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PARABOLIC SYSTEM OF CHEMOTAXIS: BLOWUP IN A FINITE 
AND THE INFINITE TIME 

TAKASI SENBA* AND TAKASHI SUZUKlt 

1. Introduction. The purpose of the present paper is to study blowup mecha- 
nism for a system of parabolic equations. It arises in mathematical biology to describe 
the chemotactic feature of slime molds. 

We take the form proposed by Nanjundiah [20], simplifying the one previously 
given by Keller and Segel [14]. It is stated as follows, where u = u(x, t) and v = v(x, t) 
stand the density of slime molds and the concentration chemical substances secreted 
by them, respectively: 

ut = V • (Vu - uVv) in f] x (0, T) 

rvt = Av - av + u in Cl x (0, T) 

du/dv = dv/dv = 0 on dVt x (0, T) 

u\t=Q — uo(x) in fi 

(1.1) ^1^=0 = vo(x) m ^ 

Here, (7 C R2 denotes a bounded domain with smooth boundary dQ1 v is the outer 
normal unit vector, and r > 0 and a > 0 are constants. The initial values uo(x) and 
vo(x) are smooth, non-negative, and UQ ^ 0. 

The first equation describes the conservation of mass; the effect of diffusion, Vn, 
and that of chemotaxis, uVv, are competing for u to vary. The second equation is 
linear and indicates that the chemical mateiral v diffuses by itself, is produced by u, 
and is destroyed by the rate a > 0. The constant r > 0 is small and shows that the 
time scales for u and v are different. 

Alt [2] approached the problem of modelling from the microscopic point of view. A 
stochastic process was introduced, and the first equation was derived from biophysical 
and biochemical structures of slime molds. System (1.1) is supposed to explain the 
process of the concentration of mass and the formation of spores of slime molds. 
Behavior of the solution global in time is quite important. 

Unique existence, positivity, and regularity of the classical solution of (1.1) are 
assured locally in time by Yagi [26] and Biler [3]. Henceforth, Tmax > 0 denotes the 
maximal time of existence for the classical solution (u, v). 

It is easy to see that the first component u preserves L1 norm. We have 

from the first equation. This implies also that 

(1.2) IKi)^ = e-t* WvoW, + a'1 (l - e"**) A 

from the second equation. 
The existence of Lyapunov function is to be noted. We have 

(1.3) -rW(u,v)+T / v'*dx+ / u\V{\ogu-v)\2dx = 0, 
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where 

W(u, v) =  / ulogudx —  / uvdx -f - /   (\Vv\2-\-av2)dx. 
JQ Jn 2 Jn v ^ 

This formula was found by Nagai, Senba, and Yoshida [18], Gajewski and Zacharias 
[8], and Biler [3] independently. As a consequence, they were able to show that 
A = ||woHi < 47r implies Tmax = -foo in use of a variant of the Trudinger-Moser 
inequality by Chang and Yang [6], and also Moser's iteration scheme (c.f. Alikakos 
[1]). This fact is referred to as the threshold of the initial mass. 

Herrero and Velazquez [10], [11] applied the method of matched asymptotic 
expansions. They constructed a family of radially symmetric solutions on Q, = 
{x £ R2 | |x| < l}, satisfying 

u{x,t)dx     —±     87r6o(dx) + f(x)dx 

as t / Tmax < +oo in .M(f2), where / G C(n\{0})nL1(n) is a non-negative function. 
This fact is referred to as the chemotactic collapse of the solution. 

Those properties, threshold of the initial mass and chemotactic collapse of the 
solution were suspected by Childress and Percus [7]. They are regarded as the con- 
sequences of the important phenomenon of biology, formation of spores described 
above. 

The argument of [7] is as follows. Consider the stationary problem of (1.1): 

V-(W-[/W) = 0   in    n 
AV - aV + U = 0 in     SI 
dU/du = dV/du = 0     on   dtt 

Writing the first equation as 

V • C/V (log [/-10=0, 

we see that log U — V = loga holds with some constant a > 0. In use of the parameter 
A = || l!7||!, this relation is indicated as 

U = \ev I [ evdx. 

Then the elliptic eigenvalue problem with non-local term, 

(1.4) -AV + aV = \ev I [ evdx    in    Q, ^ = 0    on    dtt 
JQ du 

arises from the second equation. 
Computing numerically, they observed that only constant solutions are admitted 

as radially symmetric solutions on fi = {x e R2 | |a;| < 1} of (1.4), if A E (0,87r). 
Those considerations led them to conjecture that A = ||^o|li < STT implies Tmax = -f-oo 
in (1.1), while Tmax < +oo can occur if A > STT, "because blowup solutions should 
have radially symmetric features around blowup points". Remember that actually it 
is shown that A < ATT implies Tmax = +oo. 

The threshold on A = ||ixo|li for Tmax = -foo is expected only when the space 
dimension Af is two. If N = 1, we always have Tmax = +oo. If N = 3, Tmax < -foo can 
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occur regardless of A, and rather interesting features of the solution can be observed. 
See [15] and the references therein for those facts concerning other space dimensions. 

First, Jager and Luckhaus [13] approached that conjecture rigorously. For a 
more simplified system they showed that A =||t6o||1 <C 1 implies Tmax = +oo, while 
^max < H-oo can happen when A ^> 1. Later Nagai [15] proved that the conjecture 
holds in the affirmative for radially symmetric solutions of 

ut = V • (Vu - uVv) in ft x (0, T) 

0 = Av-av + u in ft x (0, T) 

du/dv = dv/dv = 0 on aft x (0, T) 

(1.5) u\t=Q — uo(x) m ^• 

System (1.5) is the limiting case of (1.1) as r \ 0 and obeys a similar features 
to the one introduced by [13]. In this situation, A = ||wo|li < STT implies Tmax = +oo, 
while Tmax < 4-oo can occur if A > STT. However, the discrepancy between STT and 47r 
in radial and non-radial cases is essential as the authors have clarified in [21], [25], 
and [22]. 

We began the study by re-examining the stationary problem ([21]). First obser- 
vation is that problem (1.4) has a variational structure; the solution is characterized 
as a critical point of the functional 

Uv) = I ^ (|V,|2 + «,») dx - A log (^ ^ e«dx) 

of v E H1 (ft). This implies that the linearized operator around a stationary solution 
V is realized as a self-adjoint one in L2(ft) associated with the bilinear form 

A{(t), <!>)=[ (| V</>|2 + a02 - p</>2) dx + j([ p(j)d: 

of 0 E iJ1(ft), where p = Xev/ JQ evdx. In particular, the linearized stability of V is 
introduced in this sense. We also noticed that the methods developed in our former 
works on Dirichlet problem are still valid for this case. 

Among others are the application of the complex function theory to the blowup 
analysis of the family of solutions ([19]), and the use of the rearrangement technique 
relative to a round sphere for spectral analysis of the linearized operator ([24]). Con- 
sequently, we found that the set of stationary solutions C = {(A, V)} of (1.4) is much 
richer than the suspected, and some members are taking significant roles in the non- 
stationary problem. Many suggestions were obtained such as the behaviors global in 
time, the blowup mechanism, the dynamics, and so forth. 

For instance, as is expected from the numerical computation, it is actually proven 
that if ft = {x E R2 | \x\ < l} and A E (0,STT), each radially symmetric stationary 
solution is a constant. On the contrary, there is a family of non-radial solutions 
bifurcation from constant solutions in this case. It is absorbed into the hyperplane 
A = 47r with the singular limit having one singular point on the boundary up to the 
rotation of x around the origin. That bifurcation occurs in A < Arc if 0 < a <C 1 
and the bifurcated solutions are linearized stable. Also it is shown that any solution 
is linearized unstable if 0 < A — 47r <C 1. We suspected that only some constant is 
admitted as a stationary solution for 0 < a <gl 1 and A E (47r, STT). 

Those observations to the stationary problem led us to conjecture that the mass 
of generic non-stationary solutions concentrates mostly to a point on the boundary 
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as t -» +00 if 0 < in - A < 1 and 0 < a < 1, where A = ||wo|li. Furthermore, 
the blowup solution of (1.1) should have only one blowup point on the boundary if 
^ — ll^olli € (47r,87r) even in the general case. We suspected that "a half spore" will 
be created on the boundary in this case. 

This conjecture, based on a heuristic argument, was supported by [25] from the 
viewpoint of dynamical systems; any linearized stable stationary solution V(x) of J^ 
is dynamically stable in (1.1). More precisely, if V(x) is a strict local minimum of JA, 

then the conditions 

Mi = A,     \\uo-U\\LlogL<&l,    and    \\vo - V\\H1 <Cl 

imply Tmax = +00 and lim \\u(t) - UW^ = lim \\v(t) - V]]^ = 0m (1.1), where U = 
u " ) OO t" ■■ > OO 

Xev/ JQe
vdx and || • ||LlogL denotes the Zygmund norm. 

Key structures for the proof are the following. First, each term of the Lyapunov 
function W(u,v) is regarded as a variant of Zygmund norm of u, the paring between u 
and v, and the H1 norm of v, respectively. Next, there are local isomorphism between 
the Zygmund space LlogL and the Hardy space H1, paring between H1 and BMO, 
and imbedding H1 C BMO. Of course, the inequality 

W(u(t),v(t))<W(uo,vo)        (*e[0,Tmax)) 

is made use of. Another observation is that W and J\ are so related as 

w (r^b'v)= Jx{v)+x log (A m • 
See the original paper [25] for more details. 

The blowup mechanism of (1.5) is now well understood as is expected by [22]. If 
^max < +00 the blowup set of u, 

B — {x G ft I there exists Xk —> x and t^ / Tmax 

satisfying u(xk,tk) —* +00} , 

is finite. More precisely, we have 

tl(Bnan) + 28(Bnn)<||izolli/(47r). 

Furthermore, there exist a mapping m : B —>• [47r, 00) with Tn\BnQ > STT and a non- 
negative function / G C(Q \B) D L1(ft) satisfying 

(1.6) u(x,t)dx    —^      y^ m(xo)6XQ(dx) + f(x)dx 
xoeB 

in A4(tt) as t f Tmax. Delicate analysis is made on many places, but a cancellation 
scheme of the singularity in a reduced integral equation is a key structure. Then, 
some local behaviors of the Green's function are made use of. 

The case r > 0 is more difficult. Profile of the chemotactic collapse (1.6) is proven 
when the Lyapunov function W is bounded, or u and v are radially symmetric, or 
A = 47r ([17], [9]). Right now we expect infinite blowup sets for other cases. 

Another question is the possibility of m(a;o) > STT for x§ G B D ft, or m{x^) > Air 
for XQ G B fl 9ft in (1.6). It will be studied in a forthcoming paper of us. 
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So far, sufficient conditions for Tmax < -foo have been given mostly for (1.5). In 
the present paper, we refine the condition of [16] concerning the boundary blowup of 
the solution in a finite time. Another aim is to give an alternative proof of a theorem 
by Horstmann and Wang [12]. It is concerned with the blowup (possibly in the infinite 
time) of the solution of (1.1). We believe that the argument presented here is more 
detailed. Applying it to (1.5), we shall show that B = {p} and m(p) = STT occur, if 
Tmax — +00, u and v are radially symmetric, and p is the center of fi. 

Our theorems are stated as follows. 

First, in [21], it is shown that if VA'S are solutions to (1.4), A —■> AQ G [0, OO), and 
||VA|IOO 

—> +005 then AQ E 47rN. The number of blowup points of this family satisfies 

tl(Bnafi)+-2tt(Bnfi) = ^. 

We have 

j   = {J\(v) | v solves (1.4) } > —oo 

if A G (0, oo) \ 47rN. The following theorem shows that the blowup of the non- 
stationary solution occurs in a finite or the infinite time if UQ and VQ satisfy 

(1.7) Uuolli = A       and        W (UQ^VQ) < iA + A log (A |n|). 

It is nothing but the one proven by Horstmann and Wang [12], but we shall provide 
different arguments here. 

THEOREM 1. // (1.7) holds, then the solution of (1.1) satisfies 

(1.8) lim    11^)11^ =+oo. 
*/   J- max 

More precisely, we have 

lim     / u log udx =    lim     / uvdx 

(1.9) =    lim     f \'Vv\2dx=    lim     feavdx = +oo 

for any a > 1. Here the case Tmax = +oo is admitted. 

If n = {x G R2 | \x\ < 1}, we have 

j_ ad    = {J\(v) \ v is & radial solution of (1.4)} > — oo 

for A G (0,oo)\{87r}. We can find a radial function UQ satisfying 

(1.10) Mi = A        and       W(u0,vo) < iradX + \\og(\m 

for VQ — (—A + a)~ UQ similarly. Then, (1.8) or (1.9) holds to the solution u of (1.5). 
In use of the argument presented in this paper for the previous theorem, we can show 
the following fact. 

tSTm 
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THEOREM 2. Letuo be radially symmetric and satisfy (1.1 Q). Then, the solution 
u of (1.5) satisfies 

lim lim inf / udx = lim lim sup / udx = Sir 
R\'0tyTm^J{\X\<R} RSs»0tSTmaiXJ{\x\<R} 

^Tmax = -f-OO. 

Note that if Tmax < -foo and UQ is radially symmetric, then jji? = 1 and further- 
more (1.6) holds with XQ = 0 for the solution u of (1.5). In both cases of Tmax = -hoo 
and Tmax < +oo, the solution develops a singularity like a delta function at the origin. 

The last theorem gives a criterion for the boudary blowup of the solution u of (1.5) 
in a finite time. It is a refinement of the result obtained by [16]. Suppose that dft is 
smooth at XQ G dft so that there exists a conformal mapping sending the intersection 
of dfl and a neighborhood of XQ into the real axis. 

THEOREM 3.  There exists rj > 0 such that 

uo(x)dx > 47r / 
fQnBR(xo) 

and 

R2L uo(x) \x — XQ\   dx < 7] 
fnnBR(xo) 

imply Tmax < -boo for the solution u of (1.5), where 

BR(XO) = {x e R2 | \x - xo\ < R} 

for R>0. 

Precisely, rj is determined by A = ||wo|li and H^oll^imnB (x ))' Note that if 
A G (47r,87r), there exists exactly one blowup point on d£l. 

In proving Theorem 2, we make use of the arguments for the proof of Theorems 
1 and 3. Theorems 1, 2, and 3 are proven in sections 2, 4, and 3, respectively. 

2. A blowup criterion. This section is devoted to the proof of Theorem 1. We 
study (1.1) for the general domain, taking a = 1 and r = 1 for simplicity. 

In the previous work [23], the authors proved (1.9) for the case of Tmax < -foo. 
The argument developed there is valid even for the case of Tmax = +00 if 

lim   W(u(t),v(t)) = -00 

is satisfied. We have only to show (1.9) for the other case, 

(2.1) Tmax = +00        and lim   W (u(t),v(t)) > -00. 
tS+oo 

Actually, relation (1.8) follows from (1.9). 
We shall show that (2.1) and (1.7) imply 

(2.2) lim    / ulogudx =+00. 
tS+ooJa 



PARABOLIC SYSTEM OF CHEMOTAXIS 355 

Becaue of 

(2.3) / ulogudx <  / uvdx + W(u,v), 
Jn Jn 

then   lim    /  uvdx = +00 follows. In use of Young's inequality we have 

(2.4) a / uvdx <  / ulogudx+ e~1 / eavdx 
Jn Jn Jn 

< [ uvdx + W{u,v) + e'1 [ eavdx 
Jn Jn 

and hence   lim    /  eav^x^dx = +00 holds for a > 1. This implies 

lim    / |Vv(t)|2dx = +cx) 
ty+oo Jn 

by Chang-Yang's inequality (see [23]). The proof will be complete in this way. 

Suppose the contrary: liminf / ulogudx < +00. There exist a constant C* > 0 
ts+oo Jn 

and a sequence tk /* +00 satisfying 

/ u(tk)logu(tk)dx < C*. 
Jn 

Assumption (2.1) now gives 

(2.5) /      /  (v^-\-u\V{logu-v)\2)dxdt< +00. 

Letting k ^> 1, we may suppose that 

/      / vfdxdt < 1. 
Vtfc   Jn 

In [23], the inequality 

— / ulogudx < 2K2 \\uo\\l + 7 / vfdx 
dt Jn 4 Jn 

(2.6) +4 |n| exp UK
2
 I ulogudx + A^e'1 |fi| J 

is shown with a constant if > 0 determined by 0. Take <5* > 0 satisfying 

8, {2K2 WuoWl + 4 |fi| exp (4if2 (C* + 1) + 4if2e-1 |fi|)} = i 

For some f^ G (£&, t^ + 5*) we have 

/ u(t) logu{t)dx < C* + 1 {tk<t<ik) . 
Jn 
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Then inequality (2.6) implies 

/ u(ik)logu(ik)dx < - / Vtdxdt+ / u(tk)logu(tk)dx 
Jn 4 Jtk   JQ JQ 

+ (2K2 WuoWl + 4 |fi| exp (4K2 (C* + 1) + 4^2e-1 |fi|)) (tk - tk) 

Because t e [tkltk + 5*] H->  / u(t) logu(t)dx is continuous, this means that 

(2.7) / u(t) logu(t) dx < C* + 1        (^ < t < tk + 6*). 
JQ 

Here, 5* > 0 is independent of k. We have 

lim        ini        [ (v2
t(t) + u(t) |V (logii(t) - ^W)|2) dx 

^J-1 lim   [k    * [ (v2(t)+u(t)\V(logu(t)-v(t))\2)dxdt 
k~^00 Jtk       JQ ^ ■ ' 

by (2.5). With some ik G \tk,tk + (5*] it holds that 

(2.8) lim   I (v2(ik) + u(ik) |V (log w(4) - ^(4)) H dx = 0. 
k-*00 JQ K J 

We have 

and hence 

u |V (logu - v)f = 46^ V (we-v)2     > 4 V (we^) 

lim 
/c—>CX) 

= 0 v («(£fc)c-
,,{£t)) 

On the other hand we have   / we~v(ia;<||w||1 = A.   Passing through a subse- 
JQ 

follows. 

On 

quence, we get 

lim -i- / (u(fjb)e-
v(ffc))1/2cfa = Co 

with  a  constant  Co    >   0.      Therefore,   Poincare-Wirtinger's inequality  implies 

f u(£fc)e~-,;^)      ^ Co in ^(fi), and hence we have 

(2.9) 

for any "p > 1. 

i(tfc)e~"(ffc)     -»■     Cg       in       Lp(n) 
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Relation (2.8) gives 

(2.10) lim \\vt(ik)\\2 = 0. 

Noting 11^(^)1^ = A, we apply an inequality of Brezis and Merle [4] to the second 
equation of (1.1). With some a > 0 it holds that 

sup / e^^dx < +oo. 
k    JQ, 

Inequalities (2.4) and (2.7) imply 

sup / u(ik)v(ik)dx < +oo. 
k  Jn 

The second equation of (1.1) gives that 

  r) Ol I I JLoJ-Q 
||Vi;||2 + ||v||2 =  /  uvdx —  /  Vtvdx <  /  uvdx + — \\vt\\2 H~ 7: \\v\\2 • 

Jn Jn Jn 2 2 

Relation (2.10) now implies 

sup||i;(tjfe)||H1(n) < +00. 

Passing through a subsequence, we have 

(2.11) v(ik)— Voc    in    H1^)        and        ev^ -> eVo0    in    Lp(n) 

with some VOQ £ iJ1(fi) for p > 1. The latter convergence is a consequence of the 
compact imbedding i71(Q) C LP(Q) and Chang-Yang's inequality and details are left 
to the reader. 

We set t = tk and make /c —> 00 in the second equation of (1.1). Relations (2.9) 
and (2.11) imply 

u(ik) = (u(ik)e-
v^ • ev^ -> CQV-        in    Lp(fi) 

for p > 1. In use of (2.10) and (2.11), we get 

-Av00+vcx> = CZev<x>    in    ft,        -^ = 0    on    aft. 

Furthermore, equality (1.2) gives ||foo|li = A and hence CQ — A/ /  eVoodx. 
Jn 

Letting u^ = XeVo0 / /  eVoodx, we have n(4) —> ^00 in Lp(ft). This implies 
in 

lim   / ifc(ffe)logw(£jfe)da;= / UoologUoodx. 
k-*00 Jn Jn 

We also have 

lim   / u(ik)v(ik)dx =  / u^Vcodx 
k-+°°Jn Jn 



358 

and 

T. SENBA AND T. SUZUKI 

liminf f (|Vw(4)|2 + «(4)2) dx >  f (iV^ooj2 + v2Jj dx. 

Those relations contradict assumption (1.7) as 

W(uo,v0) >  lim W (u(ik),v(ik)) > ^(uoo.Woo) 

= JA(vc»)+Alog(A|n|)>jA + Alog(A|fi|). 

The proof is complete. □ 

For solutions of (1.5), inequality (2.3) is improved as 

/ ulogudx < - / uvdx -{-W(u,v). 
Jn 2 JQ 

This fact implies that a can be taken as a > | in (1.9) in the case of (1.5). Except 
for this improvement, the results stated in Theorem 1 are still valid for solutions of 
(1.5). A related result is shown in [9] for solutions of (1.1). 

3. Boundary blowup of the solution. This section is devoted to the proof 
of Therem 3. We study (1.5) on the general domain Q, with dQ, sufficiently smooth 
around XQ G 90, and u denotes the solution. Theorem 3 is proven by localizing the 
argument of [15]. 

There exists a conformal mapping X = (XijXz) defined on SlnBn^xo) satisfying 
X : Q n BR(xo) -> Rl = {(xux2) G R2 | x2 > 0} and X(<9fi n BR(xo)) C 9R^. 
We have (dXi) / {dv) = 0 on dVL. Without loss of generality, we can assume XQ = 0, 
iy(xo) = (0, —1), and 

(3.1) 
dX 
dx 

(XQ) = id. 

Let 0 be a smooth function defined on Q satisfying the homogeneous Neumann 
boundary condition. In [22], it is shown that 

dtJn 
u<pdx 

1 2 
< ll^lloo IKIli + 9 PIL-cnxn) IKIli 

holds, where p(x, y) = W(j)(x) • VxG(x, y) + V^(y) • T\/yG(xJ y) with G = G(x, y) being 
the Green's function for — A + l with the homogeneous Neumann boundary condition. 
The following lemma is a consequence of Lemma 6 of [22]. 

LEMMA 3.1. Letting 

^(t) =  / u(xit)(j>(x)da 
Jn 

we have 

dt 
<i:|H|c2(n)(A2 + A) (*G[0,Tmax)) 

with a constant L > 0 determined by ft. 
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Given R > 0 sufficiently small, we take smooth functions'^ (i = 1,2) defined on 
R2 satisfying 0 < </>; < 1, 

» = {  J 0i(^) = 
Or G B4<*(0)) 

0    (x ? B2.4iR(0)), 

and a0i/9i/ = 0 on Sfi.  Letting ipi = <$ and m{x) = |X(a:)|2/2, we can show the 
following. 

LEMMA 3.2.  We have 

TT 

< CR-1 (\x\ + |y|) ^\'2{x)^2{y) + CiT1 |y| ^(y) 

/or 

pfay) = [V(m^i)(^) • VxG(x,y)]tl>2(y) + Mm^i){y) • V!/G(a;,y)]^2(a:) 

m^/i a constant C > 0 independent of R. 

Proof.   We set (ai, 2:2)* = (^1,-^2). From the proof of Lemma 6 of [22], we have 

(3.2)      G(x,y) = ^tog |x(a;) ^ xm + ^log |x(:c) _
1
x(y)1 +g(a>y) 

for a;,y G -B32fi(0) n fi with fiT £ C^'^flCO) fl fi x 532^(0) p fi) and e € (0,1). 
First, we take the term associated with 

Gi(a:,j/)=ei(£,f7) = —log——r, 

where £ = X(a;) and 7? = X(y). Because X is conformal, it holds that 

dX /dX\   VdX 

\dx)'  \dx dx 
•id. 

Letting c(0 = |^| and *i(0 = ^(a;), we have 

pi(a;,y) = ^{yWximtpi^x) ■ VxGi(x,y) 

+ih(x)'Vy(mil>i)(y) ■ VyGi(x,y) 

= ic«)*2(»7)V€ (kl2 *i(0) • V€ei(e,f7) 

= /i"^ • {c(0*2(»?)(^i(0 + K^v^iCO) 47r^-ry|2 

-c(>7)*2(e)(2»7*i(»7) + M'V^ifa))} • 

This implies pi = I + II + III + IV + V with 

J= 2^(0*1(0*207) 
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ZTT 1^ - 77I 

2 

47r |^ - 771 

In use of (3.1), we get c(£) = 1 + 0(|^|) and hence 

i=^(1 + 0(\x\))i>i (x)th{y) 

follows. Similarly, we obtain 

11 = TIT^ two - cfo))^)*!® 
27r ^ - jyl 

+c(»7)*2('7)(*i(0 - *i W) + c(v)(Mv) - ^(O)*!^)} 
= O(M)M>2(77)*i(0 + Odr/DO^"1)^^) + Od^DOC/J"1)*!^) 
= o(\y\) (MvWiW + oiR-^Mv) + o(R-l)My)) 

111 = tofc-l? ' V€*itf M^Mtf - 77) • (^ + r?) 

= o(|^|+ M).o(vc*i(0)c(0*2(»?) 
= 0(|a:H-M)0(i?-1)Vi(a:)1/V2(») 

iv = od^i2)©^-2)^^) = odsDociJ-1)^^) 

We get 

\pi(x,y) - ^i(x)My)\ < ^(N + lyD^iW^^Cy) + ^\y\My) 

by ^2 >^i1/2. 
We turn to the term associated with 

G2(x,y) = 62(^7]) = —log^——^ 

Because of di^i/du = 0 on <9fi, we get 

= 0 

for « = 1,2. We obtain 

P2{x,y) = tp2(y)^x(rmpi)(x) ■ WxG2(x,y) + rp2(x)Vx(mipi)(y) ■ VyG^z,y) 

2 

+ic(J7)*2(OV7?(|J7|2*i(77)) • VW^) 

= V J + V JJ + VIII + IX 
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with 

vi = a^lffia {c(Oei*i(0*2('7) - c^^M^m 

VIII = 2^tq«|2 {c(0^*i(0*2(»7) + c(»7)%*i(»7)*2(0} 

Similarly to Gi, the estimate 

|y7+y//-|jr$F*i(0*2(,7)l 

holds. On the other hand, we have 

Vni=2v\t-2J?Cmim2{r}) 

+c('7)(*i(0-*i('7))*2(»?)+c(i7)*i(»7)(*a(»7)-*2(0)} 

+^-^o(ie -»?!) (*i(0*2 W + CKir1)*^) 

+o(i?-1)*1(77)). 

Noting (3.3), supp^i c B32R(0), 6 > 0, m > 0, and \Da^i\ = O(R-W), we get 

*i€2(0 + ^^('J) = & (1 + 0(ii-2)0(|^|)) +% (1 + 0(iJ-2)0(|»7|)) 
= (6+r?2)(l + 0(i?-2)0(|^| + M)) 

= 0(J?-1)(6+%). 

This implies 

IX = 4^-?ia {(C(0 " ^M3*1^*3^ 
+c('7)(|e|2 - h|2)*u2(0*2(^) + c(^)|^|2(*ift(0 + *1,2(r?))*2(77) 

+c(v)0(\Z - ri\)Om + \v\)*ita(0*2(v) 
+c(vM2^2+V2)0(R-1)^2(v) 
+c(vM2^r,MO(R-1)o^-v\)} 

+0(R-1M^2(r1) + 0(R-2MH\/2(f,). 
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Those relations are summarized as 

1 C C 
\p2{x,y) - -^Mx)Mv)\ < ^(M + \y\)M^)1/2My) + -^IvlMy)- 

Finally, because K is a C1,6 function, we have 

Mv)V(m1>i)(x) ■ VxK(x,y)+ij2{y)V(m'4>1)(y) ■ VyK(x,y) 

- My) (owxtyiix) + OCR-^MVI
172
^)) 

+Mx) (o(i)\y\My) + OiR-'M^'iy)) 

= 0(i) (\x\Mx)Mv) + \x\Mx)1/21>2(vJ) 

+0(i) (\v\Mv)Mx) + \v\Mv)1/2MxJ) ■ 

The proof is complete. □ 

Now, we are able to give the following. 

Proof of Theorem 3.   Since ^^ = X2 = 0 on dQ, we have 

= ^ • X2 = 0   on on. 
dv 

Also (3.1) implies that m{x) = \\x\2 + 0(|x|3), mXi = Xi -f- 0(|a:|2), and mXiXj 

Sij +0(\x\) as \x\ ->0. 
Let 

I fait) =  /  u(x,t)m(x)ijji(x)dx. 
Jn 

The first equation of (1.5) gives 

—/^i =  / utmipidx = —     (Vu — uVv) • ^(mip^dx 
dt Jn Jo. 

=  /  uA(rmpi)dx +  /  wV^ • V(mijji)dx 
Jn Jn 

= 1 + 11. 

The inequalities 

|Wi| < Ci?-V!/2        and |A^| < CR'2^]12 

hold for ipi = $. We obtain 

J =  / w {^1 Am + 2Vra • V^i + mA^i} rfa: 

< 2 / w^idrr 4- CE_1 / \x\il)l/2udx 
Jn Jn 

< 2A^1 + CiJ-^/Jf. 
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The second equation of (1.5) implies 

11= u(x,t)VxG(x,y)-Vx(rn'ipi)(x)u(y,t)dxdy 
JnJn 

= u(x,t)^2(y)^xG{x,y)-Vx(m'ip1){x)u(y,t)dxdy 

+ u(x,t)(l-il>2(y))VxG(x,y)-Vx(mipi){x)u(y,t)dxdy 
Jn Jn 

= 111 +IV. 

Here, we have 

dist(supp(l - ^2), supp^i) > dist(R2\5i6jR(0)) BBR{0)) = 812 

and hence 

IV <CR-1 I   I  \x\il)\/2(x)u(x,t)u{y,t)dxdy 
Jo, Jn 

< CR~lX [ |a;|^i(x)1/2w(a;,t)cfa 
Jn 

< CR-W2!^2 

follows. On the other hand, we have 

17/=-/   / u(x,t)p(x,y)u(y,t)dxdy, 
zJnJn 

and Lemma 3.2 implies 

\III - — A^A^J 

< /   / u(x,t)-\p(x,y)--^1(x)'ip2(y)My,t)dxdy 
JnJn 2 * 

CR^XI [ \x\^l/2(x)u(x,t)dx+ [.\y\MyMy,t)dx\ 
Un Jn J 

^A /  IxKip^x)1/2 +ip1(x))u(x1t)dx 
Jn 

+CR-1\      \x\(ip2(x)-il)i(x))u(x,t)dx 
Jn 

< CRT1^'2!^2 + C\ [ {^(x) - il>i(x))u(x,t)dx. 
Jn 

Consequently, we obtain 

/// < -^ + CRT1^12!^2 + C\j^)2{x) - M^Hx^dx. 

Those relations are summarized as 

(3.4) Ij^ < 2Xi)1 - ^-A^ + CR-'X^lH2 + aX(X^ - A^) 

< 

= CR- 

df"1 -     ^     2K 
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for t £ [0, Tmax) with a constant C* > 0 independent of R. 
By Lemma 3.1, there exists a constant L > 0 satisfying 

<LR-\y + \) 

for i = 1,2. Letting 6 = A^ (0) - 47r > 0, we take Ti > 0 in 

LTUA2 + X)R-2 + CLTxiX3 + A2)ir2 < 6/4. 

This implies 

(3.5) |A^(t) - A^(0)| + a A lA^t) - A^4(0)| < | 

in particular, where t G [0,min(Ti,Tmax)). 
We suppose that rj > 0 is so small that 

(3.6) UA0)<
S

-Y 

and 

ajr^ijffl)) + ^c.iz-2Aj^(o) < 6- 

hold. In this case we have 

CR^X^I^iO)1^2 + C.A(A^(0) - A^(0)) 

(3.7) < airU3/2/^*))1/2 + ^ai?-2A/^(o) < |. 

The right-hand side of (3.4) at t — 0 is less than 

ex 8      6 35 _2(47r + *)- + -<-T. 

For t > 0 sufficiently small, /^1 (t) is monotone decreasing. 
We suppose Tmax = -f oo and derive a contradiction. For this purpose, first we 

show that 1^ is monotone decreasing on [0, Xi]. In fact, otherwise we have To G (0, Xi) 
satisfying 

!j*(To) = 0 

with I7p1 being monotone decreasing on [0,To]. In use of (3.5) with A^O) > 47r, we 
see that the right-hand side of (3.4) at t = TQ is less than 

2 (A*(0) -1) - ^ (A*(O) - J)
2
 + arWi^W* 

+C,A{A^(0)-A^1(0)) 
+CtX(\X^(To) - V(0)| + |A^(ro) - A^(0)|) 

- "^ (47r + T) + c*R~lx3/2l^0)1/2 + c*x(^M - V(o)) +1- 
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This implies 

by (3.7), a contradiction. 
At the same time we have proven that 

Jt
I^t)<-2        (t6[0>ri))- 

Therefore, (3.6) implies /^(Ti) < 0. This contradicts the positivity of the solution, 
and hence Tmax < +00 has been proven. The proof is complete. □ 

The case XQ G fi is treated similarly. If 

/ uo(x)dx > STT and —  / UQ(X)\X — Xo\2dx < rj 
JBR(XO) R    JBR(XO) 

holds for sufficiently small i? > 0, then Tmax < +00 follows. Here, rj > 0 is a constant 
determined by A = WUQ^ and ||^O||LI(BR(XO)). 

4. Blowup solution in the infinite time. This section is devoted to the proof 
of Theorem 2. We study (1.5) for Cl = {x G R2 | \x\ < l}. We set a = 1 for simplicity 

and suppose (1.10) with VQ = (—A + l)~ UQ and Tmax = +00. The initial value UQ 

and hence the solution u(t) are radially symmetric. 
In [15], the relations 

(4.1) sup     Mt)\\LOO,nB m) < +00 
tG[0,+oo) v   v m J} 

and 

sup    \Ht)\\LoomBRm <+oo 
t€[0,+oo) 

are shown for this case, where R G (0,1) is arbitrary. From the standard elliptic and 
parabolic estimates, this implies 

\\u IC
2
'
1
((^\^H(0))X[0,+OO)) < +00 anci l|,L'llc2'1((fi\BH(0))x[0,+oo)) < +00- 

The following inequality is proven similarly to Lemma 13 of [9]. We have only to 
make use of the elliptic estimate instead of Lemma 12 there: Let to be a solution to 

— Aw + w = / in ft 

ov 

Then, it holds that 

/        ewdx < ecIHI,p(o) . / (iX 
JBR(O) JB2R(0) VFI/ 

forp> land <?=||/+||L1(B3R(0))/(27r). 
Now we give the following. 

dx 
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Proof of Theorem 2.   As is noted at the end of §2, we have (2.3) with a > 1/2 in 
this case. Because of (4.1) this implies that 

lim    /        eav^dx = +oo 

for R £ (0,1).   We also have ||w(£)||wi,<zm) = 0(1) for q £ [1,2) from the second 
equation of (1.5) in use of 11^(^)1^ = A and the L1 estimate ([5]). This implies 

liminf / 
'/'+<*> JB! 

from the above estimate on w = av. We have only to show that 

(4.2) lim lim sup / udx < STT. 
R\o tS+oo JBR(O) 

If this is not the case, we have 

lim lim sup / udx > Sir. 
H\,o t/*+00 JBR(O) 

There exists £* —> +oo and 6 > 0 such that 

lim inf / udx > STT 
tS+oo JBR{0) 

I        u(tk)dx 
JBR(O) 

>87r + <5 
lBR(0) 

for R G (0,1].  Passing through a subsequence, we get a non-negative radially sym- 
metric function / G L1(f2) fl C(Q, \ {0}) satisfying 

(4.3) u(tk)^f       in    Llc(n\{0}) 

for q > 1. Taking s G (0, R), we have 

lim sup / u(x,tk)\x\2dx 
k-+oo    JBR(0) 

<limsup /        u(x,tk)\x\2dx + limsup / u(x,tk)\x\2dx 
k^oo    JBe(0) k^oo    JBR(0)\B£(0) 

< Xe2 + R2 I       f(x)dx. 

This implies 

limsup / u(x,tk)\x\2 < R2 / f(x)dx. 
k->co    JBR(0) JBR(0) 

Because of / G L1^), any rj > 0 admits R G (0,1] and an integer k satisfying 

,tk)\x\2dx < rj. "52   / ^ K  JBR(O) 

However, as is noted at the end of §3, those relations imply Tmax < +00, a contradic- 
tioin. We have (4.2) and the proof is complete. D 
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