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SPATIALLY PERIODIC AND APERIODIC MULTI-PULSE 
PATTERNS IN THE ONE-DIMENSIONAL GIERER-MEINHARDT 

EQUATION 

ARJEN DOELMAN*, TASSO J. KAPERt, AND HARMEN VAN DER PLOEG* 

Abstract. The generalized Gierer-Meinhardt equation is a paradigm model of two coupled 
reaction-diffusion equations in the theory of biological pattern formation. The existence of time 
independent, spatially periodic patterns of this equation in one space dimension is governed by a 
four-dimensional singularly perturbed ordinary differential equation (ODE). In this paper, we analyze 
this ODE and use geometric singular perturbation theory to construct countably many different one- 
parameter families of periodic solutions. These periodic orbits consist of fast segments interspersed 
with slow segments, such that during the fast segments the concentration of one species exhibits 
finite sequences of large amplitude pulses that occur in rapid succession and that are of one of two 
fundamental types while the concentration of the other species is constant. Moreover, during the 
slow segments, the first species is near equilibrium while the concentration of the second decreases 
slowly. Most significantly, these fast-slow periodic orbits are shown to exist for all periodic sequences 
of pulses with two reflection symmetries. Hence, the Gierer-Meinhardt model possesses a rich set of 
stationary, spatially periodic, multi-pulse patterns. We also treat the case of bounded intervals with 
Neumann boundary conditions. We show that, given any random sequence of the two pulse types, 
there exists a stationary, in general aperiodic, multi-pulse pattern with the pulses ordered precisely 
as in the random sequence on sufficiently long intervals. 

1. Introduction. In this paper, we study the existence problem for positive, sta- 
tionary, spatially periodic, multi-pulse solutions (C/per(x), Vper(x)) of the generalized 
Gierer-Meinhardt equation 

n n /  Ut    =       Uxx    -fiU   + Ua*Vh 
1     j 1 Vt    =   e2Vxx    -V      + Ua*Vto, 

for x e R [17, 23, 24, 16, 29, 30] (see also [5] and Remark 1.2). The unboundedness of 
the domain reflects our choice to study a spatially extended system: the spatial scale 
of the patterns is assumed to be much smaller than the length scale of the domain. 
The ratio, e2, of the diffusion coefficients of the two species, whose concentrations are 
denoted U and V, is assumed to be asymptotically small, i.e., 0 < e <^ 1. Throughout 
this paper, the parameters (011,0121 Pi,P2) and JJL are assumed to satisfy 

(1.2) ai > 1 + -pft    a2 < 0, p1 > 1, p2 > 1, fji > 0 
P2 - 1 

(compare to [17, 23, 24, 16, 29, 30]). This model can be seen as a generalization 
of the original model introduced by Gierer and Meinhardt [13] in the context of 
morphogenesis. The special case ai = 0,0:2 = —l,/?i = 2,02 = 2 in (1.1) corresponds 
to the original (biological) values of the parameters in [13]. We have used this choice 
of parameters in the simulations that generated Figures 1.1a and 1.1b. 

Multi-pulse solutions of (1.1) will in general have asymptotically large amplitude 
[5].  Therefore, we introduce the 0(1) functions U(x,t) and V(x,t) and parameters 
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FIG. 1.1. (a) A (finite part of a) fundamental periodic pattern (C7^er(aj), Vjer(a;)) that is (nu- 
merically) stable as solution of the scaled PDE (1.4)- 0>) A (numerically) stable periodic pattern 
of 'mixed' type: the AiBi-solution (U^eT

B {%)iV%eT
B (z))- Both graphs were obtained by a direct 

numerical integration of (1.4) with ai = 0, a2 = — 1, /3i = fa = 0 and fj, = 1 on a bounded domain 
of length L = 50, using the moving-grid code described in [1]. In (a) e2 = 0.0300, in (b) e2 = 0.0206. 
Note that both patterns can be extended to solutions on R by reflection with respect to the boundaries 
of the domain. 

r, s > 0 by 

U(x,t) =£rU(x,t),r>0, V(x,t)=eaV(x,t)98>0i 

and perform a scaling analysis.   It is shown in [5] that it is possible to construct 
stationary, multi-pulse homoclinic solutions of (1.1) for 

(1.3)    r = ^i > 0, s = -^ > 0,  and D = (ai - l)(ft - 1) -a2ft > 0 
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(see [17, 16] for a similar rescaling). Moreover, there generally exists a separation of 
length scales with the pulses occupying a narrow region and the intervals on either 
side of the pulse region being long. Hence, it is also natural to rescale the independent 
variable as x = \fex and to consider e = y/e. In terms of this new variable, (1.1) may 
now be written in the 'normal form': 

n .v / e2Ut   =      Uxx    -e
2^U   + U^V^ 

1     j \      Vt    =   s2Vxx    -V + Ua*Vto, 

where we have dropped the tildes. Equation (1.4) is the subject of the analysis in this 
paper, and one directly observes that it has the reversibility symmetry x —> —x, just 
like (1.1) does, which plays a crucial role in the analysis. 

Since x E R, the existence problem for stationary solutions of (1.4) can be written 
as a singularly perturbed ordinary differential equation in which x plays the role of 
'time': 

(1.5) 

u     =    p 
p'    =    -u

aivPi +e2im 

eq'    =    v-u^vP2, 

where ' denotes the derivative with respect to the s/ow spatial variable x. By intro- 
ducing the fast variable £ = x/e, we can write the slow system (1.5) in the equivalent 
fast form 

(1.6) 

u = ep 
p = e[—u^v^1 +e2im] 
i) = q 
q = v — ua2v^2, 

where' denotes the derivative with respect to £. Both equations inherit the reversibility 
symmetry of (1.1) and (1.4): 

(1.7) £,£->-£, -£,  p-*-p,   q-*-q. 

The systems (1.6)/(1.5) have one fixed point, 5, at (0,0,0,0). This fixed point lies on 
the boundary of the slow manifold M., the central feature of interest in (1.6)/(1.5): 

(1.8) M = {(u,p,v,q) :v = q = 0,u>0} 

(see Remark 1.4).   As may be seen by direct inspection, this manifold is invariant 
under the flow generated by (1.6)/(1.5) (recall that fa, fa > 0 (1.2)). 

We will study the existence of periodic solutions 7per(£) of (1.6) by the meth- 
ods of geometric singular perturbation theory [10, 11]. We refer to [18, 20] for an 
introduction to the general theory and to [26] for a general account on the geomet- 
ric theory of periodic orbits in singularly perturbed systems. In this paper we use 
a combination of geometrical and asymptotical techniques that has been developed 
to establish the existence of periodic/homoclinic/heteroclinic orbits in singularly per- 
turbed ODEs [6], [15], [27], [26] and in Hamiltonian systems [21], [2]. These methods 
have also been employed to study the existence of (multi-pulse) traveling waves in var- 
ious PDEs: the Ginzburg-Landau equation [3], coupled Ginzburg-Landau equations 
[8], the Gray-Scott equation [7], and several families of singularly perturbed reaction- 
diffusion equations [5], [14]. We note that this list is far from being exhaustive. 
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Usually, the search for traveling 'localized' solutions is one of the first steps in 
the existence analysis of nontrivial solutions of a parabolic PDE. When the PDE is 
defined for x G R, these localized patterns correspond to homoclinic or heteroclinic so- 
lutions of an associated ODE reduction ((1.5)/(1.6) in the case of stationary solutions 
of (1.4)). The following result on the existence of singular, stationary, multi-pulse 
homoclinic solutions of the generalized Gierer-Meinhardt equations was proven in [5]: 

THEOREM 1.1: HOMOCLINIC MULTI-PULSE SOLUTIONS. Let (ai,a2,/?i,/?2,A0 
satisfy (1.2). Then, for any N > 1 with N = 0(1) and e > 0 small enough, (1.6) 
possesses an N-loop orbit 7]vom(0 homoclinic to S = (0,0,0,0). The u,v coordinates 
o/ 7]yom(£) are non-negative, and 7Jvom(0 is exponentially close to A4 except for a 
connected interval of £ values during which it makes N circuits through the fast field, 
and during which it remains at least 0(y/e) away from M. 

A solution 7Jvom(0 corresponds to a localized pulse solution (f/]jrom(a;), V^om{x)) 
of the PDE (1.4). When iV = 1, V^om(x) consists of only one sharp 'pulse' on a narrow 
spatial region; whereas when TV > 2, V^om{x) is a sequence of iV consecutive narrow 
pulses that are relatively close to each other on a narrow spatial region. In particular, 
V^OUi{x) decreases to 0(y/e)1 but not further, in between any two adjacent pulses in 
this narrow region, while outside of it V^om(x) is exponentially small. Furthermore, 
the (/-component, C/^om(a:), is constant, at its maximum value, to leading order inside 
the narrow region, and then it decreases to zero outside of this region on a much longer 
spatial scale (Remark 1.4). Finally, we note that, of course, the U- and ^-components 
of (U^om(x), V)$om(x)) are, by construction, 0(1) as solutions of the scaled PDE (1.4). 
However, the U and V-components of the solution of the original Gierer-Meinhardt 
equation (1.1) are asymptotically large with respect to e. More precisely, they are of 
0(l/€r) and 0(l/es)\ respectively, where r and s are given in (1.3). 

The orbits 7]^om(£) are all homoclinic to the saddle point 5 of (1.6). In fact, 
7^om(0 € WS(S) fl WU(S), where WS(S) and WU{S) are the stable and unstable 
manifolds of S. However, both WS(S) and WU(S) are two-dimensional (see Remark 
1.4 below, and [5]), while the phase space of (1.6) is four-dimensional. Thus, one 
should a priori not expect to be able to establish the existence of the intersections 
7]vom(£)- Nonetheless, it can be shown that WS(S) and WU(S) do intersect (countably 
many times) by the application of the reversibility or reflection symmetry (1.7) (see 
section 2 of this paper, as well as [5], for the details). In this paper, the symmetry 
will be used in a similar way to establish the existence of one-parameter families of 
symmetric periodic patterns. 

The first result of this paper (Theorem 3.1) is a natural extension of Theorem 1.1 
to spatially periodic multi-pulse solutions. In particular, we show that, for any N > 1 
of 0(1), there exist two one-parameter families of 'fundamental' periodic solutions, 
7Per(£;C) and ^T(^C) of (1.4). Orbits in different families are distinguished by 
the type of 'jump' they make from M to M. During its period, an orbit 7^(f)> 
respectively 7^er(05 'takes off' once from M, makes N circuits through the fast 
field of AM-type, respectively B^-type, and again 'touches down' on M. The orbits 
7^er(£) and 7^er(0 are exponentially close to M after 'touch down' up until the next 
'take off'. The 'jump', 'take off', 'touch down' terminology and the details of 'being 
exponentially close to M' are explained in full detail in sections 2 and 3 of this paper. 
In section 2, the take off and touch down curves, T^ff and T#own (with T^f 'down C M) 
are also defined and determined. These curves, and especially their intersections with 
the orbits Tc of the slow flow on M (see section 2.1), determine the difference between 
the i4iv-jumps and the Bw-jumps through the fast field. 
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The main difference between the periodic Ajy- and B^v-patterns 
(UZW'VAZW) 

and (U^(x),V^{x)) of the PDE (1.4), which are associ- 
ated to the solutions 7^(0 and 7^(0? respectively, of (1.6), is that the amplitudes 
of the U and V components of the Ajv-type pulses are always larger than the ampli- 
tudes of the U and V components of the jB/v-type pulses (see Figure 1.1). In turn, the 
amplitudes of the (U^(x),V^(x)) and (U1^(x),V^(x)) patterns are always less 
than the amplitudes of the corresponding homoclinic pattern (U^m(x)^V^om(x)). 
Apart from that, the structure of the ^-component of an A^- or B^-pulse is, in 
essence, the same as that of the homoclinic pulse in V^om(x), especially in that 
V^eT(x) and V^eT(x) are exponentially small outside the narrow region in which 
7AJV^) 

an^ 7B^(0> respectively, make their circuits through the fast field. The 
[/-components U^(x) and Uge*(x) again vary on a long spatial scale. However, 
unlike the [/-component U]^om(x) of a multi-pulse homoclinic orbit, the [/-component 
of all of the periodic patterns constructed in this paper remains bounded away from 
zero (see Figures 1.1a, b and 2). 

Each fundamental periodic orbit 7£er(£)> where a is any type of the form 
{AN)BM}N,M>1) can be considered as a 'skeleton' for the construction pf pe- 
riodic orbits of 'mixed' type. In Figure 1.1b, we show a plot of the pattern 
(U/^B (x),V^T

B (x)) that was obtained as the time-asymptotic state in a simula- 
tion of the PDE (1.4). This pattern corresponds to the most simple periodic orbit of 
mixed type in that the solution 7^er

B (0 of (1.6) is a periodic orbit that makes two 
different 'jumps' through the fast field, one of ^-type and the other of .Bi-type. Our 
second main result, Theorem 3.3, establishes that, for each N > 1 and M > 1, there 
exists a one-parameter family of periodic orbits 75^2(£)> w^h 01,02 € {A^^BM}- 

These orbits are called 'of (Ji^-type' (see section 3.2 for the details), since the pat- 
terns (U^2(x),V^2(x)) associated to these solutions consist of periodic sequences 
...cri<72cri<72cricr2... of pulses of cri-type and cr2-type (Figure 1.1b). 

It follows from the construction of the 'fundamental' orbits of cr-type and the 
'mixed' orbits of <7ior2-type that there must be many other families of singular, pe- 
riodic, multi-pulse solutions of (1.6), or, equivalently, many other types of singular, 
spatially periodic, multi-pulse patterns in the generalized Gierer-Meinhardt equation 
(i.i). 

Of course, these one-parameter families of periodic solutions will have to obey 
the reversibility (or reflection) symmetry (1.7). Hence, an element of such a family of 
periodic solutions, 7per(£; C), must satisfy (after translation) 7per(0; C) G {p = q = 0} 
and 7per(f ;C) G {p = q = 0} where T = T(C) is the period, or wave length, of 
7per(£;C)- Thus, 7per(£;C) has two internal symmetries, 7per(-£;C) = 7per(£;C) 
and 7per(i: - 6 C) = 7per(i: + f; C) (we refer to section 3 for the details). It follows 
that one can distinguish between three possible types of periodic solutions 7per(£; C). 
An orbit 7per(£; C) might have both 7per(0; C) and 7per(f; C) exponentially close to 
M, or it might have 7per(0;C) exponentially close to M and 7per(f ;C) in the fast 
field (note that one can always translate, so that one can assume that 7per(0;C) is 
close to M)\ finally, 7per(£; C) might have both 7per(0; C) and 7per(f; C) in the fast 
field, i.e. each halfway along a fast cr-jump or a-jump from M to M. 

In Theorem 3.4 we give a complete characterization of all possible one-parameter 
families of symmetric periodic solutions. In particular, let r be a 'random' sequence 
of CTJ'S, j = 1,2,..., J, where (jj represents a jump through the fast field of (jj-type, 
i.e. r = a\<J2—0j with Gj G {.AJV,£M};V,M>I5 and let r-1 be defined by r-1 = 
(Tj<7j_i...cr1. It is shown in Theorem 3.4 that one can construct three different one- 



392 A. DOELMAN, T. J. KAPER AND H. PLOEG 

FIG.      1.2. A     schematic     illustration     of     a    finite     part     of    the     pattern 
(UA7A2A3A2A1(

X)^VATA2A3A2A1(
X)) associated to an AiAiAsAzAi-orbit of rar^-type 

(with r = AiA2} a = A3). The 'full' pattern can again be obtained by reflection with respect to the 
boundaries of the domain. The singular V-pulses are represented by vertical line segments. The 
U-components are, to leading order, constant during the fast excursions of ^^A2A^A2Ai{^). Note 
that the values of U are identical at the minima of U^^^^^ix) (up to exponentially small 
corrections, see section 3). 

parameter families of singular symmetric periodic orbits for any r: one of rr~1-type, 
one of rar~1-type and one of (jrar~1-type, where cr and a are arbitrary. 

The orbits of Tr~1-type correspond to solutions 7;^L1(£;C) of (1.6) that have 
both the points l^J-i (0; C) and 7^! (J; C) exponentially close to M. The associated 
pattern {U^ix^V^Uix)) in the PDE (1.1)/(1.4) exhibits a periodic sequence of 
singular pulses of Oj-type of the form 

...<Jl(J<2...<Jj<Jj<Jj-l.. .(71(71 (72. ..(JjGj<Jj-i...<J\..., 

where Gj can represent any possible jump through the fast field of AN- or ^M-type. 
The rar'1 -orbits correspond to solutions 7^-1 (f; C) that have 7^-1 (0; C) expo- 
nentially close to M and 7^.-1 (J; C)in the fast field, halfway along a jump of a-type. 
In Figure 1.2, a sketch is given of the pulse pattern ...^II^AS^ALAI^AS^^II... 

generated by {U^MMMAS
X

)^
V

MMA,A2AS
X

))^ 
the solution of M ^ociated 

to the Tcrr^-orbit I^AZAZAZAS^
0

) 
with r = A^A^ a z= A3' Finally> the 

flT^-r-i-orbits correspond to orbits 7^~T-i (£; C) that have their intersections with 
{p = q = 0} halfway along their jumps of a- and a-type. The corresponding patterns 
([/pe« _i (a:), Vpe* _! (#)) are generated by the following periodic sequences: 

...a(7i(72...crjaa-jcrj_i...(7icraicr2...(7ja(7jorj_1...c7icrcri(72..., 

with cr,<j,0-j G {Aiv,^M}iV,M>i for j = 1,2,..., J. 
Therefore, we may conclude by Theorem 3.4 that the generalized Gierer- 

Meinhardt equation (1.1) has an extremely rich set of distinct periodic solu- 
tions/patterns. 

Finally, we extend the results obtained for periodic intervals to the case of the 
Gierer-Meinhardt equation defined on a bounded interval with homogeneous Neumann 
boundary conditions. We show that this leads to a very natural distinction between 
the three types of periodic orbits described by Theorem 3.4. Specifically, we refor- 
mulate Theorem 3.4 into a new result, Corollary 4.1, by restricting £ to a bounded 
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interval. In essence, Corollary 4.1 states that any 'random', and thus in general aperi- 
odic, multi-pulse pattern of J pulses of Oj-type, with aj 6 {AN, BM}N,M>1I exists as 
solution of (1.4) (and hence also of (1.1)) on a bounded interval of sufficient length and 
with homogeneous Neumann boundary conditions. Moreover, this corollary clearly 
brings out why such 'random' patterns exist. 

The paper concludes with a brief discussion section, in which we comment on the 
possible stability of the spatially periodic patterns and on some related issues. 

REMARK 1.2. It is shown in [5] that the generalized Gierer-Meinhardt equa- 
tion can be derived, by a scaling analysis, from a large class of singularly perturbed 
reaction-diffusion equations as the leading order part of a 'normal form'. This class 
is given by 

Ut    =    duUxx    +anU + a12V   + H^V) 
Vt    -    dvVxx    +a2iU + a22V   + H2(U,V) 

where 0 < dy <^ du, a^- is such that the trivial pattern (U(x, t), V{x, t)) = (0,0) of the 
linear equation (i.e. Hi(U, V) = 0) is asymptotically stable, and Hi(U, V) is such that 
certain growth conditions are satisfied (see [5] for the details). As a consequence, all 
results on the existence of singular, spatially periodic, multi-pulse patterns obtained 
in this paper for the generalized Gierer-Meinhardt equation also hold for this general 
class of reaction-diffusion equations. 

REMARK 1.3. The (natural) choice to study positive solutions (i.e. 
U(x,t), V(x,t) > 0) does not have an essential influence on the analysis. We refer to 
[5] for more details on this issue. 

REMARK 1.4. The fact that the fixed point S lies on the boundary of M where 
u = 0 introduces a technical difficulty for the application of the Fenichel geometric 
singular perturbation theory, since the theory applies for u > 0. Moreover, since 
a2 < 0 (1.2), there is a singularity in the vector field at u = 0 that, a priori, could 
prevent the existence of orbits homoclinic to S. Both these issues are treated and 
resolved in [5], Since the periodic solutions studied in this paper remain bounded 
away from the hyperplane {u = 0}, we do not have to consider the singular behavior 
at u — 0 in this paper. 

2. Geometric preliminaries. In this section, we present the background ma- 
terial on which the construction of the periodic patterns is based. This approach 
was in essence already developed in [7] for the Gray-Scott model and was general- 
ized in [5] to a large class of singularly perturbed reaction-diffusion system, including 
the generalized Gierer-Meinhardt equation. Both [7] and [5] are mostly restricted to 
homoclinic (i.e. non-periodic) patterns. 

2.1. The reduced problems and persistence. The fast reduced limit e J, 0 
of (1.6) is given by 

(2.1) v = v-ua2vf3\ 

with u = u0 and p = p0, where n0,p0 G R are constants. System (2.1) is inte- 
grable and has, for v? > 0, a saddle fixed point at (v = 0, v = 0) that has an orbit 
(vhom(0,qhom(0 = vhom(0) homoclinic to it. Note that one has to assume that 
p2 > 1, which is one of the conditions explicitly contained in the hypotheses (1.2). 

The slow manifold M defined in (1.8) is simply the union of the saddle points 
(0,0) over all v? > 0 and all p0 e R. The slow manifold is normally hyperbolic relative 
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to (1.6) with e = 0 for all v. Specifically, with e = 0, M has three-dimensional stable 
and unstable manifolds that are the unions of the two-parameter (n0,p0) families 
of one-dimensional stable and unstable manifolds, respectively, of the saddle points 
MH (0,0) in (2.1). 

The Fenichel persistence theory (see [10, 11, 18, 20]) implies that system (1.6) 
with 0 < e <C 1 has a locally invariant, slow manifold, under the condition that the 
vector field is at least C1. Hence, we have to impose (1.2). Here, we know even more 
already, since the manifold M is also invariant in the full system (1.6) with e ^ 0. 
In addition, the Fenichel theory states that, in the system (1.6) with 0 < e <C 1, M 
has three-dimensional stable and unstable manifolds, which we denote WS(M) and 
WU(M), and that these manifolds are 0(e) close to their e — 0 counterparts. 

Generally, the slow reduced problem can be obtained by taking the limit e —► 0 in 
the slow system (1.5). This reduced system governs the (slow) flow on M.. However, 
taking e —> 0 in (1.5) yields u" = 0, so that we conclude that the flow must be super 
slow on M (see also [7]). The flow on M is obtained by setting v, q = 0 in (1.5): 

(2.2) u" = e2tm, 

thus d/dx = 0(e), where x is the slow variable. 
The slow reduced problem (2.2) is linear. On M, there are one-dimensional 

stable and unstable manifolds (restricted to M) that are asymptotic to the saddle 
S = (0,0,0,0) on the boundary of M (see Remark 1.4): 

(2.3) T'5:   p = ±e^Jlu. 

The manifolds £u's are especially important for the construction of homoclinic (multi- 
pulse) solutions. 

Periodic solutions are associated to a family of hyperbolic solutions of (2.2) that 
lie to the right of t1 and l,s in the u > 0 half-plane. We define the one-parameter 
family of orbits 

(2.4) Tc := {p2 = e2(fxu2 - C)} for C € R. 

Note that Tc corresponds to £s U £u for C = 0, and that u changes sign on Tc for 
C < 0. Since we focus on positive solutions in this paper, we only consider Tc with 
C > 0 (see Figure 2.1 and section 2.4). Solutions on these orbits can be expressed 
explicitly as 

(2.5) u(x- C\ xo) = umin(C) cosh {eyfiHx - xo)) = umin(C) cosh (e2^ - ft)) , 

so that U(XQ\ C; XQ) = umin(C) and 

(2.6) u(x;C;xo)>um'm(C)d= 

2.2. Periodic solutions and orbits homoclinic to M. Periodic solutions of 
(1.6) cannot be homoclinic to M. However, we now show that any periodic solution 
of (1.6) must have a singular structure, in the sense that it must consist of 'slow' parts 
close to M. and 'fast' parts that are excursions away from M. and back to it. 

The argument is based on a Poincare map approach. A periodic solution 7per(0 
of (1.6), with 7Per(0 = Ker(05P

per(0^per(0^per(0)5 and with 0(1) period T, is 
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a closed curve in the phase space, so that 

rT/2 

Ap(7per) = /       p(7per(£M = 0, 
J-T/2 -T/2 

by construction. However, it follows from (1.6) that 

rT/2 

Ap(7per) = -eiu^ /       (t;0«;ti0))^de + 0{e2), 
J-T/2 

where n0 > 0 is constant. Hence, such a periodic solution satisfies |iiper(^)-n0| = 0{e) 
for all £ and the ^-component, ^0(£; u0) > 0, is a periodic solution of (2.1) that satisfies 
|vPer(f) - ^0(£;u0)| = 0(e) for £ G (-Ty2,T/2). Therefore, Ap(7per) cannot vanish 
for e < 1, since the coefficient on the 0(e) term in the formula for Ap must be strictly 
negative. In turn, this implies that Ap(7per) cannot vanish for fj, < 1/e4. See Remark 
2.1. 

Since we consider here 0 < e < 1 and /x = O(l), we conclude that periodic 
solutions cannot be close to a periodic solution of the fast reduced problem and 
cannot have an (9(1) period T. Only solutions that have t;per = 0 to leading order for 
most of the circuit might be able to satisfy the condition Ap = 0. Such solutions thus 
have 'slow' components that are close to M (where v = 0) and 'fast' components that 
are close to the homoclinic solutions 7;hom(£;^0) of the fast reduced problem. 

A 'fast' excursion away from, and back to, M gives a negative contribution to 
Ap strictly of 0(e). This contribution must be 'balanced' by the component +£3Am 
(2.1) of p that is the leading order contribution of Ap for v — 0. It follows that a 
potential periodic solution must remain close to M for ©(l/e2) 'time' (here 'time' = 
the fast spatial variable £), so that the (^(e3) component can have a net effect also 
strictly of 0{e). Note that this argument also shows that a spatially periodic solution 
must have a period of 0(1/e) in the (slow) spatial variable x of the (scaled) PDE in 
normal form (1.4). 

The slow manifold M is normally hyperbolic, hence, a solution can remain close 
to M for (9(l/£2) time (as measured in f) only if it is exponentially close to M 
during its 'passage' near M. Therefore, each segment of a periodic solution must 
be exponentially close to either M, or, during a circuit through the fast field, to 
WS{M)C\WU(M) ([19, 27, 26] and section 3). This implies that any periodic solution 
to (2.1) must be exponentially close to a solution homoclinic to M. As a consequence, 
it is necessary to first develop a theory by which solutions homoclinic to M. can be 
constructed. The results reviewed below were first reported in [5]. 

One-circuit orbits homoclinic to M in the full system (1.6) with 0 < e <^ 1 will 
lie in the transverse intersection of WU(M) and WS(M), and their excursions in the 
fast field will lie close to a homoclinic orbit of (2.1) for some particular value of u0. 

In order to detect these solutions, we use a Melnikov method for slowly varying 
systems ([25, 7, 5]) System (2.1) has a conserved quantity, or energy, given by: 

(2.7). K{0 = l-q
2 - l-v* + ^l—^v^K 

By construction, K\M — 0? and K < 0 for orbits inside the homoclinic orbit 
(^hom(^;w0),ghom(^;^0)) of (2.1), while K > 0 for orbits outside. In addition, a 
direct calculation yields: 

(2.8) K = s-p—u^vv^1, 
P2 + 1 
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i.e., K = 0(e). Since K\M = 0, any orbit 7(0 = (u(0M,v(Z)MZ)) of (1-6) that 
is homoclinic to M must satisfy the condition 

/oo 

KMt))dZ = 0. 
-OO 

Here, without loss of generality, we assume that the orbits 7(£) homoclinic to M, if 
they exist, are parameterized such that 7(0) = (u0,p0, v0,0). Therefore, (2.8) implies: 

/oo 
^2-^02 + 1^   =   0 

"OO 

The condition (2.10) is exact in the sense that we did not introduce any approximations 
so far. Moreover, as we shall show, if the zero of AK is a simple one, then the 
homoclinic orbit 7^) lies in the transverse intersection of WS(M) and WU(M). 

Now, WS(M) and WU(A4) are three-dimensional manifolds. Thus, in the four- 
dimensional phase space of (1.6), one expects that WS(A4) fl WU(A4) is a two- 
dimensional manifold, or, equivalently, that there is a one-parameter family of or- 
bits 7 that are homoclinic to A4. The analysis carried out in the remainder of this 
subsection reveals that this is indeed the case as long as (1.2) holds. 

Since WS(M) and WU(M) are O(e) close to the (u0,p0)-family of homoclinic 
orbits to (2.1), both WS(M) and WU(M) intersect the three-dimensional hyperplane 
{q = 0} transversely in two-dimensional manifolds, defined as X-i(M) and Z+i(.M), 
respectively. These manifolds can be parameterized by (u0,p0): 

(2.11) I±1(M) = {(uo,po,v0
±1(u

o,po),0),uo > 0} C {q = 0}. 

Thus, for every u0 > 0 and p0 G R, there exists a vc!_l such that the solution 7(f) 
of (1.6) with 7(0) = (u0,p0,v^_ly0) satisfies lim^^007(^) G Ai. Similarly, there 
exists a v^ such that the solution 7(£) of (1.6) with 7(0) = (W

O
JP

O
,V+I,0) satisfies 

lim^-oo 7(£) G M (where the superscripts are indices, not powers). Note that the 
use of the above limits constitutes a slight abuse of notation. The slow manifold M 
has a boundary dM = {(u^p^v^q) : u = v = q = 0} (1.8) and the vector field (1.6) 
can be singular when u —> 0. However, in this paper we are only interested in orbits 
that have positive ^-coordinates for all £, see also section 2.4 (and Remarks 1.3, 1.4). 

Having established that the sets Z_i(.M) and l^i(M) are nonempty, we now 
show they intersect in the hyperplane {p = 0}. We use the homoclinic orbit 
(vhom(0>?hom(0) of i2-1) t0 approximate the solutions on WU(M) and WS{M). 
The exact condition (2.10) now implies that, to leading order, one-circuit homoclinic 
solutions must satisfy: 

/oo 

(vhom(0f2+tdZ + 0(e) - 0. 
-OO 

The improper integral exists because ^hom converges exponentially to zero as £ —> ±00, 
and hence so does the entire integrand. Then, since the integrand in (2.12) is positive 
and since u0 is assumed to be positive, we see that it is only possible to satisfy (2.12) 
if p0 is 0(e). In addition, we conclude that 

(2.13) AK(u0,p0) = 0(e2) for p0 = 0(e). 

Finally, for the one circuit homoclinic orbits to M, we now show that not only is it 
necessary that p0 = 0(e), but it is in fact the case that p0 = 0. We go back to the 
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exact condition (2.10). For any solution 7(f) = (u(0>P(f)> v(O>0(f)) E WU(M) with 
7(0) = (u0,0, ^(^JOJJO) e I+i^), the reversibility symmetry (1.7) implies that 

(2.14)   ^(-0=^(0,   P(-0 = -P(0,   ^(-0 = ^),   and  (z(-0 = -?(0, 

and, hence also, v^ = v^. Therefore, along 7(0, the integrand in (2.10) is an 
odd function of £, and the integral vanishes identically. This, in turn, implies that 
WU(M) fl WS(M) precisely in the orbit 7(0 and that the set I+1(M)r\X-1{M) C 

REMARK 2.1. In [22] the transition from singular periodic orbits to regular 
periodic orbits (by varying the parameters), and the ultimate 'fate' of the family 
of periodic orbits in a Turing bifurcation, has been analyzed in full detail for the 
Gray-Scott model. We also refer to this paper for more details on the Toincare map 
approach' sketched in the beginning of this subsection. An analysis similar to that 
of [22] can be done for the generalized Gierer-Meinhardt equation by increasing fi 
from 0(1) to 0(l/€4). Note that one has to adapt the scalings in (1.1) as soon as // 
becomes > 1. It then follows that increasing fi to 0(l/e4) is equivalent to making e 
an (9(1) parameter. We refer to [9] for the details of this scaling analysis. 

2.3. Multi-circuit orbits homoclinic to M. So far, we have only paid atten- 
tion to homoclinic orbits to M that make a single circuit through the fast field. In 
this subsection, we follow [5] and establish the possibility of having orbits that take 
off from M and make N > 1 loops through the fast field before touching down again 
on M. 

As we shall show below, the global stable and unstable manifolds of M intersect 
the hyperplane {q = 0} many times. The sets I±i(M) defined above can be seen to 
be the first intersections of WS(M) and WU(M) with {q = 0}: an orbit 7(f) with 
initial condition in T-i(M) only follows the reduced fast flow for half a circuit and 
'gets caught' by M, i.e., it does not leave an exponentially small neighborhood of 
M anymore. Orbits that have their initial conditions in the second intersections of 
WU'S(M) with {q = 0}, whose existence we shall show shortly, follow the fast flow for 
two half circuits through the fast field before settling down on M. Hence, they each 
make one full circuit. We label these sets of initial conditions (u0,p0, v^iu0\P0)j0) 
by Z±2(M). For initial conditions in them, v±2(u0,P0) are strictly 0(y/e). 

Similar definitions can be given for the n-th intersection sets T±n(M). These sets 
are also two-dimensional manifolds. For n even, v±n is strictly 0(y/e), since these 
solutions make n/2 full circuits in the fast field; while, for n odd, v±n is strictly 0(1) 
(and O(e) close to the intersection of the corresponding unperturbed homoclinic orbit 
of (2.1) with {q = 0}), since these solutions make a half-integer number of circuits in 
the fast field. Below, we will show that all l±n{M) exist. Finally, we will show that 
T_m(.M) fl Tn(M) for all m + n even, and it is precisely in these intersections that 
the orbits homoclinic to M lie that make 2Z1Jzi full circuits through the fast field of 
(1.6). Note that intersections with m + n odd are ruled out due to the locations of 
i£m and i^, since one of these is strictly 0{y/e), while the other is strictly 0(1). 

We first establish that the curves T±n{M.) exist for all n > 1 (if (1.2) holds), 
focusing on the case of 2+n(.M), since the case of X-n{M.) may be done similarly. The 
plane {p0 = 0} separates 2+i(A'f) into two parts. The strategy then is to determine 
the fate of initial conditions on J+i(A/(). We will see that there are 'wrong' and 
'right' components of l+i(M) such that orbits with initial conditions in the 'wrong' 
part of J+i(A/l) are 'outside' the three-dimensional manifold WS{M) and follow the 
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unbounded part of the integrable flow (2.1) in forward 'time' £. Hence, they do not 
return to {q = 0}. On the other hand, orbits with initial conditions in the 'right' 
part of X+i(M) are 'inside' the three-dimensional manifold WS(M) and follow the 
bounded part of the integrable flow (2.1) in forward 'time' £. Therefore, these will be 
the ones of interest since there is the possibility that they can return to {q = 0}. 

In order to deduce which part of X+i(M) does return to {q = 0}, i.e., 
which part of X+i(M) is the 'right' part, we consider an orbit 7+1 (£) = 
(ti+HO.P+HO^+HO.^CO) with 7+1(0) = (uS.1,p5.1><1,0) e I+1{M). We as- 
sume that £>% is strictly 0(e), i.e., 7+1(0) is not too close to X-i(M). Thus, 7+1 
is at its minimal distance (strictly 0(y/e)) from M when £ = S = 0(|loge|). Then, 
since 7+1 (£) —> M as £ —> -00 and since if = 0 on X, we see that 

^(7+i(S))=  f  ^(7(0)^ 
J — OO poo 

(2-15) =£-^-«1)
Q2-V+1/     (vhnP2+1dS + 0(e2) 

P2 + J- J-00 

(since ?;hom(£) approaches 0 exponentially fast), where we have made the same ap- 
proximation as in (2.12). Thus, since 0^2 < 0 (1.2), we have 

(2.16) #(7+1(5)) <0 <=> ^i>0. 

Finally, since K < 0, we know from the definition (2.7) of K that 7+1(2) is 'inside' 
WS(M)] and, also that 7+1 (S) intersects {q = 0} again, i.e., X+2(M) is nonempty. 
Correspondingly, the above argument shows that if p^ < 0, then K > 0 and the 
orbit 7+1 (H) is 'outside' WS(M). Hence, it cannot intersect the hyperplane {q = 
0} again. The same argument in backwards 'time' yields that orbits 7-i(£) with 
7_1(0) = (^1,^1,^1,0) G /"^(.M) intersect {q = 0} again when p° 1 < 0 (but not 
when p0 ! > 0). Thus, both X±2(M) exist. 

The above argument may be extended to show that all X±n(M) exist, and we de- 
note the points in these sets by (u%n,p%n,v%.n(u%n,p%n),Q), respectively. Moreover, 
the same argument can be applied to any solution of (1.6) with an initial condition 
in {q = 0} that is at least 0(e) close to WS(M) or WU(M). Only the orbits with 
positive p-coordinate are 'inside' WS(M) and will thus intersect {q = 0} again in 
forward 'time' (= £); the p-coordinate must be negative for a next intersection with 
{q = 0} in backward time. 

Next, we show that the intersections X+2(M) DX^iM), and their higher order 
equivalents, exist. Orbits with initial conditions in X±2(M) can also be approximated 
by i>hom(£) (2.1) to leading order, since both circuits must be 0(e) close to vhom(£). 
Thus, to leading order, 

/OO 

^homjA+l^ 
-OO . 

and we find that the p-coordinate p0 of the initial condition must also be 0, to leading 
order, for a two-circuit homoclinic orbit with initial conditions in 2+2(.M) nX-2(M). 
Moreover, not only is p0 = 0 to leading order, but p0 = 0 exactly, since the reversibility 
symmetry (1.7) implies that the homoclinic orbits with initial conditions p0 = 0 in 
X+2(M) nX-2(M) are also symmetric, just as we saw for the one-circuit orbits. That 
is, we have shown 

(2.18) X+2(M)nX-2(M) C {p = 0}  exactly. 
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Finally, the same argument may be repeated inductively to show that 

(2.19) I+n(M)nl-n(M) C {p = 0} for all n = (9(1)  exactly. 

So far, however, it is not yet clear for which pairs m^n with m + n even, 

(2.20) J+n(.A/f)n{p = O}^0     and    J_m(.M) n {p = 0} ^ 0. 

As shown above, only those orbits with initial conditions in X+i{M.) U {p > 0} can 
'build' Z+2(7W). The main question then is: Can (at least) one of these orbits satisfy 
p(C) = 0 at its second intersection with {q = 0}? 

We begin by calculating the change in p during the half-circuit from {q = 0} 
back to {q = 0}. Note that a similar computation was already done at the beginning 
of section 2.2. We consider the orbit 7+1 (0 = (u+i(£),p+i(£),v+i(£),g-fi(£)) with 
7+1 (0) = (U+DP+IJ^O) G I+1{M), where now p+i = ejP > 0 with p0 strictly 
0(1). Let E (= (9(| log^|)) be such that 7+1(S) € I+2{M) C {g - 0}. We define Ap 

by p+1(H) = ep0 + Ap. Hence, by the second component of (1.6), 

(2.21) Ap+1(u0,ep0)=:-e [   uaiv^d^ + 0(e3\ logs]); 
Jo 

note that Ap+1(u0,ep0) is finite (1.2). Thus, 

poo 

(2.22) Ap+Wp0) =-£(u0)ai /    (vhom(£)W + ^(s2), 

As a consequence, the p-coordinate of 7+1 (S) 6 1+2 (JW) is given to leading order by 

(2.23) 
POO 

po-(uo)ai / (^(oy51^ with pu > 0. 

This expression can change sign (since v? > 0 and t;hom(£) > 0). By a similar 
argument for the general case, we conclude that all intersections T+n(M) OZ-n(M.) 
exist and satisfy (2.19). Moreover, by following the fast flow for j half circuits, we see 
that all Injrj{M) nZ_n+j(.M) exist, although these sets are not subsets of {p = 0}, 
since Ap ^ 0, by (2.22) or its equivalents. Summarizing, 

(2.24)        l+n(M) fl I-m(M) ^ 0 for all n + m even and m, n = (9(1). 

2.4. Take off and touch down curves. So far, we have focused on the dy- 
namics in the fast field of (1.6), and for every (9(1) N > 0, we have constructed 
a one-parameter family of multi-circuit orbits homoclinic to M,. We now turn our 
attention for each N > 1 to locating special pairs of curves on M that are essential 
for determining the slow segments of these same multi-circuit orbits. In particular, 
we will need the ideas developed in [11]. 

Let 7iv(0 be an iV-circuit orbit homoclinic to M, of the type whose existence 
has been shown in the previous subsection, with JN(0) .€ ^N{M) nl-N(M) C 
{p = 0}. By geometrical singular perturbation theory (see [11] and [18]), there 
are two orbits ^ = 7$r(ft«N>P+jv)) <= M and ^W^(^-N^N)) C 
M, respectively (where 7±AK0;(u±jv>P±Ar)) = (

U
±N>P±N) 

e -M)> such that 
||7//(0 - 7+?rK; (U+N,P+N))\\ 

is exponentially small for ^ > 0 with ^ > O(i) and 
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||7JV(0 - l-Wfa (U-JV,P-JV))II is exponentially small for ^ < 0 with -f > 0(±). As 
a consequence, 

(2.25) rf(7iv(0,X) = o(e-J)   for |^| > (9 Q)   or larger, 

for some & > 0. The orbits 7^57(f; (w±iV'P±iv)) determine the behavior of 7iv(^) near 
JM. Moreover, 7JV(£) satisfies the reversibility symmetry (1.7) by the choice of initial 
conditions, and thus 

(2.26) ^(f; (v!LN,p<LN)) = !$?{-& (u0
+N, -p%)). 

We now define the curves T#own C M ('touch down') and T^ff C M ('take off') as 

(2.27) T*own = UlN{0){(ulN,p%) = 7^w(0; (ti^.p^))}, 

and r^ff = Uw(o){«iV,-p%)}, 

where the unions are over all 7iv(0) € 1N(M) D 1-N(M) C {p = 0} fl {q = 0}. For 
each JV = 1,2,..., the take off set T^ff (respectively, the touch down set T#own) is the 
collection of base points of all of the Fenichel fibers in WU(M) (respectively, WS(M)) 
that have points in the transverse intersection of WU(M) and WS(M) [10, 11, 18, 19, 
20]. 

Detailed asymptotic information about the locations of T^ff and T$own can be 
obtained explicitly by determining the relations between 7iv(0) = (M

0
,0,I>

0
,0) and 

(W+^P+JV, 0,0). First, we observe that p = 0(£3) on M (1.6), thus, the p-coordinate 
of 7^57 remains constant to leading order during the fast excursions of 7JV(£)- There- 
fore, p+N is completely determined (to leading order) by the accumulated change in 
p of 7JV(£) during its 'time' f > 0 in the fast field. These changes have already been 
calculated for A/" = 1 in (2.21) and (2.22). For N > 1, the calculation is exactly the 
same, except for the fact that 7JV(£) now makes TV half circuits before 'touching down' 
on M: 

(2.28) p%N - -eN(u0r /    (*>hom(f J)^ + 0{e% 
Jo 

From the first component of (1.6) and the fact that p = 0(e), we also conclude that 
u^_N = u0 to leading order. Thus, we find 

(2.29) T#own :  {pd=fp^own(^) = -eNu"1 H{vhom(Of1 d^ + 0(s2)\ 

and Ttf:  {p = -p^wnW} , 

where vhom(Q = vhom{^u), the homoclinic solution of (2.1). 
To more fully determine the behavior of p^)wn as a function of w, we introduce 

^hom _ whom^p^ > Q^ wi1ic]1 is the (positive) homoclinic solution of a rescaled 
version of (2.1): 

(2.30) w = w-wp\ 

Without loss of generality, we take the solutions to be parameterized such that 
whom(t;) is symmetric with respect to f = 0. Thus, 

(2.31) vhom(Z;u) = vhom(^u,a2,p2) = (^2)^hom(£;/?2)) 
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lown 

FIG. 2.1. A representation of the relevant part of the (linear) flow on M (for typical parameter 
values) and the curves T£s, Tf0^, T£ff and T.fown. Note that the orbit Tc has been chosen such 
thatC = CiN. 

which yields 

(^hora(0)ftde = 2 /    (v^iO^dt = u *-* W{fr.,h), 
-oo ^0 

where 

/oo 

(whora(e;/52))ftde- 
-oo 

We can now rewrite (2.30) to leading order as 

(2.34)r£own'off:  {p=±^own(u)}   withp^n(tt) = -^ett1+^W03i,A), 

with D > 0 (1.2), (1.3). Note that the higher order corrections, which are not needed 
here, can be obtained by a straightforward asymptotic approximation scheme, see [7]. 

In Figure 2.1, we have plotted the curves j1^r
own'0 for a few values of N superim- 

posed onto the linear flow on M given by (2.2). Since D > 0 and #2 > 1» the curve 
r^rff given by (2.34) to leading order is tangent to the u-axis for each N. Thus, by 
(2.3), both Tffine? and r#own nt8 consist for all N of one uniquely determined point 
in the half-plane {u > 0}-coordinate. By the symmetry (1.7), both intersections have 
exactly the same u coordinate, that is given to leading order by 

(2.35) horn 
(A0 = 

2^ 

NWfah) 

02-1 
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It was proven in [5] that there corresponds a unique homoclinic orbit 7]vom(£) to the 
saddle point S to any pair of intersections (with positive ^-coordinates) {T^own fl 
eu, T^f fl £*} = To fl (T#own U T^ff) (2.4). This result is formulated as Theorem 1.1 in 
the Introduction. 

The periodic solutions to be constructed in the next section are exponentially close 
to (parts of) the (multi-pulse) homoclinic solutions associated to the intersections 
Tc fl (T^ov/n U T^ff) with C > 0 (and u > 0). Remark 2.2 below also addresses our 
reasons for focusing on C > 0 here. It is a straightforward calculation to check that 
Tc n (T#own U r^ff) ^ 0 for 0 < C < CfP(fj) where, to leading order, 

(2.36)C%N(/x) -      _^+ ^Mffifr))2 with u^(/x) = fo-l + D 

(2.35):    Here, us^(fi)  <  <om(/i) is the ^-coordinate of Tc fl (T#own U T/) at 
C = CfP(n), the value of C at which Tc is tangent to T#own U Tff.   Note that 

We conclude that for 0 < C < C^N(/x), Tc n (T^own U Tff) n{u>0} consists of 
4 points, i.e., 

rc n (Tfr* u r^) n {« > 0} = F±W (C) U P|N (C) 
(2.37) = {(uZ (C), ±PZ (CU «; (C), ±pp

B
e; (C))}, 

where 

(2.38) 0 < uZ (C) < u™(C) < uZ (Q < <om, 

see Figure 2.1. Note that limcio ^ (C) = 0 and limc|o^(C') = ^om- 

REMARK 2.2. For C < 0, the intersections Tc n (r^own U T^ff) correspond to 
homoclinic orbits to M of which the ^-coordinate becomes negative and unbounded 
for sufficiently large |£|. Such solutions are unrealistic as solutions of the PDE (1.1) 
and are not considered in any further detail here. 

3. Singular, periodic, multi-pulse solutions. 

3.1. The fundamental periodic solutions. The first extension of the exis- 
tence result on homoclinic solutions, Theorem 1.1 (originally from [5]), is a result on 
the existence of so-called 'fundamental' periodic orbits. For any N > 1 of 0(1) there 
are two one-parameter families of such orbits. The iV-pulse homoclinic solutions of 
Theorem 1.1 can be interpreted as being on the boundary of one of these families (see 
Corollary 3.2). 

THEOREM 3.1: THE FUNDAMENTAL PERIODIC SOLUTIONS. Let (aua2,/3uP2,fJ>) 
satisfy (1.2). Then, for any N > 1 with N = 0(1) and s > 0 small enough, (1.6) 
possesses two one-parameter families of periodic orbits, 7^(0 an^ 7j3^(C)> w^ 
positive u,v coordinates. For each N, each solution, 7^(0 = 7^(f;c,)> 7BN(0 = 
'■yP61:(f;C), respectively, consists of a slow piece on which it is exponentially close to 
a part of an orbit Tc (24) on M with 0 < C < CfP(fi) (2.36) as well as a fast jump 
in which it makes N circuits through the fast space during which it remains at least 
0{\/e) away from M. 

In Figure 3.1, two examples of fundamental periodic orbits are sketched in the 
4-dimensional phase space of (1.6).   The periodic patterns {U^{x),V^{x)) and 
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FIG. 3.1. Two schematic illustrations of fundamental periodic orbits in the four-dimensional 
phase space associated to (1.6). Note that the direction perpendicular to the {«,p}-pJarce M is 
represented by v. (a) An orbit 7jer(f;C); (b) an orbit 7^er(f;C) that makes two circuits through 
the fast field in between take off from and touch down on M. 

(U»e*(x),V^(x)) of the PDE (1.4) associated to the orbits ^(f) and 7^(0. re- 
spectively, have the following structure. They consist of long intervals on which the 
[/-components vary slowly and on which the F-components are exponentially small 
(these parts correspond to the slow pieces of the orbits-7^(f) and 7^(0 near 
M). Moreover, these long intervals are interspersed with narrow intervals in which 
the V-components have N distinct pulses (the N fast jumps of the orbits 7^ (£) 
and 7£^(£)), and in which the [/-components U^ix) and [/^(a;) are constant to 
leading order. See Figure 1.1a for a finite part of a (numerically) stable pattern 
([/^r(x), V^er(ar)), i.e., N = 1. The structure of a pattern with pulses of AN-type 
has been schematically illustrated in Figure 1.2 for N = 2 and N = 3. Note that the 
amplitudes of both U^ix) and V%™(x) are larger than the amplitudes of U^(x) 
and V»e

N
r{x) by (2.38) and (2.31). 

The proof of Theorem 3.1 is very similar to the proof of a theorem on the existence 
of (stationary) spatially periodic patterns in the Gray-Scott model (see [7]; note, 
however, that only the case N = 1 has been considered in [7]). However, in the 
Gray-Scott the counterpart of the intersections Tp H (T$own U T£rff) consist of only 
two (symmetrical) points: the take off point of the periodic orbit and the touch down 
point of the periodic orbit. As we have seen in the previous section, for any N > 1 and 
0 < C < CfP (2.36) there are two pairs of take off/touch down points in the Gierer- 
Meinhardt case, (P+JC^P^C)), (P^(C),P^(C)) 6 rc (2.37). This explains 
the existence of two families of periodic orbits (for each given N). This feature of the 
Gierer-Meinhardt model enables us to construct countably many classes of periodic 
solutions of 'mixed' type, as we shall show in the next subsection. The construction of 
these 'mixed' solutions is based on the 'skeleton' spanned by the fundamental solutions 
described by Theorem 3.1. 

Proof of Theorem 3.1. Choose an N > 0 and a C G (0,C^N) (2.36). We consider 
an exponentially small interval IA,B on the halfline C {p = q = 0}, perpendicular to 
M with u = wmin(C) (2.6) and v = v0 E (fye-1^2 Ae"1^2) for certain constants 
0 < bt < bu. Note that the choice of the exponent —l/e2 is determined by the unstable 
eigenvalue A = 1 of the fast reduced limit problem (2.1). 

Any solution 7(£) of (1.6) with initial conditions on IA,B, i-e. 7(0) = 
(^"(C), 0, u0,0) will remain ^(e-1^2) close to M for 0(l/e2) time £, during which it 
follows the solution Yc on M (2.4) at an 0(e-1/e ) distance. Hence, the w-coordinate 
of 7(£) will change by an 0(1) amount before 7(f) takes off from M; 7(0 remains 
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C1 - C^e-1/*2) close to WU(M) ([19], [27], [26]) after take off. We can even be more 
precise. Define Wu(Tc) C WU(M) as the two-dimensional submanifold of orbits 
asymptotic to M (as £ —> —oo) that take off from Tc (see section 2.4). It follows that 
7(0 is C1 - OifT1'*1) close to Wu{Tc). 

The manifold Wu{rc) C Wn(^Vl) intersects the hyperplane {g = 0} transversally, 
and WU

(JLC) H {g = 0} C 2+1 (section 2.2). It follows from the Ap analysis in section 
2.3 that the p-coordinate of the first intersection (i.e. N = 1) Wu(rc) fl {g = 0} is 
positive for orbits in Wu(Tc) that take off from points on Tc in between Pg (C) and 
P^ (C) (2.37) - i.e. the points on M 'above' Tf (Figure 2.1) - while Wu(Tc) n{q = 
0} has negative p-coordinates for the other orbits in Wu(rc). We know by the 
reversibility symmetry (1.7) that the ^-coordinates change sign exactly at the two 
homoclinic orbits associated to Tcn(T^ov/nUT^) that intersect {q = 0} in I+ifll-i. 
The Ap calculations in section 2.3 also imply that only the orbits that take off from 
Tc in between P£ (C) and P^ (C) will have a second intersection with {q = 0} G 2+2 
(by definition, section 2.3), and that the p-coordinate of this second intersection of 
Wu(rc) with {q = 0} again changes sign twice (where the zeroes again correspond to 
the 2 homoclinic orbits associated to rcn(T2

downUT2
off) and to 2+2n2_2). Only those 

orbits that have a positive ^-coordinate at their second intersection with {q = 0} will 
return to {q = 0} for a third intersection (G 2+3). These are, by construction, the 
orbits that take off from Ad on points of Tc in between PQ2{C) and P^ (C). 

By the principle of finite induction, this argument can be iterated: the p- 
coordinate of the iV-th intersection of Wu(Tc) with {q = 0} (G 2+JV) changes sign 
twice. Only orbits that take off from M. on points of Tc in between Pg (C) and 
P^" (C) will have an TV 4- 1-th intersection with {q = 0}. Note that this iteration is 
consistent: for all TV > 1, the part of Tc in between Pg (C) and Pj" (C) is a 

subset of that between PBN{C) and PXN(C). 
Now consider the two-dimensional manifold CA,B generated by solutions of (1.6) 

with initial conditions on IA,B> This manifold is, by construction, exponentially close 
to Wu{Tc)' The constant bu can be chosen such that the orbit through the 'upper' 
boundary of CA,B takes off from M. near a point on Tc with a u coordinate that is 
smaller than vP^v(C)y the u coordinate of Pg (C) (2.37); likewise, 6^ can be chosen 
such that the 'lower' boundary of CA,B takes off from M near a point on Tc with 
a u coordinate that is larger than u^(C) > u^(C) (2.38), the u coordinate of 
P^C). Since CA,B H {q = 0} is exponentially close to Wu(Tc) fl {q = 0} 0 2+^, 
we may therefore conclude that there are two solutions, 7^(£) and 7^(^)5 0^ (1-6) 
with initial conditions on IA,B that have an iV-th intersection with {q = 0} with a 
p-coordinate that is identically zero. Note that the orbits 7^(^;C') and 7j3^(£;C) 
take off from M exponentially close to the points PAN,PBN(C) G TC, respectively. 

We use once again the reversibility symmetry (1.7) to extend the orbits 7^(£) 
and 7^(0 to negative £ by setting ^(-f) = 7^(0 and -£"(-0 = 7^(0- 
Hence, we have established that 7^er (£) and 7^er (£) are indeed periodic solutions of 
(1.6). N D 

We state without further proof (see also section 4.3 of [7]): 

COROLLARY 3.2: A SADDLE NODE BIFURCATION OF PERIODIC ORBITS. The 
periodic orbits 7^er(^; C) and 7^er (£; C) merge in a saddle node bifurcation of periodic 

orbits as C f C^N(/i). Finally, 7^(6 C) -+ 7^om(0 (Theorem 1.1) and 7^^; C) - 
(0,0,0,0) asCiO. 
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3.2. Periodic solutions of mixed type. The fundamental periodic orbits con- 
structed in the previous section only make one excursion through the fast field (see 
Figure 3.1). In this section we will show that periodic orbits can also be of 'mixed 
type' in the sense that a periodic orbit may make various different excursions through 
the fast field. 

To distinguish between all possible mixed periodic orbits, we define a labeling of 
the possible 'jumps' through the fast field. A jump of an orbit from M to M is said to 
be of Ajv-type, respectively J^M-type, when the orbit takes off from M exponentially 
close to a point Pjf" (C) E Tc (respectively P^M (C) G Fc), makes N (respectively M) 
circuits through the fast field, and touches down on M close to P^N(C) (PBM(C))- 

The set of all possible jumps through the fast field is thus given by {AN, BM}N,M>I- 

A singular periodic orbit 7per(£;C) is said to be of aicr2...crj-type, where CTJ E 
{AJV,.J5M}JV,M>15 j — 1,2, ...,J, when it follows an orbit Fc C M. at exponentially 
small distance, takes off at P+(C), makes a jump of ci-type through the fast field, 
touches down on M. near P^(C), follows Fc again, takes off at P+(C) for a 02- 
jump, touches down on At, makes a crs-jump etc.. After the crj-jump, 7per(£) touches 
down on M, follows Fc and takes off again at Pa^(C) for identically the same ov 
jump as the one that started the series of jumps.  Such an orbit 7per.(£) is denoted 

by 7^2...^(M- The solution (U^...°AxWe*2...*Ax)) of (1-4) given by the 
orbit 7P^2Crj(^;C) corresponds to a pattern with a periodic sequence of pulses 
...cri(72...crjcri(j2...a"jcr1or2...crj... (see Figure 1.2 for a sketch). Note that a cri<72...<7j- 
orbit is identical to a 020-3...crjai-orbit, a as-.-crjai^-orbit, etc.. 

The fundamental orbits constructed in Theorem 3.1, denoted by 7£er(£;C) with 
a E {AN, BM}NM>1I 

are thus by definition of cr-type. The simplest periodic orbits of 
mixed type are the cri<72-orbits. These orbits only make two different jumps through 
the fast space, one of <7i type, the other of cr2-type. Note that the orbit reduces to a 
fundamental orbit when ai = 02. 

THEOREM 3.3: THE criO^-ORBITS. Let (ai,a2,/?i,/?2,M) satisfy (1.2). Choose 
^1)^2 E {^4JV,#M}N,M>I for some N and M such that ai ^ C72. Then, for any 
0 < C < Cr^x/JV)Mx and e > 0 small enough, there exists a periodic orbit 7P^2(£;C) 
with positive u,v coordinates such that 7P^2(£;C') consists of two fast jumps away 
from and back to M and two slow segments near M.. Of the fast jumps, one is of ai - 
type and the other of o^ -type; and, of the slow segments, one is exponentially close to 
that part ofTcCM in between P^(C) and P+2(C), while the other is exponentially 
close to that part ofTc in between PC^(C) and P+(C). 

We refer to Figure 1.1b for (a part) of the AiPx-orbit as solution of the PDE 
(1.4) and to Figure 3.2 for a sketch of the same orbit in the 4-dimensional phase space 
associated to (1.6). 

Proof of Theorem 3.3. Choose ai}2 E {AN1BM}N,M>I, with <7i ^ (72, and C such 
that 0 < C < Cmax^M)' where N is determined by oi and M by (72. Consider the 

fundamental periodic orbit 7?ir(0 = (^i(0>^i(0jvffi(0»^i(0) (Theorem 3.1). 
By a translation in f we can assume that 7£fr(f) has its AT-th intersection with 
{q = 0} at £ = 0, exponentially close to T+N- It follows from the construction of 
7Pfr(0 (and the symmetry (1.7)) that 7^(0) = «fr,0,^fr,0) so that v**T and 
^extr are jocaj extrema 0f uCTl(£) and Va^). Note that u^ and i^tr are absolute 
maxima when N = 1 and local minima for N even (see Figures 1.1a, 3.1a and 3.1b). 

As in the proof of Theorem 3.1 we consider the two-dimensional manifold of orbits 
through an exponentially small one-dimensional interval, /ai C {p = q = 0, u = ^xtr} 
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FIG. 3.2. A schematic illustration of an orbit of 'mixed' type, T^/^^jC)- 

with 7^(0) G Iai. We know from the construction of 7£1
er(0 that ^ is 0(e"1/e2)-close 

to WS(M)) and 'inside' W8(M) (the ^-coordinate of an orbit that is 'outside' W8(M) 
will become negative). We choose one endpoint, Q^, of 1^ to be at WS(M) fl {p = 
q = 0,u u extr }, i.e., Q^ E T-N- Note that Q^ has a ^-coordinate that is larger 
than ^tr when N is odd, and smaller than v^ when N is even. The other endpoint, 

oil,. 
This orbit 

Q0 0.1, v. ^o-! is assumed to be situated at the other side of 7^r(0). 
Now consider an orbit 7(f) = (u(0>P(f)>v(0»tf(0 witil 7(0) € la 

will follow 7£1
er(£) for y circuits, or iV 'half-circuits', through the fast field and will 

touch down on M exponentially close to <F£(C) E Ic (2.37). It is asymptotic to 
M when 7(0) = Q8

ai, it will take off from M at P+fC) when 7(0) = 7?r(0). If 
7(0) is too far away from W8(M), 7(0 will again take off from M 'immediately' 
at the touch down point P~(C). Hence, it follows that one can choose i;(0) = V£, 
respectively v(0) = vui such that 7(0 touches down on M near P~(C), follows Tc 
and takes off again before, respectively after, it reaches P+(C), the take off point 
associated to the <72-jump. 

We can now use similar arguments as in the proof of Theorem 3.1. The manifold 
£ai spanned by orbits with initial conditions on Iai with ^-coordinates between V£ 
and vu is, of course, exponentially close to Wu(rc). The Af-th intersection of C^ 
with {q = 0} is exponentially close to the Af-th intersection of Wu(rc) with {q = 0}, 
i.e. Wu(Tc) Hl+M. The curve of the Af-th branch of Cai n {q = 0} crosses the plane 
{p = 0} (see the proof of Theorem 3.1), which implies that there must be a point in 
the Af-th intersection of C^ with {q — 0} with ^coordinate = 0. 

Hence, we have constructed an orbit 7^^ (0 with initial condition on /(Jl C {p — 
q = Q} that makes y circuits through the fast field before it touches down on M near 
P~(C). On M, it follows Tc until it takes off near P+((7) and makes ^ circuits 
through the fast field, after which it again intersects {p = q = 0}. By the symmetry 
(1.7), we can 'double' this 'half-orbit' into a 'full' periodic orbit 7^2(C) of oi^-type. 
D 

The construction of the 7§f£2(f) orbits is clearly based on the existence of the 
'fundamental' 751

er(£) orbits. By extending the procedure used in the above proof, we 
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can construct more than just the ai^-orbits from the fundamental orbits. 
For instance, it is a straightforward procedure to construct aln+1(T2-orbits (n > 1) 

by the methods of the proof of Theorem 3.3. The idea is to again take an interval of 
initial conditions C {p = q = 0} exponentially close to X-N and to 7£fr(0), that is 
translated to be C {p = q = 0} 'halfway' along the cri-jump of 7£fr(f)> and to consider 
an orbit 7per(0 that follows 7^(0 for a longer time than 7^ (£). This orbit 7per(£) 
also remains exponentially close to 7^r(£) during the next ovjump of 7^r(0 through 
the fast field until 7£1

er(£) touches down again on M. After this full cri-jump we let 
7per(0 take off at P+2(C) in such a way that 7per(0 crosses {p = q = 0} after ^ 
circuits of cr2-type (exponentially close to X+M)- Thus, half of 7per(0 consists of 
half a cri-jump, followed (after a slow piece on M) by a full cri-jump and half a 02- 
jump. We apply the symmetry (1.7) and conclude that 7per(£) is a periodic orbit that 
produces a solution of the PDE consisting of the sequence ...<Jicricri<j2<7i&i(7iO'2&i~- 
of pulses/jumps, namely 7per(£) = 7^ (£).   This is a periodic orbit of crf(72-type. 

For each n > I, the crin+1(72-orbit can be constructed in a similar fashion. 
Moreover, we can use the existence of the <7i<72-orbits to construct orbits that 

make jumps of 3 different types, cri, (J2 and as (with (71,2,3 £ {AN,BM}N,M>I)' 

Again we can follow the construction in the proof of Theorem 3.3. We construct 
an orbit 7per(£) that has its initial condition in {p = q — 0}, exponentially close 
to 1-N and to 7]r1

e!r2(0> 'halfway' along the ^i-jump; 7per(0 follows 7^(0 along 
the first 'half cri-jump, along M, and along the full cr2-jump back to M. Then, we 
can make 7per(£)-jump at ^(C) and let it make half a crs-jump (of N3/2 circuits, 
where A^3 is determined by as) to arrive, once again, at {p = q — 0}, exponentially 
close to T+NZ- Note that we have to assume that C is small enough, i.e. that Tc 
has a non-empty intersection with the take off set Tj^ associated to the crs-jump. It 
follows that half of 7per(£) consists of half a cri-jump, followed by a full ovjump and 
half a as-jump: 7per(£) is associated to a pattern with a ... ai <T2 03 02 cri<72 0-3(720-10-2... 
sequence of singular pulses, 7per(£) = ll?a2(T3a2(0, a ^^(Js^-orbit. 

Every family of periodic orbits we have so far constructed can again be used as 
foundation for the construction of a next, more complicated, family of orbits. And 
so on. The main question we need to answer is: What kind of multi-pulse periodic 
patterns can, and what kind cannot, be constructed? 

Of course, the use of the reversibility symmetry (1.7) is crucial for the construction 
of the periodic orbits. Every orbit is constructed by establishing that there is a 
connection possible from {p = q = 0} back to {p — q = 0}. This connection is 
'half an orbit', and the symmetry (1.7) makes it into a full, closed periodic orbit. 
This implies that any periodic orbit constructed by this procedure has (at least) two 
internal reflection symmetries, one at £ = 0 (after translation), 7per(—£) = 7per(£), 
and one halfway along the period T of the orbit, 7per(y — £) = 7per(y + £)• 

A periodic orbit cannot have only one internal reflection symmetry, since the exis- 
tence of the second symmetry can be deduced from the first symmetry by application 
of the periodicity of 7per(£): 

(3.1) 7per(| -0= 7per(-| + 0 = 7per(| + 0- 

Moreover, a periodic orbit with more than two internal reflection symmetries must 
correspond to a periodic orbit with less symmetries and a shorter period: assume that 
7per(r - f) = 7Per(f 4- 0 for some f < f, then 

(3.2) 7P-(2f + £)=7per(-0-7per(0- 
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i.e. 7per(£) is 2T-periodic. Thus, any periodic orbit 7per(£) either has exactly two 
internal reflection symmetries (around 0 and ^) or no symmetries. 

It follows from simple geometric counting arguments that one cannot expect that 
there exist one-parameter families of periodic orbits without an internal reflection 
symmetry, since one cannot use the reversibility symmetry (1.7) to construct these 
orbits. We do not investigate the possible existence of these 'degenerate periodic 
orbits' in any further detail. 

Finally, we show that, for every possible periodic symbol sequence with two in- 
ternal reflection symmetries, there exists a one-parameter family of singular periodic 
orbits that has precisely that sequence of pulses: 

THEOREM 3.4: THE TT"
1
-, TCTT

-1
- AND (jrar~1-ORBiTS. Let (ai,^,/?!,^,/^) 

satisfy (1.2). Let G,d,Oj G {^N^MI^M^I; 3 — 1,2,3,...; let r = (Ji(T2".(Jj be a 
random sequence of J Gj 'S, and define T~

1
 by r_1 = ajaj-i...ai; let e > 0 be small 

enough. Then there exists one-parameter families of periodic solutions of (1.6) of 
TT~1-type, of rar-1-type, and of arar-1-type. Moreover, any possible periodic orbit 
with internal reflection symmetries is of one of these types. 

We refer back to Figure 1.2 for a sketch of an orbit T^bAa^Ai (0 ^ solution of 
the PDE. This is an orbit of T<7T-1-type, with r = A1A2 and a = A3. In terms of the 
notation of Theorem 3.4, the ai^-orbits described in Theorem 3.3 are of arOT

-1
 -type 

with a = ai, r = 0 and a = (72. Also, the fundamental periodic solutions of Theorem 
3.1 are of r(jr_1-type with, again, r = 0. In section 4, a very natural interpretation 
is presented of the three different types of periodic orbits as multi-pulse patterns of 
the PDE on a bounded domain with homogeneous Neumann boundary conditions. 

Proof of Theorem 3.4. A symmetric periodic orbit 7per(£) must have its reflec- 
tion symmetry points, i.e., its intersections with {p = q = 0}, either exponentially 
close to M or in the fast field, halfway along a jump of cr-type for a certain cr, i.e., 
exponentially close to an N-th intersection 1±N of WU>S(M) and {q = 0}, where iV 
is determined by a. There are three different possible connections from {p = q = 0} 
to {p = q = 0}. 

In the first one, 7per(£) is exponentially (0(e_1/£ )) close to M both at f = 0 
and at f = j. The second one is encountered in the proof of Theorem 3.1: at £ = 0, 
7per(£) is exponentially close to M, while at £ = ^, 7per(0 is exponentially close to 
an TN in the fast field. The third one appears in the proof of Theorem 3.3: at £ = 0, 
7per(£) is exponentially close to an T-N, and at £ = ^, 7per(£) is again exponentially 
close to an X+iy. 

We first consider the third case. Here, we have to put 7per(0) € {p = q = 0} 
halfway along a a-jump, exponentially close to 1-N] 7per(f) E {p = q = 0} is halfway 
along a a-jump, exponentially close to 2+^. The behavior of 7per(0 in between the 
cr- and <T-jumps is prescribed by the 'random sequence' r. Hence, by the symmetry, 
these orbits are of (jrar_1-type. 

The first nontrivial example has already been constructed above, just after the 
proof of Theorem 3.3: T^J^^Cf) is an orbit of crrar^-type, with a = <7i, r = a2 
and a = (73. This orbit is constructed from 7p^2(£) in the same manner as 7^2(£) 
has been constructed from 7p^r(£) in the proof of Theorem 3.3. Furthermore, by 
exactly the same methods, it is possible to use ^at^^^iO ^ tlie foundation for 
the construction of the orbit T^^^^O* an orbit of ^Tcrr~1-type with a = <7i, 
r = (7203 and cr = 0-4. Therefore, any arar"1 -orbit, with r of finite length, can be 
constructed by the iteration of this procedure. 

The second case corresponds to the periodic orbits of rcrr~1-type. As mentioned 
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above, these orbits can be constructed by the iteration of the procedure described 
in the proof of Theorem 3.1. The first step is the construction of the rar-1-orbit 
Tafo^i (£) (*-e- T = <7i, <7 = (72), which follows by combining the ideas of the proof 
of Theorem 3.1 with the construction of the crx^cra^-orbit above. In particular, we 
place 7^2(Tl(0) in the exponentially small interval IA,B ^ {p = Q = 0} exponen- 
tially close to M] IA,B 

was already defined in the proof of Theorem 3.1. The orbit 
7?^2<TI(£) fo^ws 75fr(£) along Yc and during the ai-jump through the fast field. 
After 7SfS-2<ri (£) l18,8 touched down again on M, it follows Fc, but eventually diverges 
from 7£®r(£). We tune the initial condition on IA,B such that 7^2(7l (£) takes off near 
Pj^, and so that it makes its A^-th intersection at £ = ^ with {p = q = 0}, exponen- 
tially close to X+7v2. Thus, 7S^2o-1(0 is exactly an orbit of cri^cri-type. Next, we 
use 7^20-! (£) ^ construct 7?1

ea2^3a2a1(05 the next rcrT^-orbit with r = <7i<72 and 
cr = (73. And so on. 

So far, we have not yet constructed an orbit of TT~"1-type, described above as 
case one. The first nontrivial example is 7£^-2a2ai(£), where r = cricr2> This orbit can 
be constructed from the fundamental orbit 7£®r(£). We again consider the interval of 
initial conditions IA,B £ {p — Q = 0}, and again consider a family CA,B of orbits with 
initial conditions in IA,B (see the proof of Theorem 3.1) that follow 7£®r(£) along Tc, 
and during its first cri-jump through the fast field. By tuning the initial conditions, we 
can make any orbit 7(4) 6 £A,B take off near P+2 and have it make a jump of c^-type 
through the fast field. After touch down, 7(f) can be made to intersect {p = 0} again, 
since 7(£) follows the slow flow on Tc and any Tc intersects {p = 0} on M (Figure 
2.1). 

In order to apply the symmetry (1.7), we need to show that there is a special 
orbit 7a^2(72o-1(0 € £A,B that first makes the ov and the <72-jumps, touches down 
on M and has its g-coordinate identically 0 at its next intersection with {p = 0}. 

The existence of this orbit follows by studying (1.6) near M in its Fenichel normal 
form [18, 19, 26]. Here, we refrain from presenting all computational details and only 
sketch the main ideas. Since the eigenvalues of the fast reduced limit problem (2.1) 
do not depend on u0, we conclude that the linearized fast flow near M is, to leading 
order, not influenced by the values of u and p. As a consequence, it follows from the 
normal form analysis that an orbit 7(£) that touches down on Ai near a point P~ at 
£ — ;~down (approximately) and takes off again at £ = Soff after an 0(l/e2) amount 
of time near a point P+, has a minimal ^-coordinate of 0(e~1^£ ) at a point that is 
halfway between P' and P+ (to leading order), i.e. at £min = |(Soff -hSdown)-hh.o.t. 
Thus, 7(f) intersects {q = 0} at fmin, by definition ((1.6): q = v). 

The application of the Fenichel normal form analysis to the construction of 
7£^2<X2<TI (£) yields that an orbit 7(f) e CA,B, which touches down on M near P~2 and 
jumps off from M just after it has passed {p = 0}, will reach a minimal (exponentially 
small) distance to M. halfway between P~2 and {p = 0}, i.e. q = 0 with p < 0 (Figure 
2.1). An orbit 7(f) that follows Tc beyond P+2, the take off point of the cr2-jump, 
spends more time near the {p > 0}-part of M that near the {p < 0}-halfplane, hence 
it intersects {q = 0} with a positive p-coordinate. It follows that there is a uniquely 
determined orbit 7(f) = 7^2a2Cri(£) G J£A,B that intersects {p = q — 0} exponen- 
tially close to A4, after a full ai-jump and a full <j2-jump (one need the details of 
the normal form analysis to conclude that 7£^20.2<Tl(f) is uniquely determined). Note 
that the normal form arguments also imply that 7^2<T20.1 (f) takes off from M (after 
the (Ti,2-jumps) near P+2. This agrees with the final construction of 7£^2CT2<71(0 by 
the application of the symmetry (1.7). 
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Now, as in the second and third case above, it is a straightforward procedure 
to construct the next rr-^orbit 7%°a2(73(T3a2(7l (0 by first following 7^2^^ (0 for 

two full jumps. Hence, we can also construct all periodic orbits of TT~1-type by an 
iterative process: the orbit with r = (Ti(J2'--VkVk+i is based on its predecessor with 

This completes the proof of the theorem. □ 

REMARK 3.5. One could a priori think that an orbit 7per(£) could be both of 
(7rcrT~1-type and of rr-1-type (these orbits have an even number of jumps through 
the fast field, whereas the rcrr_1-orbits make an odd number of jumps). However, 
such orbits would have more than two internal reflection symmetries, and it follows 
from the arguments above (3.2) that one should be able to reduce these orbits to 
orbits with a shorter period. A direct check reveals: if 7per(£) is both of rr-1- and 
of crrcrr~1-type, then OT

-1
 should be equal to (ar)-1, i.e. with r = cri<72...o'j: 

or = crj = a, cri = crj_i, 02 = (JJ-2'>   etc.. 

Hence, if J is odd, crrcrr-1 = crr(crr)_1 = ff~1ff~1, with f = crcr1...cr(j_1)/2- The 
orbit 7per(£) with a periodic cr-jump sequence of 2J + 2 elements is in fact a rr""1 

orbit with a periodic sequence of half the number of pulses, J -f 1. If J is even, 
ardr'1 = (far-1)2 with f = 0"ai...ajr/2-i> & — (JJ/2^ which implies that 7per(£) is in 
fact an orbit of rcrr_1-type, again with a periodic sequence of J 4-1 elements. 

4. Random, singular, spatial patterns on sufficiently large bounded 
intervals. It is natural to consider solutions of the PDE (1.4) on a bounded interval 
(0, L) with homogeneous Neumann boundary conditions (or with other boundary 
conditions, see also Remark 4.2). In the terminology of the dynamical system (1.6), 
these boundary conditions correspond top = g = 0at£ = 0 and £ = L/e. Note that 
this implies that we have to consider L = L/e, since the distance (as measured in £) 
between successive pulses of a multi-pulse pattern of Ai, i?i-type is of 0(1/e2). Thus, 
we can take L/e, or L/e2, to be ^, i.e. half the period of a periodic solution 7per(£). 

The three different types of orbits described in Theorem 3.4 have a very natural 
interpretation in this context, since they can also be distinguished by their character 
near £ = 0 and £ = ^ (section 3.2). An orbit of rr~1-type corresponds to a multi- 
pulse pattern (U^r_1(x),V^l1(x)) that has no pulses at the boundaries; V^.eIi(a;) 
is exponentially small at £ = 0 and £ = f since 7P^i(0) and 7P^i(^) are both 
exponentially close to M. Moreover, both [/^^(x) and V^fl^a;) are at a local 
minimum at the boundaries. The pattern (U^r

r_1(x),V^_1(x)), that corresponds 
to a TcrT-1-orbit, has a similar structure near one of the boundaries, say at £ = 0, 
however, 7P^__i(£) is halfway along a pulse of cr-type at the other boundary, f = 7. 
Thus, Vp*r-i (x) generates half a pulse of cr-type, i.e. y pulses (where iV is determined 
by cr), at this boundary. The ^/-component f7^_i(x) is at a local minimum at the 
£ = 0 boundary and exhibits half a ('slow') [/-pulse at the £ = y boundary. The 
(f7per- _! (x), VpeT~ _! (x)) patterns have 'half-pulses' at both boundaries, one of cr-type 
at £ = 0 and one of cr-type at £ = ^. See Figures 1.1a and 1.1b and Remark 4.3. 

Now, we can reformulate Theorem 3.4 in terms of a result on random, in general 
aperiodic, patterns on bounded intervals: 

COROLLARY 4.1: 'RANDOM' SINGULAR PATTERNS ON BOUNDED INTERVALS. 

Let (ai,a2,/?i,/?2jA0 satisfy (1.2). Let f be a random sequence of J a's, (CFJ € 
{^4iv, BM}N,M>I, j = 1,2,3,..., J), with 01 and crj such that they either correspond 
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to a full pulse of oi or aj-type or to half a pulse of Gi- or aj-type at £ = 0 or £ = L; 
let e > 0 be small enough. Then there exists an Lmin > 0 such that for all L > Lm\n 

the PDE (L4) defined on the interval (0,1/) with homogeneous Neumann boundary 
conditions has a 'random' multi-pulse pattern of the type described by the sequence f. 

Note that the fact that there exist 'one-parameter families' in Theorem 3.4 has 
been translated into the existence of a continuum of allowed intervals (0, L); the limit 
L —* 00 corresponds to considering orbits Yc on M with C [ 0. 

REMARK 4.2. The geometric singular perturbation approach of sections 2 and 3 
can also be applied to the construction of singular multi-pulse patterns on bounded 
intervals with other types of boundary conditions, such as homogeneous Dirichlet 
conditions. We do not go into the details here. 

REMARK 4.3. By choosing the length L of the interval (0, L) such that L = kT, 
for a fixed integer k = 1,2,3,..., i.e., by taking L such that it is equal to an even 
multiple of ^, a pattern of rcrr~1-type can either have no pulses at the boundary 
or pulses at both boundaries (here, we of course assume that the solution satisfies 
homogeneous Neumann boundary conditions). Thus, for instance the fundamental 
solutions (where r is the empty set) can be plotted with or without pulses at the 
boundaries of the domain. See Figure 1.1a, where L = AT = 8^, and compare it to the 
fundamental periodic patterns in the Gray-Scott model in [4] that have been plotted 
without pulses on the boundaries. Solutions of rr~1-type, respectively crraT^-type, 
can only be represented on finite domains (again assuming homogeneous Neumann 
boundary conditions) by patterns without pulses at the boundary, respectively with 
pulses at both boundaries (Figure 1.1b). The most simple 'mixed' patterns of aio-2- 
type described in Theorem 3.3 are of crroT^-type and thus cannot be plotted without 
pulses at both boundaries (Figure 1.1b). It follows that these solutions have not been 
considered in [29]. 

5. Discussion. We have shown in this paper that the generalized Gierer- 
Meinhardt equation (1.1)/(1.4) has an extremely rich set of distinct periodic and 
random solutions/patterns. 

A very natural, and important, next question is: Can any of these patterns be 
stable? Let us focus our attention here on the spatially periodic patterns. It was shown 
in [5] that the homoclinic patterns (U^om(x)1V^om(x)) associated to the solutions 
7ivom(0 0f (1-6) can only be stable for N = 1 (and fi not too close to 0). When 
iV > 2, the spectrum associated to the linearization of (1.4) along (U^m(x), V^om(x)) 
always has at least one unstable (real) eigenvalue [5]. The distance between successive 
cr-pulses in any periodic multi-pulse pattern is asymptotically large, therefore there 
will be a strong relation between the spectrum of the linearization along a periodic 
pattern and the spectra associated to the homoclinic 7]vom(0 pulses (see [12] for 
a general treatment of this issue, and [4] for explicit computations of the spectra 
associated to singular periodic patterns in the Gray-Scott model). Hence, one cannot 
expect a periodic multi-pulse pattern that involves cr-pulses with a = AN or BM 

and N, M > 2 to be stable as solution of the PDE. Of course this result has not yet 
been proved, but it provides a strong motivation to focus on the stability analysis of 
multi-pulse patterns that consist only of pulses of either Ai- or jBi-type. Note that 
these are exactly the kind of patterns considered in [29] (see Remark 5.1). 

Even when one restricts the kind of jumps through the fast field to the 'poten- 
tially stable' types Ai and Bi, the results of section 3 still produce a rich struc- 
ture of spatially periodic patterns.   It is, for instance, not immediately clear what 
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is the minimum length of a sequence f of Ai 's and Bi 's that is not of one of the 
symmetrical types described in Theorem 3.4. As an example, we consider the se- 
quence f = AiAiBiBiAi of length 5; f corresponds to the periodic sequence of 
pulses ...AiAiBiBiAiAiAiBiBiAi..., i.e. a pattern of ra'r_1-type, with r = BiAi 
and a = Ai. An asymmetrical sequence f must be at least of length 6; and, 
f = A1B1B1A1A1B1 is one of the first examples. Note however, that the fact that the 
sequence f = A1B1B1A1A1B1 is not symmetrical does not imply that it is not pos- 
sible to have a solution with this structure, or a periodic iteration of it, on a bounded 
spatial interval (Corollary 4.1). 

Finally, we briefly consider some of the subtleties associated to the distinction 
between having established the existence of symmetric periodic orbits in (1.6) in 
Theorem 3.4 and their interpretation as 'random', in general aperiodic (or asymmetric 
[29]), patterns on a bounded domain in Corollary 4.1. For instance, Corollary 4.1 
establishes the existence of a pattern associated to the 'periodic' sequence of pulses 
f = (AiBiBiAiAiBi)K without pulses on the boundary, for any K > 1 (on intervals 
(0,L) of sufficient length). Here, A1B1B1A1A1B1 is the above mentioned example of 
an asymmetric sequence of Ai and Bi pulses, hence, there is no one-parameter family 
of periodic orbits 7^er

s B A A1B1(0' Of course, the f-pattern on (0,L) is associated 
to a symmetric periodic solution 7)^ ,f)_*(£) of (1.6) of rr~1-type.   This implies 

that there is neither periodicity nor symmetry in this pattern on (0, L) = (0,^), 
although it will definitely look as if the 'block' A1B1B1A1A1B1 is repeated K times 
in the output of a numerical simulation of the PDE. Moreover, the maxima of the 
U and V pulses cannot coincide, although that's again certainly not obvious from a 
simulation (see also [29]). A close inspection will show that there are asymptotically 
small differences between each of these K 'blocks', and that the maxima of the U and 
V pulses have slightly different x-coordinates. This latter observation is especially 
clear, since coinciding maxima correspond to an intersection of the associated solution 
of (1.6) with {p = q = 0} in phase space. This would imply, by the symmetry (1.7), 
that the pattern should be symmetric around this point, which cannot be the case. 

This perhaps subtle distinction can be expected to have a significant influence 
on the stability of the patterns on bounded intervals, since the associated linearized 
stability problem will, in general, have asymptotically small eigenvalues [29], see also 
Remark 5.1. This issue will be discussed in more detail in [28]. 

REMARK 5.1. In [29] bounded domain patterns without pulses at the boundary of 
the type f = aicr2...crj, with aj G {AI, BI}, have been analyzed, by a combination of 
(formal) asymptotic methods and numerical computations, as solutions of a simplified 
version of the generalized Gierer-Meinhardt equation (1.1). This simplified version 
of (1.1) has no explicit Ut term, as a consequence the stability analysis simplifies 
considerably (for instance, the spectrum associated to the stability of these patterns is 
real; this is not the case in the 'full' equation [5]). In [28], the stability of the periodic 
patterns (U?eT(x)iVPer(x))i with f = TT~

1
,T(7T~

1
 or CTTOT

-1
, will be analyzed as 

solution of (1.1) on R. 
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