -BC1 satisfies 

w_(x,0) < u(x,0) < w+(x,0)        x e R, 

t/ien t/iere exisfe TQ > 0 sitc/i ttat 

sup \u(x, t) — (p(x) — ct\ < e 
X 

fort>To. 

Proof From the assumption on 6, 7, <j, we have 

max{    i_5    '     1 + s    /<2- 

Then Theorem 2.1 follows from Lemma 2.2 and the the Phragmen-Lindelof maximum 
principle [10, Theorem 10, Chap. 3].     D 

Thus the traveling front TF± (£; c, XQ, 2/0) is asymptotically stable locally in space. 

3. Asymptotical stability globally in space. In this section, we study the 
stability of traveling curved fronts for more general initial condition, and prove The- 
orem 1.1. Define 

BC^ := \IJJ(X) eC^R)! sup|^(a;)| < 00, sup\ipx(x)\ < 00,  lim ^(x) = ol. 

LEMMA 3.1 For any e > 0 and any ip(x) G BCQ, there exists a constant Si G (0,1) 
such that 

(p(x) + ipix) < -(p((l - 6)x) + -LL + e       for allxeR and0<8 < 61. 
l—o l—o 

Proof From the assumption on ip(x), there exists sufficiently large Ri > 0 with 

\ip(x)\ < £       for all |a;| > Ri. 
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We have 

T3T<P((1 - S)x) + T^ ~ V^) > 0        for a11 x € R 

from Lemma 2.1. Thus we get 

(p(x) + ^(x) < Yzrjjvtt1 ~ SW + 1^7 + e     for lxl > jRl- 

For |x| < Ri, we have 

^^((1 - 5)x) + ^ - <p(x) - iP(x) 

>-1-^(1-S)R1) + -^-<p(Ri)- max |^)| 
1 — 0 1 — 0 |x|<i?i 

by Lemma 2.1 (iv). The right-hand side goes to +oo as 6 —> 1 - 0 by virtue of 

lim   -!—v((l-6)R1) = 0. 

Thus we can choose <Si E (0,1) sufficiently close to 1 such that 

ip(x) + ij{x) < T3T^((1 - 5)x) + ^7        f0r IX| - ^ and 5 e (0'(51^ 

Combining the two inequalities stated above, we complete the proof.     D 
For any given e > 0 and ip(x) G BCQ, 6+, a+ and 7+ are chosen such that 

(3.1) 0 < 6+ < minj      g      ,gi|,    0 < a+ < E(7+,fi+)»    7+ > 0 

hold true. Let w+(x,t) be defined as in (2.2) with (5,7,(7) = (£+,7+,<7+). % Lem- 
mas 2.2 and 3.1, w+(x,t) is a supersolution with ifc(a;,0) < w;+(a;,0). Then by the 
comparison principle, we have 

ix(x,t) < w+(x,t) 

where it(a;, t) is the solution of (1.2) with n(x, 0) = w{x) + ^(x). By (2.6), we see that 
there exists T > 0 satisfying 

(3.2) tz(a:, *) < (p(x) + ct + 2e for x G R, t > T. 

This gives an upper estimate for u(x,t). 
Next we consider a subsolution, and search for a lower estimate to prove the 

global attractivity of the traveling curved front. We cannot obtain a lower estimate 
by a parallel way to get (3.2) unfortunately. We need the help of another subsolution, 
which contacts the y-axis tangentially. For this purpose, we use the following another 
traveling curved front. 

LEMMA 3.2 ([9]) For c > k > 0, (1.3) has a unique solution ip*(x\c) that is 
tangential to the y-axis in the half plane {x > 0} with ^*(0; c) = 0. More exactly, the 
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FIG. 3.1. The graph of y = ip*(x',c). The dotted line represents y = (Vc2 — k2/k)x + b*. 

graph y = <p*(x]c) is parametrized in terms of 6 = arctan(^*(a;;c) £ (0o,7r/2) as 

(3.3)   x*(9y.= ^r^ + 
k 

2c        cVc2 - fc2 log- 

c+fc+    6' 
^fctan2+1 

c + fe 
c — k 

-1 

Vs Ic + k 
c — k 

+ 1 

/« .x     *//»x          1,     k — ccosO (3.4)   y*(0):=--log . 

Here 6o is as in Proposition 1.1. 

We denote ^*(|aj|;c) simply by <p*(x).  Then it is an even function defined for 
x £ R. The function (p*(x) possesses the following properties (see Fig. 3.1). 

LEMMA 3.3 The following properties hold true for <p*{x). 
(i) (p*(x) satisfies 

lim  \Ax\<p*Jx) = ±V2k 
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and also 

^(x) = ±^       fc2 + 0(e-c^^^|a;|/fc) ^^ ^ ±oo^ 

<p*(x) = >/c2
y   

fc2|a;l + Odxle-0^1^^^)        as x -> ±00. 

ifere 

\/c2 — A:2 /TT \/c2 — A:2\      1,     c(c+ \/c2 — A:2) 
6 :=-^r-(2-arctan^^J + clog  2^-^)   >0- 

(ii) A function (p*(x)—x(p*(x) is strictly monotone increasing function in \x\ with 

0 < <p*(x) -x(pl(x) <b*       forx 6 (-oo,0) U (0,oo), 

lim((p*(x)-x(p*x(x)) =0, 
x—»0 

lim (^*-^(^)) =6*. 

(iii) A function ky/l + (fxi00)2 ~ c ^s strictly monotone decreasing in \x\ with 

lim (ky/l + y%{x)2 — c) = +00, 
\x\->0 

lim (fcv/l + ^(x)2-c)=0. 
|a;|—*oo 

(iv) For a: £ M anrf ^ G (0,1), let F{x16) be defined by 

F(x, 6) := <p(x) - j^g<P*«l - W + ^ + M- 

Then F(x,6) is strictly decreasing in \x\, and is strictly increasing in 6 G 
(0,1). It satisfies 

0<F(x,6)< - + \b\       forx^R, 0<^< 1 
1 — 0 

and 

(3.5) lim    min Fix* 8) — +00       for any fixed R2 > 0. 
8->l-0\x\<R2 

(i) For x e R, a G (0,1] and a G (0,6*), let G(x, a) be defined by 

Glx.a) = —(p* (ax) . 
a a 

Then it satisfies 

-lb* - a) (— - —) < G(x, a2) - G(xy ai) < a (— - — 

for 0 < OL\ < a2 < 1. 
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Proof. We can easily show (i), (ii), (iii) by Proposition 2.5 in [9] and the argument 
similar to the proof of Lemma 2.1. For (iv), it suffices to show it for x > 0, because 
F(x,6) is an even function in x. We have 

^F(x,6) = ^-L)2 {(1 - *)*¥£((! - S)x) - ^((1 - S)x) + b*}>0 

for all x > 0 and 0 < 6 < 1. By (ii), F(x, 6) is strictly increasing in 6. Using 

(p*xx(x)>0    forarX), 

^(x) < < <pZ(x)    for x > 0, 

we have 

Fxx(x,6) = ipxx{x) - (1 - <5)vL((l - 6)x) > 0       for a; > 0, 

Fx{x,8) = ipxix) - </>*((! - S)x) < 0       for x > 0. 

Thus F(a;, ^) is strictly convex in x > 0, and since it satisfies 

lim    F(x, S) = 0, 
|x|-^+oo 

we obtain 

b* 
0 < F(x, 6) <  + |b|    for all x > 0 and 0 < 6 < 1. 

Since 

§6F{X'6) = O^W {(1" *W:((1" ^ " ^((1 " ^ + b*} 

> ^4^)2 {WxiR*) - <p*(R*) + r} > o 

for \x\ < R2, we have 

c 

F(a;,6) > F(x,0) 4- z F {^^(^2) " V*(^) + 6*}     for \x\ ^ R^ l — o 

This yields (3.5), which completes the proof of (iv). 
For (v), we have 

—G(x,a) = ; 
oa a 
—G{x,a) = —^ (<p*(ax) - axip*x(ax) - a). 

Integrating over (^1,0^2), we get 

G(x,a2) — G(x,ai) = — I     — {<P*(OLX) — ax(pl(ax) — a) da. 
J a>i     ® 

Combining this equality and (ii), we obtain (v).     □ 
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Since ^*(x) has a singularity in x = 0, the following maximum principle needs a 
proof. 

PROPOSITION 3.4 Let u be continuously differentiable int>0 and twice contin- 
uously differentiable in x G M. satisfying 

L[u] > 0,    for t>0, x e (—oo, oo), 

and let v be continuously differentiable in t > 0 and twice continuously differentiable 
in x y£ 0 satisfying 

L[v] < 0, fort>0, xG (-oo, 0) U (0, oo). 

Assume 

u(x, 0) > v(x, 0) in x e R, 

(3.6) sup        |wa;(a?,t)| < +oo. 
t>0,—oo<a;<oo 

and for any rj > 0, 

(3.7) sup     |va:0M)| < Mv, and   lim vx(x,t) = oo,    lim vx(x,t) = -oo 

m^/i some M^ G (0,4-oo).  Then one has 

u{x, t) > v(x, t)     for t > 0 and x G M. 

Proo/. We prove by contradiction. Assume the contrary. Then there exist con- 
stants T > 0 and XQ G R with ?;(£o, T) > ii(xo, T). Define 

r = inf{* > 0 | vfa t) > ufa t) for some ^ G R}. 

The continuity of u and v implies that there exists r' such that 

v((L t) > ufa, t) for any t G (r, r') and some ^ G R. 

Assume that there exist tn G (r,^) and a:n G R such that 

V(xn, tn) > U(xn, tn),        YlVCi   tn = T, lim   Xn = 0. 
n^oo n—>oo 

Then we have 

v(0,r)= lim ^(a;n,tn)>  lim u(xnitn) = n(0,r). 
n—>-oo n—>oo 

By the definition of r, we have 

v(0,t) <u(0,t) for t <T. 
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Then V(0,T) = n(0,r) follows. Using this equality, (3.6) and (3.7), we have 

V(X,T) > U(X,T) for x 7^ 0 and |:r| small enough. 

This contradicts the definition of r. Thus such xn and tn do not exist. This implies 
that there exists a positive constant £o satisfying 

(3.8) v(x,t) < u(x,t) for \x\ < £o and t G [r,^]. 

We can apply the Phragmen-Lindelof maximum principle [10, Theorem 10, Chap. 3] 
to u - v in (—oo, -£o] U [£o, oo) x [r, r']. Then we obtain 

(3.9) v{x, t) < u{x, t)    for |x| > Co, r < t < r'. 

Combining (3.8) and (3.9), we have 

v{x, t) < u(x, t)    for x G M, r < t < T'. 

This contradict the definition of r. This completes the proof.     □ 
Note that u(x,t) given by (1.2)-(1.6) satisfies the assumption in Proposition 3.4 

by Theorem 1.4 in [9]. Now we will construct another subsolution as 

(3.10) w*(x,t) = -L^Xf)*) - -^ - bl^l - \b\ + ct. 

Here we put 

a(t) = 1 - ^e-7' 

with 6 6 (0,1), 7 > 0 and a G (0, b*). We choose them with 0 < a < S*(7,6), where 

E'(7,6) := inf |^(x) - x^x) + ^-^- (fc^l + ^(x)2 " c) } • 

LEMMA 3.5 7/ 

(3.11) 0<5<1,    7>0,    0<a<E*(7,5), 

thenw*(x,t) satisfies 

L[w*} < 0       /or all x G R, t > 0, 

and t/in^ i^ Z5 a subsolution. For any e > 0 and any function ip(x) € BCQ, there exists 
a trio (5*,7*,a*) m£/i (3.11) and 

(3.12) 1^^((l_6*)x)-1^-|fe|-£<(p(a;) + ^)    /or a// x G R, 

(3,3, »<^<^ 
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Proof. Set z = a(t)z. Then, by (2.1) we have 

L[w*] = "^r {"'to - z^{z) + ^T (Wl + ^(")2"c) " a} 
Hence we get 

LK]-"^i?(s*(7^)"<T)<0- 
This implies that w*(x,t) is a subsolution. 

From limj^i^oo ^(x) = 0, there exists R3 > 0 with 

-- < ip(x)        for \x\ > R3. 

Thus (3.12) follows from Lemma 3.3 (iv) for |x| > ^3. For \x\ < JRS, we have 

ip(x) + iP{x) - r^7^((1 - S*)x) + Y^ + \b\ + l> F(x,S*) - ma* ^(x)\ + £ 

where F(x,8) is as in Lemma 3.3. By (3.5), we have (3.12) for \x\ < R3 if 6* > 0 is 
close to 1. Then we choose cr* G (0,6*) so close to 6* that (3.13) is valid. Finally we 
choose 7* > 0 so small that it satisfies E*(7*, 6*) > a*. We complete the proof.     D 

We fix a subsolution w*(x, t) as in (3.10) associated with a trio (<S*, cr*, 7*) which 
satisfies (3.11), (3.12) and (3.13) in Lemma 3.5. 

Proof of Theorem 1.1. From Proposition 3.4 and Lemma 3.5, we have 

w*(x,t) - - < u(x,t)        for x £ R, t > 0, 

which is equivalent to 

1 * /    * /  \    \ cr* b* — (7* l7 . £ ,        x 
p* (<**(*)*) - —7-7 - 7- " l&l + c* " 7 < ^^) a*(t)^ v    w  y     a*(t)       1-^ 

for x G M and ^ > 0 where 

a*(t):=l-«*e-7** 

From Lemma 3.3 (v), we have 

1 r¥>*((i-o*)- a*(t)      V1"5 1-5* 

Combining these two inequalities, we obtain 

V — o*      1,, £ / -■y—^--161+<*--<«(*,*). 
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From (3.13), we have 

-f+ Grb^*((1 - **)x) - TS) - TTF - w+c^ <x^ 
From this inequality and Lemma 3.3 (i) and the fact b < 0, there exists i^* > 0 that 
is large enough and independent of t with 

 x + o + ct — £ < ii(x, r) 
A; 

for |a;| > R*, t > 0. Taking R4 > R* that is independent of t > 0 and is large enough, 
we have 

(3.14) ip(x) + ct-2e< u(x, t)       for all |x| > #4, t > 0. 

Taking R4 > 0 larger if necessary we can assume, 

I^OE)! < £       for all |x| > #4. 

Our aim is to show that there exists T > 0 satisfying 

(p(x) + ct- 2e < u(x, t)       for all |x| < #4, t>T. 

Put M = - min|a.|<fl4{^(a;)}. If M < 2e, we have 

ip(x) - 2e < ip(x) + ip(x) = u(x, 0), 

and also 

ip{x) + ct — 2e < u(x, t), 

which together with (3.2) gives the proof. 
From now on we assume M > 2e. Choose 7 = 7_ with 

E(-'-i)>l«-5- 
Set 

We fix (cr,7,5) = (<7_,7_,<5_), which enjoys (2.8).  We also define w_(x,t) by (2.3) 
with (cr,7,5) = (cr_,7_,5_). Define 

m := —-■=- = — =      sup     {(p(x) - w_(x,0)). 
-L -r 0_ 4        -oo<iE<oo 

There exists sufficiently large TQ > 0 with 

sup     {ip(x) + ct- w_(xy t)) < e       for all t > TQ 
— oo<x<oo 

by virtue of Theorem 2.1. 
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We start with 

—M < (u(x,t) — (p(x) - ct)\t=Q        for |a;| < R^ 

which combined with — 2e < —M and (3.14) gives 

ip{x) - M < u(x, 0)        for x e M. 

Because w_(x, t) — M is a subsolution with 

w_(x, 0) - M <(p(x) - M < u(x, 0), 

we obtain 

<p(x) + ct - M + (m - e) < u(x, t)       for x G R, t > TQ. 

Thus at time t = TQ we start again with a better estimate 

-M + (m - s) < (u(x, t) - ¥{x) - cb)\t=T for x € R. 

If -2e < —M + (m — £), then we use (3.14) and this estimate and obtain a further 
estimate. 

-M + 2(m -e)< {u{x, t) - (p{x) - ct)\t=2TQ        for x G R, t > 2To. 

We can repeat this argument until inf|x|<jR('u(x, t) — ^(x) — ct) becomes larger than 
—2e. Namely, we have 

min{—M + J(m — 5), —2e} < (u(x,t) — (p(x) — ct)\t=jTo 

for x G R and any positive integer J. Here we can take J as large as possible, that is, 

M-2e] 
J 

and thus we have 

m — e 
+ 1 

m — e 

Then we obtain 

-2e < (u{x, t) - ip(x) - ct)\t=jTo        for x G R. 

and thus 

<£(#) + c£ — 26: < ?i(x, t)       for all a; G R 

for sufficiently large £ > 0.   This lower estimate combined with the upper estimate 
(3.2) completes the proof of Theorem 1.1.     □ 
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4. An example for non-asymptotically stability in BC1. In this .section, 
we always assume ip(x) belongs to BC1, and does not decay as |x| -» +00. Fix (p(x\ c) 
in Proposition 1.1 and we denote it simply by ip(x). We will show that an example 
where u(x,t) does not converges to ip(x) + ct + a for any fixed a e R for suitable 
choice of ip(x). 

Let £1 > 0 be any given small number. Take R5 > 0 so large that 

V{x) -     r ^ + & < ei        for |x| > i?5 

GG ("o^min^o,!-^} 

(4.1) 

holds true. Fix 

arbitrarily.   Let ^((xcyo)^) be a ball with center (xo,yo) and radius r.   We will 
choose a sequence of positive integers {n(j)}JL1 with 

max I -, #5,3£i i < n(l) < n(2) < • • • < n(j) < ► +00 

as follows. Let {^(O)}^ be defined by 

D2i-i(0) = J5((x(2j - l),2/(2j - l)),n(2j - 1)), 

i?2i(0) = ^((x(2i),2/(2j),n(2i)))C. 

We put rj(0) = dDj(0), and choose {n(j)} so that we have 
(i) rj(0)c{(x,y)|x>0,y>0},    r2j-1(O)nr2j(O)-0       foralljGN, 

(ii) r2j_i(0) n{y = k-1y/c2 _^2X + 5 + 3^^ consists of one point, and ^(0) fl 
{y = k-'t-y/c? - k2x + b-3ei} also consists of one point, 

(iii) The center (x(j),y(j)) satisfies 

1N      (n(2j-l)-3gi)cos(go-e) 
x^-^- sine 

yv ^       ; sinO 
_ (n(2j)-3ei)co8(go + e) 

a;W;~ sinO 
(2)=(n(2i)-3£l)sin(g0 + 9)+b; 

sin 6 

for j G N. 
For x > R5, we take D(0) with 

D2j-i(0) C 25(0) C D2j(0)        for all j G N 

and 

sup      |M(£, 0) - tp(x)\ < 4ei. 
a;G(—00,ex)) 

For x < i?5, we take D(0) = {y < tp(x)}. 
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r3(0) 

FIG. 4.1. A suitable choice of r(0) for non-asymptotical stability 

Then we have the following example for non-asymptotic stability of a traveling 
curved front y = (p(x) + ct. 

THEOREM 4.1 Let ei > 0 be arbitrarily given. There exists r(i) which satisfies 

sup     |w(:r,0) — (p(x)\ < Aei 
x€(—oo,oo) 

and 

r(t) n{y> (p(x) + £1 + a} ^ 0, 
r(t) n{y< (p(x) - ei + c*} ?£ 0 

/or a// ^ > 0. TAa^ is, r(t) does not converges toy = (p(x) + a + ct in L00(R) for any 
fixed a £ S (see i<%. ^.i ). 

Let Dj(t) be the solution of (1.1) with an initial state £^(0).  To prove Theo- 
rem 4.1, the following comparison principle is useful. 

LEMMA 4.1 For allt>0 and all j E N, the following inclusion 

Ifei-i(*)cJD(*)Cl>2i(*) 

follows from 

i32i-i(0)Ci3(0)cI>2j(0). 
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We will present the proof of this lemma later. First we prove Theorem 4.1 using this 
lemma. 

Proof of Theorem 4.1. Let rj{t) be the radius of dDj(t). Then it satisfies 

^ = —— + k     t>0, 
at ^j-i 

Kj-M = n(2j - 1). 

We compare r2j-i(t) with S2j-i(t) defined by 

S2i-i(0)=n(2j-l)-3ei. 

Then the distance between dD2j-i(t) and y — k 1\/c2 — k2x + b is larger than or 
equals r^j-iit) — S2j-i(t). Let T2J-1 be the time with r2j-i(T2j-i) - S2j-i(?2j-i) = 
2e1. If t < T2j_i, then D2j-i{t)n{y> fe" Vc2 - k2x + 6 + 2ei + ct} ^ 0 follows. By 
Lemma 4.1, r(t) n {y > k^Vc2 -k2x + b + 2ei + ct} ^ (b also follows if t < T2J-1. 
We estimate T2j_i as follows. Integrating 

d 1 
—(rsj-i - S2J-1) = -- 
*v ^~1       ^_±/        r2i-i 

over (0^2^-1), we get 

ry-iW 

Because n(2-7 — 1) < r2j_i(t) for t > 0, we have 

r2''-1       1 
ei = / j^ dt. 

Jo r2j-i{ 

-I 
T2J'-1        1        „   .     Ty-! ■dt< 

ry-iit) n(2j-l) 

and hence 

T2J-1 > e1n(2j - 1)       for j e N. 

Summing up the argument stated above, we have 

r(t) n{y> ^—^ x + b + 2el + ct} ± 0       if t < Taj-i 

for all j e N. From (4.1), we have 

r(t) n{y> (p(x) + ei + ct} ^ 0 

requires at least £ > £in(2j — 1) for all j G N. 
Next, r2j(t) satisfies 

di r2j 

r2j(0) = n(2j). 
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We consider S2j (t) with 

52i(0)=n(2j)-3ei. 

Then the distance between dD2j(t) and y =  r x 4- & is larger than or equals 

^2j(t) - S2j(t). Define T2J by r2j(T2j) - S2j(T2j) = 2ei. We estimate T2J as follows. 
Integrating 

over (0, r2j), we have 

/3 
rT2i   1 

Si =  I      — (it. 
r2j 

For 0 < t < T2J, we have S2j (t) < r2j (t). Using this inequality, we obtain 

rT2j     1 rT23 r12j     1 rJ-^j     2 

e1 = /       —j- dt <  /       —j-r dt 
Jo        r2j{t) Jo        S2j(t) 

Using S2j(t) = n(2j) — 3ei — kt, we have 

(n(2j)-3e1){l-e-k^) 
T2i> 

k 

If t < T2j, then dD2j(t) n {y < k'Wc2 - k2x + b - lex + c*} ^ 0 . Using (4.1), we 
obtain 

r(0 n ft/ < ^(x) - ex + ct} 7^ 0       if t < T2j. 

Thus r(t)n{y < (p(x)-£i+ct} ^ 0 requires at least t > Ar1 (n(2j) - Sex (l - e-^1)) 
for some j £ N. 

Combining the arguments stated above, we obtain Theorem 4.1.     □ 
Now we state the proof of Lemma 4.1. 

Proof of Lemma 4.1. We only show D2j-i(t) C D(t). The other inequality can 
be proved similarly.          

Assume the contrary. Then there exists T > 0 such that D2j-x(T) <£ D(T). 
Let (xo(T),yo{T)) be any one with (xo(T),yo(T)) £ dD2j-.1(T) and (xo(T),yo(T)) £ 

D(T). 
Define 

r = inf{T > 0 | there exists (xo(T), 2/0CO)} 

Taking a subsequence, (xo(T),yo(T)) converges to (xoo.yoo) as T -> r + 0. This is 
because {9-D2i-i(r)}T<T<r+i is compact. We have (£00,2/00) € dD2j-x(r) n9Z?(r). 
Recall that r(^) = 9Z?(t) and D(t) = {y < u(a;,£)}. In some neighborhood of 
(^00,2/00), D2j-i(t) = {y < ^(^)*)}J where w(x,t) is a solution of (1.2). Then there 
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exist xi and £2 (xi < #00 < #2) with W(XJ1T) < U(XJ,T) for j = 1,2. This is because 
dD2j-i{T) is a circle, while ux(x,t) satisfies 

sup     IwrcO^r)! < +00 
x€( — 00,00) 

from Theorem 1.4 of [9]. There exists r' > r with 

w(xj,t) < u(xj,t)        for t E [r, r'), j = 1, 2 

From the definition of r, we have 

w(x,r) < ti(x,r)        for x £ [£i,£2]- 

By the comparison principles for parabolic equations [10], we have 

w(Xjt) < u(x,t)        for x G [xi,X2], t E [r,r'). 

This contradicts the definition of r. We complete the proof of Lemma 4.1.     D 
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