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PARABOLIC SYSTEM OF CHEMOTAXIS: BLOWUP IN A FINITE
AND THE INFINITE TIME

TAKASI SENBA* AND TAKASHI SUZUKIf

1. Introduction. The purpose of the present paper is to study blowup mecha-
nism for a system of parabolic equations. It arises in mathematical biology to describe
the chemotactic feature of slime molds.

We take the form proposed by Nanjundiah [20], simplifying the one previously
given by Keller and Segel [14]. It is stated as follows, where u = u(z,t) and v = v(z,t)
stand the density of slime molds and the concentration chemical substances secreted
by them, respectively:

u=V-(Vu—uVv) in Qx(0,T)
Ty =Av—av+u in Qx(0,T)
Oufov =0v/O0v =0 on 90 x (0,T)
Ul =uo(z) n Q
(1.1) Vg =vo(z) in Q

Here, ! C R? denotes a bounded domain with smooth boundary 9Q, v is the outer
normal unit vector, and 7 > 0 and a > 0 are constants. The initial values up(z) and
vo(z) are smooth, non-negative, and ug # 0.

The first equation describes the conservation of mass; the effect of diffusion, Vu,
and that of chemotaxis, uVv, are competing for u to vary. The second equation is
linear and indicates that the chemical mateiral v diffuses by itself, is produced by wu,
and is destroyed by the rate a > 0. The constant 7 > 0 is small and shows that the
time scales for u and v are different.

Alt [2] approached the problem of modelling from the microscopic point of view. A
stochastic process was introduced, and the first equation was derived from biophysical
and biochemical structures of slime molds. System (1.1) is supposed to explain the
process of the concentration of mass and the formation of spores of slime molds.
Behavior of the solution global in time is quite important.

Unique existence, positivity, and regularity of the classical solution of (1.1) are
assured locally in time by Yagi [26] and Biler [3]. Henceforth, Ti,.x > 0 denotes the
maximal time of existence for the classical solution (u,v).

It is easy to see that the first component u preserves L' norm. We have

lu(@®l; = lluoll, = A
from the first equation. This implies also that
(1.2) lo@)ll; = e %" Jlvoll, +a™" (1~ €e™7*) A

from the second equation.
The existence of Lyapunov function is to be noted. We have

d .
(1.3) —W(u,v)+7’/ vtzda:+/ u|V (logu —v)|* dz = 0,
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where
_ . 1 2, 2
W(u,v) = [ ulogudz — [ wvdr + = |Vv|® + av ) dz.
Q Q 2 Jq

This formula was found by Nagai, Senba, and Yoshida [18], Gajewski and Zacharias
[8], and Biler [3] independently. As a consequence, they were able to show that
A = |juoll; < 47 implies Trhax = +o00 in use of a variant of the Trudinger-Moser
inequality by Chang and Yang [6], and also Moser’s iteration scheme (c.f. Alikakos
[1]). This fact is referred to as the threshold of the initial mass.

Herrero and Veldzquez [10], [11] applied the method of matched asymptotic
expansions. They constructed a family of radially symmetric solutions on Q =
{z € R?| |z| < 1}, satisfying

u(z,t)dr — 8mwbo(dzr) + f(z)dz

ast /" Tax < +00 in M(R), where f € C(Q2\{0})NL(f) is a non-negative function.
This fact is referred to as the chemotactic collapse of the solution.

Those properties, threshold of the initial mass and chemotactic collapse of the
solution were suspected by Childress and Percus [7]. They are regarded as the con-
sequences of the important phenomenon of biology, formation of spores described
above.

The argument of [7] is as follows. Consider the stationary problem of (1.1):

V- (VU-UVV)=0 in Q
AV —aV4+U=0 in
oU/Ov=0V/ov=0 on 0N

Writing the first equation as
V-UV (logU -V) =0,

we see that log U —V = log ¢ holds with some constant ¢ > 0. In use of the parameter
A= ||U|\;, this relation is indicated as

U= /\ev// eVdz.
Q

Then the elliptic eigenvalue problem with non-local term,

(1.4) —AV—i—aV:/\ev//ede in Q, ‘g—‘lj:o on 0N
Q

arises from the second equation.

Computing numerically, they observed that only constant solutions are admitted
as radially symmetric solutions on @ = {z € R?||z| <1} of (1.4), if A € (0,8m).
Those considerations led them to conjecture that A = |Jup||; < 87 implies Tyyax = +00
in (1.1), while Tmax < 400 can occur if A > 8, ”because blowup solutions should
have radially symmetric features around blowup points”. Remember that actually it
is shown that A < 47 implies Tiax = +00.

The threshold on A = |lug||; for Thmax = 400 is expected only when the space
dimension N is two. If N = 1, we always have Tiax = +00. If N = 3, Thax < 400 can
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occur regardless of A, and rather interesting features of the solution can be observed.
See [15] and the references therein for those facts concerning other space dimensions.

First, Jager and Luckhaus [13] approached that conjecture rigorously. For a
more simplified system they showed that A = ||ugl|; < 1 implies Tryax = +00, while
Tmax < +00 can happen when X\ > 1. Later Nagai [15] proved that the conjecture
holds in the affirmative for radially symmetric solutions of

ug =V -(Vu—-uVv) in Qx(0,7T)
0=Av—av+u in Qx(0,7T)
Ou/Ov =0v/0v =0 on 9N x (0,T)
(1.5) Ul;—g = Uo(z) in Q.

System (1.5) is the limiting case of (1.1) as 7 \, 0 and obeys a similar features
to the one introduced by [13]. In this situation, A = ||ugl|; < 8 implies Tryax = +00,
while Trax < 400 can occur if A > 87. However, the discrepancy between 87 and 47
in radial and non-radial cases is essential as the authors have clarified in [21], [25],
and [22].

We began the study by re-examining the stationary problem ([21]). First obser-
vation is that problem (1.4) has a variational structure; the solution is characterized
as a critical point of the functional

Ta(v) = % /Q (1991 +av?) do — Alog (I%I /Q e”da:)

of v € H(Q). This implies that the linearized operator around a stationary solution
V is realized as a self-adjoint one in L?({2) associated with the bilinear form

Alg, ¢) = /Q (|V¢|2 + ag? —p¢2) dx + % </Q p¢dm>2

of ¢ € HY (), where p = Ae¥'/ [, eV dz. In particular, the linearized stability of V is
introduced in this sense. We also noticed that the methods developed in our former
works on Dirichlet problem are still valid for this case.

Among others are the application of the complex function theory to the blowup
analysis of the family of solutions ([19]), and the use of the rearrangement technique
relative to a round sphere for spectral analysis of the linearized operator ([24]). Con-
sequently, we found that the set of stationary solutions C = {(A,V)} of (1.4) is much
richer than the suspected, and some members are taking significant roles in the non-
stationary problem. Many suggestions were obtained such as the behaviors global in
time, the blowup mechanism, the dynamics, and so forth.

For instance, as is expected from the numerical computation, it is actually proven
that if @ = {z € R?||z] < 1} and X € (0,8m), each radially symmetric stationary
solution is a constant. On the contrary, there is a family of non-radial solutions
bifurcation from constant solutions in this case. It is absorbed into the hyperplane
A = 4w with the singular limit having one singular point on the boundary up to the
rotation of z around the origin. That bifurcation occurs in A < 47 if 0 < @ < 1
and the bifurcated solutions are linearized stable. Also it is shown that any solution
is linearized unstable if 0 < A — 47w <« 1. We suspected that only some constant is
admitted as a stationary solution for 0 < a < 1 and A € (4, 87).

Those observations to the stationary problem led us to conjecture that the mass
of generic non-stationary solutions concentrates mostly to a point on the boundary
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ast — 400 if 0 < 47 — A < 1and 0 < @ < 1, where A = |upl|;. Furthermore,
the blowup solution of (1.1) should have only one blowup point on the boundary if
A = ||ug||; € (4m,87) even in the general case. We suspected that ”a half spore” will
be created on the boundary in this case.

This conjecture, based on a heuristic argument, was supported by [25] from the
viewpoint of dynamical systems; any linearized stable stationary solution V' (x) of Jy
is dynamically stable in (1.1). More precisely, if V(z) is a strict local minimum of Jy,
then the conditions

”U0“1 =X, |luo - U“LlogL <1, and |lvo—-V|; <1

imply Tiax = 400 and tl_Lr& |lu(t) = Ul = tlirglo lv(t) = V|l = 0in (1.1), where U =
XeV/ [qeVdz and || - |2 10g  denotes the Zygmund norm.

Key structures for the proof are the following. First, each term of the Lyapunov
function W (u,v) is regarded as a variant of Zygmund norm of u, the paring between u
and v, and the H' norm of v, respectively. Next, there are local isomorphism between
the Zygmund space Llog L and the Hardy space H!, paring between H' and BMO,
and imbedding H' ¢ BMO. Of course, the inequality

W (u(t),v(t)) < W (uo,vo) (t € [0, Tmax))

is made use of. Another observation is that W and J, are so related as

)\ v
W (fe_evd:c’v) = Jy(v) + Alog (A ]Q2]) .
Q

See the original paper [25] for more details.
The blowup mechanism of (1.5) is now well understood as is expected by [22]. If

Trmax < +oo the blowup set of u,

B= {a: € Q | there exists zx — = and t; / Thax
satisfying u(zg,tx) — +o0},

is finite. More precisely, we have
F(BNoQ)+24(BNQ) < |luoll, /(4m).

Furthermore, there exist a mapping m : B — [4m, 00) with m|znq > 87 and a non-
negative function f € C(Q\ B) N L}(Q) satisfying

(1.6) uz,tydr  — Y m(z0)ds,(dz) + f(z)dz
ToEB

in M(Q) as t / Tiax. Delicate analysis is made on many places, but a cancellation
scheme of the singularity in a reduced integral equation is a key structure. Then,
some local behaviors of the Green’s function are made use of.

The case 7 > 0 is more difficult. Profile of the chemotactic collapse (1.6) is proven
when the Lyapunov function W is bounded, or u and v are radially symmetric, or
A =4m ([17], [9]). Right now we expect infinite blowup sets for other cases.

Another question is the possibility of m(zg) > 87 for zg € BN Q, or m(zg) > 47
for zop € BNIN in (1.6). It will be studied in a forthcoming paper of us.
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So far, sufficient conditions for Tyax < +o0o have been given mostly for (1.5). In
- the present paper, we refine the condition of [16] concerning the boundary blowup of
the solution in a finite time. Another aim is to give an alternative proof of a theorem
by Horstmann and Wang [12]. 1t is concerned with the blowup (possibly in the infinite
time) of the solution of (1.1). We believe that the argument presented here is more
detailed. Applying it to (1.5), we shall show that B = {p} and m(p) = 87 occur, if
Tmax = +00, v and v are radially symmetric, and p is the center of .

Qur theorems are stated as follows.

First, in [21], it is shown that if V)\’s are solutions to (1.4), A — X € [0, 00), and
[IValle — +o0, then Ao € 4rN. The number of blowup points of this family satisfies

§(BNOQ) + 2 (BN Q) = i_;
We have
7y = {Ir(v) | v solves (1.4) } > —oco

if A € (0,00) \ 4rN. The following theorem shows that the blowup of the non-
stationary solution occurs in a finite or the infinite time if ug and vy satisfy

(1.7) lluoll; = A  and W (uo,v0) < j, + Alog (A[Q2]).

It is nothing but the one proven by Horstmann and Wang [12], but we shall provide
different arguments here.

THEOREM 1. If (1.7) holds, then the solution of (1.1) satisfies

(18) im [[u(®)], = +oo.
More precisely, we have
lim ulogudz = lim uvdx
t/Tmax Q t/Tmax Q
(1.9) = lim / IVol?dz = lim e*dx = 400
t, " Tmax Q t, " Tmax Q

for any a > 1. Here the case Tpax = +00 is admitted.

IfQ={zeR?||z| <1}, we have

Jraap = {Jx(v) | v is a radial solution of (1.4)} > —oo

for A € (0,00)\{87}. We can find a radial function ug satisfying

(1.10) luoll, =X  and  W(ug,vp) < Jragr Alog (A |Q)

for vo = (—A + a) "' ug similarly. Then, (1.8) or (1.9) holds to the solution u of (1.5).
In use of the argument presented in this paper for the previous theorem, we can show
the following fact.
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THEOREM 2. Let ug be radially symmetric and satisfy (1.10). Then, the solution
u of (1.5) satisfies

lim lim inf udx = lim lim sup / udxr = 8w
BNOt A Tmax J (o)< R} BNO t  Tnax J{ |2l < R}

Zf Trax = +00.

Note that if Thhax < +00 and ug is radially symmetric, then 8 = 1 and further-
more (1.6) holds with 2z = 0 for the solution u of (1.5). In both cases of Tinax = +00
and Thax < 400, the solution develops a singularity like a delta function at the origin.

The last theorem gives a criterion for the boudary blowup of the solution v of (1.5)
in a finite time. It is a refinement of the result obtained by [16]. Suppose that 02 is
smooth at zg € 92 so that there exists a conformal mapping sending the intersection
of 092 and a neighborhood of zg into the real axis.

THEOREM 3. There exists 1 > 0 such that

/ uo(z)dx > 47
QNBRg(zo)

and

1

— uo(z) |z — zo|> dz < 1
R2 x/QnBR_(:Eo)

imply Tax < 400 for the solution u of (1.5), where
Br(zo) = {z € R*| |z — x| < R}

for R> 0.

Precisely, 7 is determined by A = [luoll; and |luollz1(npp(zg))- Note that if
A € (47, 87), there exists exactly one blowup point on 0.

In proving Theorem 2, we make use of the arguments for the proof of Theorems
1 and 3. Theorems 1, 2, and 3 are proven in sections 2, 4, and 3, respectively.

2. A blowup criterion. This section is devoted to the proof of Theorem 1. We
study (1.1) for the general domain, taking @ = 1 and 7 = 1 for simplicity.

In the previous work [23], the authors proved (1.9) for the case of Tinax < +00.
The argument developed there is valid even for the case of Tax = +oo0 if

t/lg_lrpoo W (u(t),v(t)) = —o0

is satisfied. We have only to show (1.9) for the other case,

(2.1) Tow=-+oo  and  lim W (u(t)o(t)) > oo,

Actually, relation (1.8) follows from (1.9).
We shall show that (2.1) and (1.7) imply

(2.2) lim ulogudz = +oo.
t,/+oo Q
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Becaue of
(2.3) / ulogudzr < / wvdz + W (u, v),
Q Q
then t/l}_'_m uvdz = 400 follows. In use of Young’s inequality we have
= Ja
(2.4) a/ uvdr < / ulogudz + e~ / e*Vdz
Q Q Q
< / wvdz + W (u,v) +e_1/ e*Vdzx
Q Q

and hence lim e*¥(®1) gy = +0o holds for a > 1. This implies

t,/+oco o)

lim / IVo(t)|? dz = +oo
t,/+oo Q

by Chang-Yang’s inequality (see [23]). The proof will be complete in this way.

Suppose the contrary: 1:‘}? +inf ulog udx < +oo. There exist a constant C, > 0
> Jq
and a sequence t; /" 400 satisfying

/ u(ty) log u(ty)dz < C.
Q

Assumption (2.1) now gives

(2.5) /OOO/Q ('vf +u|V (logu — v)|2> dxdt < +o0.

Letting k£ > 1, we may suppose that

/ / vidrdt < 1.
tr Q

In [23], the inequality
d
— [ ulogudr < 2K? ||u||? + l/ vids
(2.6) +4|Q|exp <4K2/ ulog udz + 4K2e™? |Q|>
Q

is shown with a constant K > 0 determined by . Take 6, > 0 satisfying
6, {2K2 Juo|l? + 410/ exp (4K* (C. +1) + 4K} ) } = i_

For some t € (ty,tr + 6,) we have

/ u(t) logu(t)dr < Cy + 1 (te <t <)
Q
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Then inequality (2.6) implies

/u(t;v)logu(t;c dx < = ~/tk / dxdt+/ u(ty) log u(ty)dz

+ (2K Juoll} + 410 exp (4K (C. +1) + 4K e 120)) (F - )

1
<Ci+ =
_C+2

Because t € [tg, tx + 0.] — / u(t) logu(t)dz is continuous, this means that
Q

(2.7) / u(t)logu(t) de < Cy +1 (ty <t <tp+6).
Q
Here, 5* > 0 is independent of k. We have

lim inf / (42() + u(®)V ogu(®) ~ v(t) ) da

k—00 t€(ty,tr+04)
tr40x
<ot khm / 2(t) +u(t) |V (logu(t) — v(t))|2) dzdt
5 — 00

=0

by (2.5). With some &y, € [t,tx + d.] it holds that

. ~ ~ ~ ~ 2
(2.8) | Jim /Q (uf(tk) +u(e) |V (log u(E) — v(r))] )dx —0.
We have

12 12

u|V (logu —v)|> = 4e” |V (ue™)?| >4 ’V (ue™)?

and hence
L N1/2
: 2 Vo—v(tr) _
i 9 (utinem )]

follows.

On the other hand we have / ue”’dz < ||lu||; = A. Passing through a subse-
Q

quence, we get

1 R £\ 1/2
im — —v(tk) =
kli)rgo |ﬂ|/s;(U(tk)e ) dx = Cy
with a constant Cy > 0. Therefore, Poincaré-Wirtinger’s inequality implies
R .\ 1/2
(u(tk)e‘”(t’“)) — Cp in H'(Q), and hence we have

(2.9) u(t)e @) 5 02 in LP(Q)

for any p > 1.
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Relation (2.8) gives
(2.10) k&rx;o “vt(fk)“Q =0.

Noting [lu(t)||; = A, we apply an inequality of Brezis and Merle [4] to the second
equation of (1.1). With some & > 0 it holds that

sup/ e 4y < too.
k Ja

Inequalities (2.4) and (2.7) imply

sup/ u(tr)v(tr)dz < +oo.
kE Ja

The second equation of (1.1) gives that
2 2 1 2, 1, 2
19013+ foll3 = [ wode — [ vode < [ wwdz -+ 3wl + 5 ol
Q Q Q
Relation (2.10) now implies
s:p ||v(fk)HH1(Q) < +oco.

Passing through a subsequence, we have
(2.11) v(tk) = v in HY(Q) and  e*(%) g% ip L (Q)
with some ve € H'(Q) for p > 1. The latter convergence is a consequence of the
compact imbedding H'(Q)) C LP(€) and Chang-Yang’s inequality and details are left
to the reader.

We set t = f), and make k — oo in the second equation of (1.1). Relations (2.9)
and (2.11) imply

u(ty) = (u(fk)e‘”(f’“)> ek Cae’= in LP(Q)

for p > 1. In use of (2.10) and (2.11), we get

~AVgy + Voo = CZe” in a;—:’ =0 on 0N

Furthermore, equality (1.2) gives lveoll; = A and hence CZ = )/ / e'<dzx.
Q

Letting ueo = Ae¥>/ / e'=dz, we have u(fy) — Ueo in LP(). This implies
Q

lim /u(fk)logu(fk)dms/uoo log ucodz.
k—oo Jo 0
We also have

lim u(fk)v(fk)dx=/uoovoodx
Q Q

k—oo
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and

k—o0

lim inf (’Vv(fk)’2 + v(fk)2) dr > / (Ichol2 + vgo) dzx.
Q Q

Those relations contradict assumption (1.7) as

W (up,v0) > klim W (u(fe), v(Ek)) > W (too, Voo)
—00
= Ja(Veo) + Alog (AQ]) 2 jx + Alog (A1) .

The proof is complete. O

For solutions of (1.5), inequality (2.3) is improved as
1
/ ulogudz < —/ wvdz + W (u,v).
Q 2 Ja

This fact implies that a can be taken as o > $ in (1.9) in the case of (1.5). Except
for this improvement, the results stated in Theorem 1 are still valid for solutions of
(1.5). A related result is shown in [9] for solutions of (1.1).

3. Boundary blowup of the solution. This section is devoted to the proof
of Therem 3. We study (1.5) on the general domain Q with 9 sufficiently smooth
around zo € 01, and u denotes the solution. Theorem 3 is proven by localizing the
argument of [15].

There exists a conformal mapping X = (X1, X3) defined on QN Br(zo) satisfying
X : QN Bg(zo) — RZ = {(z1,72) € R? | 72 > 0} and X (09 N Bg(wo)) C IR
We have (0X1)/(9v) = 0 on 9Q. Without loss of generality, we can assume zo = 0,
v(zo) = (0, -1), and
(3.1) %i—((mo) _id.

Let ¢ be a smooth function defined on ) satisfying the homogeneous Neumann
boundary condition. In [22], it is shown that

d
'E/Quqﬁdx

holds, where p(z,y) = Vé(z) - Vo G(z,y) + Vo(y) - V,G(z,y) with G = G(z,y) being
the Green’s function for —A+1 with the homogeneous Neumann boundary condition.
The following lemma is a consequence of Lemma 6 of [22].

1. 2
< 1A¢ o lluolly + 3 121l oo (axqy Il

LEmMMA 3.1. Letting
Molt) = [ ute,Oo(a)da,
we have
| < Ll +3) (€ [0.Tm0)

with a constant L > 0 determined by ().
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Given R > 0 sufficiently small, we take smooth functions ¢; (i = 1,2) defined on
R? satisfying 0 < ¢; < 1,

() 1 (z € B4ig(0))
¢i(z) = { 0 (¢ Bz.:iR(O)),

and 0¢;/0v = 0 on 9. Letting ¥; = ¢} and m(z) = |X(a:)|2 /2, we can show the
following.

LEMMA 3.2. We have

ploy) — T (a)v ()
< CR™ (Ja] + lyl) 1/ (2)wa(y) + CR™" [yl a(y)
for
p(z,y) = [V(m1)(x) - VaG(z,9)|92(y) + [V(mihr)(y) - Vo Glx,)]¥2(2)
with a constant C > 0 independent of R.

Proof. We set (z1,2)* = (z1,—2). From the proof of Lemma 6 of [22], we have

1

1 1
32 Gy =gl o 8 X @) — X ()

+ K(z,y)

for z,y € 3323(0) NQ with K € 01’9(332}2(0) N x Bng(O) n Q) and 8 € (0, 1).
First, we take the term associated with

1 1
Gl(w,y) = 61(5777) = .2_7T10g M,

where ¢ = X(z) and n = X(y). Because X is conformal, it holds that

X\ [oX\ _
(%) (%)-
Letting c(¢) = |%—f‘ and ¥;(&) = ¢;(z), we have

pi(z,y) = a(y) Va(mah1)(2) - VaGi(2,y)
+1ha(2) Vy (ma1)(y) - Vy Gr (2, y)

= 2@ W) Ve (€ W1(9)) - Veer &)
5OV, (10 0 (0)) - Vrer (En)
= o (a6 (©) + P V()
—c(n) (&) (201 (n) + >V P1(n))} -

This implies py = I + IT + III + IV +V with

0X

—6—; -id.

I= %c(a)wl(g)wn)
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11 = L2 ey wa ) wi ) - ) Wa(€) 01 (n)}

2m |€ —
()
= ot m Vel(©e§) T2(n) (Ifl2 - IUIQ)
v =L (9w (6) - V) () Wam) Inf?
A [§ — 7l

v =20 G )(c(€) Talr) — cn) () nl?
4 ¢ — ]

In use of (3.1), we get c(§) = 1+ O(|z|) and hence

1

I'= o= (14 O(Jal)) ¥ (2)92(v)

follows. Similarly, we obtain

ng 4 (el€) = efn)) Ta(n) 1 (€)

+e(n) ¥ ()(‘Pl(E)— Uy (m)) + c(n)(Ya(n) — ¥2(£))¥a(n)}

= O([n])T2(n)¥1(€) + O(In))O(R™1)W2(n) + O(In|)O(R™) ¥4 (n)
= O(lyl) (¥2(¥)¥1(x) + O(R™ )2 (y) + O(R™ )11 (y))

II] =

S Ve Taln)(E ) (€ + )

= O([¢] + In)O(V i1 (€))e(€) T2(n)
= O(|z| + [y O(R™ ) (2)/*hs(y)

1V =
V=

We get

1p1(2,9) = =t (@)a(v)] <

O(In|*)O(R™2)¥a(n) = O(ly) O(R™")¢a(y)
O(InI*)O(R™)O(V, 1 (m) = O(ly)O(R™ ) () /2.

(1 + 0 () 24(9) + Syhin(y)

ZJUIQ

1/2
by 2 > /%,
We turn to the term associated with

(3.3)

1 1
Ga(z,y) = e2(€,7) = 5 log o
Because of 97;/0v = 0 on 99, we get
0v;
k) -0
852 £2=0

for i = 1,2. We obtain

p2(z,y)

= 2 (y) Vo) (2) - VaGial@,9) + ¥2(0) V) (1) - V,,Gao,)
= 5e(€) V() Ve(€PV1(6)) - Veeale,n)

1
+§C(77)‘I’2(€)Vn(|77|2‘1’1(77)) - Vnea(é,n)
=VI+VII+VIII+IX
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with
vi= ;ﬁf—”) {e()€1 %1 ()¥a(n) — clm)m ¥ (m) ¥(6)}
VI = T (@6 e (©0201) — el am (1) 2(6)}
VIIT = % {e()€271(6)Wa(n) + cln)ra¥1 () T (6)}
Ix = 45325 + 772312 {c() 67T 1, (€)Ta(n) + c() 1> 10, () Ta(£)}

Similarly to G, the estimate

)2
wr+vir- S 6w

< CR™(ja| + ¥ (2)/*a(y) + CR™ lyltha(y)
holds. On the other hand, we have

_ (&4 m)?
VIII = Mc(s)wl(f)%(n)
—% {(c(&) = c(n))¥1(£)Ta(n)
+e(m)(T1(8) — T1(n)Pa(n) + c(n)W1(n)(T2(n) — ¥2(£))}

_ (&2+m)?
= Wc(&)q’l(ﬁ)‘l’z(n)

(2L O — 1) (2(€) (o) + OLR™) )
+O(R™H)W1(n)) -
Noting (3.3), supp¥; C Bsar(0), &2 >0, m2 > 0, and |D*¥;| = O(R™1?1), we get
U1g, () + Vi () = &2 (1 + O(R™H)O(IE])) + 12 (1 + O(R™2)O(In)))
= (&2 +m2) (1 + O(R™%)O(l¢] + Inl))
= O(R™Y)(é2 +ma).

This implies
_ (&a+1m2)
1X = e {(el) = cln) g e () Tal)
+c(M) €17 = ) W12, (£) T2 (n) + c(n) N (P1g, () + Ty, (7)) W2 (n)
—c(n)n|*C1n, (1) (T2(n) — 2(8)) }

_ (&2 +n2)
= T {0 = nDl€P e, (€)0a(r)

+e(m)O(I€ — 1) O(IE] + 1) P, (€)Ta(n)
+e(n)nl* (€2 +n2)O(R™1) Ty (n)
+e(n) 0|2 W1, (M) O(R™HO(I€ — 1))}
= O(R™Y)[€W,(&)Ta(n) + O(R™)O(E| + In]) 01> (€) Ta(n)
+O(R™Y)n*Ta(n) + O(R™2)|n|*w1/* ().




362 T. SENBA AND T. SUZUKI
Those relations are summarized as
1 C 172 C
Ip2(a,9) = 5=t (@)a(w)] < T3l + s (2) () + Tluliav)

Finally, because K is a C1¢ function, we have
Y2(y)V(mah1)(z) - Vo K(z,y) + %2(y) V(mah1) (y) - Vy K (z,)
= 1a(y) (O(1)al4h1(2) + O(R™) oy} ()
() (O(lyln(y) + O(R™lylPv1* (1))
= 0(1) (lelur(@)2(v) + loln () *42(v)
+0(1) (Iyher (w)a(@) + lyhin () /20 (a) )
The proof is complete. [

Now, we are able to give the following.

Proof of Theorem 8. Since %’- = X2 = 0 on 0f), we have

om (1 ,0X\ _0X
= <§Vf'f' a7>— o X

9% %0 onoq.
ov

Also (3.1) implies that m(z) = |z|? + O(|z[*), ma, = z; + O(|z[?), and my,q, =
6ij +O(|z|) as |z]| — 0.
Let

I t) = | u(a,m(as(a)d.
Q
The first equation of (1.5) gives

ifzﬁl = / umiprdz = —/(Vu —uVv) - V(my,)dz

= / u\(may )dz +/ uVv - V(map, )dz
= I(-ZI- II. ?
The inequalities
Vil S CRTH” and |Ags| < CR7;
hold for 1; = ¢%. We obtain
I= /Qu {1 m + 2Vm - Vipy + mAYp; }dx

1/2

52/ mplda:+CR“1/ ||, “udz
Q Q

< 2y, + CRTIALY.
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The second equation of (1.5) implies
IT = / / uw(z, t) V4G (x,y) - Ve(mi)(z)u(y, t)dzdy
aJa
=/Q/Qu(a$,t)1/’2(y)V¢G(w,y).Vx(mwl)(m)u(y,t)da:dy

+ / / wl(, 8)(1 = $o(y)) VaG(a,y) - Vo (o) (@)uly, t)dedy
QJN
=JIT+1V.

Here, we have
dist(supp(1 — %2), suppeh; ) > dist(R?\Bisr(0), Bsr(0)) = 8R
and hence
v <or [ [ el @, du(y, Odody
QJQ
< C’R_l)\/ |2z |3y (2)Y 2u(z, t)dz
Q
< CR—I)\S/?L}D/2
follows. On the other hand, we have
111 =3 [ [ e, tp(e,)uty, sy,
2JalJa
and Lemma 3.2 implies
1
(11T = o= Ay Ay |
1 1
< [ [ ulw,0310(w,5) - $(a0balo)luty, idody
aJa ™
< or ] [ felt*@Juta, e + [ yibaoyuts, s
= ORI [ [al (1 ()17* + s (@))u(z, )z
Q
+CR [ fal(a(o) = b (@))u(a, o
< CR™1Y? 1 0 / (W () — by ())ule, ) da.
Q
Consequently, we obtain
1 _
IIT < ﬁxfbl +CR 1)\3/2I3/,{ 4 CA /Q (2(x) — 1 (z))u(z, t)dz.

Those relations are summarized as
1

d
A4 —I, < -

A2+ CeR™INL? £ Cd(Myy — Mgy

363
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for ¢t € [0, Tinax) With a constant C, > 0 independent of R.
By Lemma 3.1, there exists a constant L > 0 satisfying

< LR2(A24))

d
I’Cﬁ)‘iﬁi
for i = 1,2. Letting § = Ay, (0) — 47 > 0, we take T3 > 0 in
LTy(AN + NR™2+ C.LTi(X® + \)R72 < §/4.
This implies
6
(3:5) e () = A O] + CA Ay, (8) = A (0)] < 7

in particular, where t € [0, min(7}, Tmax))-
We suppose that 7 > 0 is so small that

(3.6) I5,(0) < 22

and

| >

1
CLR™IN2IY2(0) + 75O B My (0) <

hold. In this case we have
CuR™IN21,,(0)% + CuA(Ay, (0) — Ay, (0))
(3.7) < CWR™IN2L,,(0)Y2 4 %C*R—%\I% 0) <

N

The right-hand side of (3.4) at ¢t = 0 is less than

6 6 36
—2(47T+5)‘4-; + 3 < -5

For t > 0 sufficiently small, Iy, (t) is monotone decreasing.
We suppose Tmax = +00 and derive a contradiction. For this purpose, first we

show that Iy, is monotone decreasing on [0, 71]. In fact, otherwise we have Ty € (0,T1)
satisfying

d

E‘["/’I (To) =0

with I,,, being monotone decreasing on [0,Tp]. In use of (3.5) with Ay, (0) > 4w, we
see that the right-hand side of (3.4) at t = Tp is less than

T4 27
+C*’\()‘“J12 (0) - ’\¢1 (0))
FCX ([ Ay (To) = A, (0)] + Ay, (To) = Ay (0)1)
< —;’—i (47r + %‘2) + CoR™INY21,, (0)Y2 + C MMy (0) — Ay, (0)) + g

§\ 1 §\?
2 (3= 3) - 5 (@ =F) +CRNI L, 0
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This implies

d 6
EL/H (TO) < ——5

by (3.7), a contradiction.
At the same time we have proven that

Sh<-3  (ebm).

Therefore, (3.6) implies Iy, (T1) < 0. This contradicts the positivity of the solution,
and hence Tayx < 400 has been proven. The proof is complete. O

The case zg € Q is treated similarly. If

/ uo(x)dx > 8w and iz/ up () |z — zo|2dz < 1
Br(zo) R Br(zo)

holds for sufficiently small R > 0, then Ty,.x < +oo follows. Here, n > 0 is a constant
determined by A = ||uoll; and ||uoll 11 (g, (z0))-

4. Blowup solution in the infinite time. This section is devoted to the proof
of Theorem 2. We study (1.5) for @ = {z € R?| |z| < 1}. We set a = 1 for simplicity

and suppose (1.10) with vg = (—A + 1)—1 g and Tiax = +00. The initial value ug
and hence the solution u(t) are radially symmetric.
In [15], the relations

4.1 su ()| ;oo < +00
(4.1) te[O,fw) lu@)l. (2\Br(0))

and

sup  ||v(t)|l ;oo < 400
AL CENO)

are shown for this case, where R € (0,1) is arbitrary. From the standard elliptic and
parabolic estimates, this implies
el oz @\Br)xl0400)y <0 and [0l g2a @\ Br(0))x(0,400)) < F0-

The following inequality is proven similarly to Lemma 13 of [9]. We have only to
make use of the elliptic estimate instead of Lemma 12 there: Let w be a solution to

—Aw+w=fin

ow
-6_1/. =0on 8Q

Then, it holds that

2 6
/ e¥dx < eC”‘w"LP(n) / (_) dr
Br(0) B2r(0) ||

Now we give the following.
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Proof of Theorem 2. As is noted at the end of §2, we have (2.3) with > 1/2 in
this case. Because of (4.1) this implies that

lim e dy = +oo
t/ 400 JBr(0)

for R € (0,1). We also have |[v(t)|ly1.q¢q) = O(1) for g € [1,2) from the second
equation of (1.5) in use of ||u(t)||; = A and the L! estimate ([5]). This implies

lim inf / udx > 81
t,/+oo BR(O)

from the above estimate on w = av. We have only to show that

(4.2) lim lim sup / udz < 8.
BNO ¢ 400 JBR(0)

If this is not the case, we have

lim lim sup udx > 8.
ENO ¢ oo JBR(0)

There exists tx — +o0o and § > 0 such that
/ u(ty)dz > 81 +6
Br(0)

for R € (0,1]. Passing through a subsequence, we get a non-negative radially sym-
metric function f € L'(2) N C(Q \ {0}) satisfying
(4.3) u(ty) = f in L, (Q\{0})
for ¢ > 1. Taking € € (0, R), we have

lim Sup/ u(z, ty)|z|?dz

k— o0 BR(O)

< lim Sup/ u(z, ty)|z|2dz + lim sup u(z, ty)|z|dx
k—oco JB.(0) k—oo J BR(0)\B:(0)

< Ae? + R? / f(z)dz.
Br(0)

This implies

lim sup/ u(z, ty)|z|? < RQ/ f(z)dz.
Br(0) Br(0)

k—oo
Because of f € L*(2), any 7 > 0 admits R € (0, 1] and an integer k satisfying

1 / 9
— u(z, tg)|z|“dz < n.
R? JBr(0)
However, as is noted at the end of §3, those relations imply Tmax < +00, a contradic-
tioin. We have (4.2) and the proof is complete. O
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