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GLOBAL BIFURCATIONAL APPROACH TO THE ONSET OF 
SPATIO-TEMPORAL CHAOS IN REACTION DIFFUSION SYSTEMS 

YASUMASA NISHIURA* 

Abstract. A new criterion for the onset of spatio-temporal chaos arising in the Gray-Scott model 
is presented. This is based on the interrelationship of global bifurcating branches of stationary or 
periodic solutions with respect to the removal rate contained in the model, especially their locations 
of saddle-node points and the Hopf bifurcation point of a constant state play a key role. At the 
onset point there exists a generalized heteroclinic cycle on the whole line and spatio-temporal chaos 
emerges by unfolding this cycle. 

1. Introduction. Since early 90's, a variety of chemical patterns have been 
observed in chemical laboratories ([7], [13], [14]), and among them, self-replicating 
patterns (SRP) and spatio-temporal chaos (STC) are spectacular examples. Self- 
replicating patterns have been also observed numerically in a reaction diffusion system 
([1], [5], [8], [9]). Several interesting analytical works have also appeared recently: For 
instance, construction of single-spot solution to the Gray-Scott model (see below) and 
its stability has been done by [6] with the aid of formal matched asymptotic analysis, 
which is closely related to the splitting phenomenon; A rigorous analysis concerning 
the existence and stability of steady single pulse as well as nonexistence of traveling 
pulses has been done quite recently by [10] and [11]. Although we have found a 
nice collection of exciting dynamics, we don't know yet how and why the transitions 
occur from one dynamics to another, especially what kind of mathematical mechanism 
causes STC. The main issue is to understand the dynamic phase transition of the 
following Gray-Scott model ([15]) from global bifurcational view point. 

(   du 
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2v + uv2 - (F + k)v, 

where u and v are concentrations of the chemical materials U and V, respectively, 
Du and Dv the diffusion coefficients, F the in-flow rate of U from outside, F + k the 
removal rate of v from reaction field. The main feature of the associated ODE of 
(1.1) has a Bogdanov-Takens (BT)-point together with a stable critical point (1,0). 
BT-point is a singularity of codim 2 where saddle-node and Hopf bifurcations merge 
there in 2-dimensional parameter space (fe, F) (see Fig. 1.1). Before the saddle-node 
bifurcation, (1,0) is the only equilibrium point and globaly stable, and hence the 
system is of excitable character. We denote the two constant states born from the 
saddle-node bifurcation by P and Q. When k > 0.035, the excitable character persists 
until the recovery of stability of the equilibrium point P due to the Hopf bifurcation, 
since the newly born critical points P and Q are unstable and there are no stable 
periodic orbits owing to the subcriticality of the Hopf bifurcation (see Fig. 1.1). 

The aim of this paper is of two-fold. One is to clarify the onset point of spatio- 
temporal chaos arising in the Gray-Scott model. A global bifurcational diagram of 
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FIG. 1.1. Unfolding of BT-point and flows of the kinetics for the GS-model BT-point is a 
codim 2 singularity where fold and Hopf bifurcations merge there in (k, F)-space. Solid (resp.dotted) 
line represents fold (resp.Hopf bifurcation. Unfolding BT-point, there appears a Homoclinic line as 
indicated.  The flows in the phase space are computed at F = 0.04. 

ordered states plays a key role to give such an criterion. The other is to understand 
the detailed mechanism which drives a chaotic behavior from a pattern formation 
point of view, namely we introduce four elementary basic dynamics, then put them 
together in an aftereffect region of parameter space. The loose meaning of aftereffect 
is a kind of memory of saddle-node bifurcation point, namely if one takes a parameter 
value close to the saddle-node (SN) point and chooses an initial data close to the 
solution at the SN point, then the orbit stays there for certain time and its dynamical 
behavior is close to that of the SN point. 

In other words we would like to understand the spatio-temporal chaos (STC) in 
a constructive way from a pattern formation view point rather than projecting the 
infinite dimensional dynamics to an effective finite dimensional one. 

There are three different types of STC's for the Gray-Scott model depending 
on parameter values. These three STC's are classified according to the constituting 
members of basic dynamics (for the list of the basic dynamics, see Section 3.1). Fig. 
1.2(a)(resp. Fig. 1.2(b)) is called STC of static (resp. traveling type) type, since 
the quasi-ordered state observed during the process is steady state (resp. traveling 
pulse). On the other hand, Fig. 1.2(c) has a different character, namely it has an 
annihilation process when two pulse waves collide. In this report we only treat the 
non-annihilation case. 

It should be noted that STC is observed only in a restricted region in the pa- 
rameter space (see region 4 in Fig. 2.1), in fact, STC of static type, for instance, 
disappears when the parameter k is increased, and is replaced by convergence to a 
periodic stationary pattern through self-replication dynamics. The main issue here 
is therefore to clarify what kind of mathematical structure controls the transition 
from ordered state to STC. Finally this work is based on the joint work with Daishin 
Ueyama and the more details will be reported elsewhere. 

2. Self-replication and self-destruction. 

2.1. Phase diagram of PDE dynamics in ID. In order to obtain a nontrivial 
pattern from the background state (1,0), it is necessary to add a perturbation of 
finite amplitude to it, since (1,0) is locally stable in PDE sense. In fact starting from 
a spiky localized initial data, the Gray-Scott model displays a variety of dynamics 
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FIG.   1.2. Three different types of spatio-temporal chaos. (a)F=0.035,(b)F=0.02,(c)F=0.015 

as in Fig. 2.1. There are at least five different regimes in (fc, i^-space: standing 
pulse, traveling pulse, self-replication patterns, traveling front, and spatio-temporal 
chaos, respectively. Each transition from one regime to another is sharp and the 
main objective is to clarify the mechanisms of such transitions, especially to chaotic 
one. It turns out that a global interrelation among the branches of the ordered states 
becomes important, in particular, the relation between locations of saddle-node points 
of them and the Hopf bifurcation point of the constant state P becomes crucial to 
give a criterion for such a transition. 

2.2. Self-replication. Transition from standing wave or traveling wave to self- 
replicating pattern was clarified in [2]. The essence is that all the ordered patterns 
disappear due to the saddle-node structures almost simultaneously, but the strong 
(fading) memory remains in the phase space if the parameter is close to the location 
of the saddle-node bifurcation. This aftereffect and the connections among saddle- 
node branches are key ingredients to understand the self- replication dynamics. For 
details, see [2], 

2.3. Self-destruction. Very simple, but an important example of the afteref- 
fect of saddle-node point is a self-destruction. We already saw an example for the 
FitzHugh-Nagumo equations in the previous section. Suppose there exists a saddle- 
node branch of an ordered state, say a stationary pattern as in Fig. 2.2 and the 
associated unstable manifold is connnected to an homogeneous state. Then the corre- 
sponding aftereffect displays a self-destruction, namely an ordered state persists for a 
while, the duration of which depends on how close the parameter value to the saddle- 
node bifurcation point, but eventuallly decays to the constant state. It is possible to 
construct an invariant manifold near the saddle-node point and derive an ODE on it 
(see [4] ), and it turns out that the duration time of the aftereffect is of order 0(e~1^2) 
where e denotes the distance from the saddle-node point in the parameter space. 

The above examples look so simple, however the whole dynamics becomes more 
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FIG. 2.1. The phase diagram for ID. The initial condition is a localized step function and 
the boundary condition is of Neumann type. Region 1: Standing pulse, Region 2: Traveling pulse, 
Region 3: Self-replicating patterns, Region 4' Spatio-temporal chaos, Region 5: Traveling front, 
Region 6: Annihilation. 
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constant state 

FIG.   2.2. 

exotic and complicated when they are combined with other dynamics, which we will 
see in the next section. 

3. Spatio-temporal chaos. There are many routes to chaos like period- 
doubling, breakdown of torus, intermittency and so on. As we saw in Section 1, 
there are several types of spatio-temporal chaos arising in the Gray-Scott model. The 
non-annihilation case maybe classified as an intermittency type I (see, for instance, 
[3]), however, from pattern formation point of view, this does not explain much about 
the detailed mechanism of pattern dynamics, for instance, why the reinjection occurs 
for the non-annihialtion case in the infinite-dimensional space. Somehow we would 
like to understand the geometric structure of spatio-temporal chaos for the Gray-Scott 
model like the Shilnikov mapping in finite dimensional space. 

In this section we first present a new criterion for the onset of spatio-temporal 
chaos, which is based on an interrelationship among global bifurcation branches of 
ordered states and its influence over the dynamics as an aftereffect. Second, by taking 
this view point, we can understand the detailed mechanism of the spatio-temporal 
chaos from pattern formation view point without projecting the whole dynamics to 
an effective finite dimensional space. In fact we find basic building blocks of pattern 
dynamics participating in the spatio-temporal chaos, and the above view point allows 
us to know how each block contributes to form chaotic behavior. It turns out that 
there are at least two different basic mechanisms, which are responsible for the onset 
of STC, depending on whether annihilation occurs or not. One is a heteroclinic 
cycle and its unfolding in infinite dimensional space, and the other is creation (by 
spliting) and destruction (by annihilation) process. In this paper, we! focus on the 
non-annihilation case. The annihilation case will be discussed in a forthcoming paper. 
When a parameter, say fc, is continuously changed, the onset of STC seems to occur 
abruptly as far as we only look at ODE dynamics and the local bifurcations. This 
reflects the fact that such a transition is caused by some global structure far from 
equilibrium. It turns out that such an abruptness can be resolved into a natural 
consequence, once we employ a global bifurcation view point. 

3.1. Pattern-switching processes and heteroclinic cycles. To understand 
the STC dynamics from pattern formation point of view, it is necessary to clarify 
what kind of basic pattern dynamics participates in forming STC. There are four 
basic dynamics which switch one state to another. 
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1. ODE dynamics: Switching from the homogeneous state P to the background 
state (1,0). There exists a A; = kuopf such that P is unstable for k > 
kHopf and the homogeneous limit cycle emanating at k — knopf is unstable 
and exists only for k < kuopf (subcritical), hence P is taken over by the 
background state (1,0) by homogeneous perturbation. 

2. SRP dynamics: Switching from the backgroud state to an ordered structure. 
This is brought by SRP dynamics of Section 2.2, i.e., when a localized pertur- 
bation of finite amplitude is added to (1,0), then modulating front (or SRP 
of front type) invades into (1,0) and spatially periodic structure is formed 
after the front. 

3. Self-destruction: Switching from an ordered structure to the homogeneous 
state P. This is the destruction process explained in Section 3.3, i.e., after- 
effect of the unstable manifold connecting stationary periodic pattern to the 
homogeneous state. 

4. Annihilation: Switching from an ordered state to the background state by 
annihilation. This is observed in the annihilation regime in (fc, F)-space where 
two traveling pulses disappear by head-on collision. 

The first three processes can be regarded as heteroclinic orbits on a whole line, 
for instance, the second one is a heteroclinic orbit connecting the constant state (1,0) 
to a spatially periodic pattern as in Fig. 3.1. 

(a) (b) 

FIG.   3.1. (F=0.035,k=0.0566,L=0.8) 

Moreover it should be noted that these three connections constitute formally a 
heteroclinic cycle on R provided that all the connections occur exactly at the same 
parameter value. Such an miraculous coincidence does not seem to occur generically, 
however it turns out that such a delicate tuning is controllable by looking at the 
parametric dependency of global branches, and a trigger necessary to provoke a front 
is spontaneously formed due to the non-uniform (in space) destruction to P. Here we 
loosely describe how an orbit makes a cycle starting from the unstable constant state 
P through three switching processes (see Fig. 3.2). Suppose a small perturbation of 
long wavelength is added to P, initial phase difference is amplified and the solution 
goes to (1,0) on phase-gaining part of the interval and the remaining part, which is still 
far from (1,0), becomes a trigger of invading front into (1,0) followd by an periodic 
stationary ordered pattern. Finally this ordered state decyas to the homogeneous 
state P through the destruction process. This completes the cycle. Strictly speaking, 
the terminology heteroclinic cycle is not appropriate, since, as we will see in the 
next section, the spatially periodic pattern is not hyperbolic, however we use this 
terminology in a generalized sense in the sequel. 

3.2. Unfolding the heteroclinic cycle - spatio-temporal chaos for non- 
annihilation case -.Each process of dynamics in the previous section does not show 
any chaotic behavior by itself, however if they are combined together appropriately, 
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FIG.   3.2. 

the resulting one becomes chaotic in space and time. The main idea is to unfold 
the heteroclinic cycle in infinite dimensional space by adjusting the parameters in 
such a way that the orbit itinerate this cycle chaotically in space and time. This is 
apparently a reminiscent of the homoclinic tangling in finite dimensional space. Here 
the concept aftereffect again becomes useful to achieve such an itinerancy, in fact, 
it is absolutely necessary to consider all the basic dynamics in an aftereffect regime, 
otherwise the orbit is stuck somewhere and does not itinerate. The existence of a 
parameter region where such an chaotic itinerancy occcurs strongly depends on the 
global interrelationship of ordered and homogeneous branches, which we shall discuss 
more precisely in the next subsection. In particular heteroclinicity heavily depends on 
the stability property of the homogeneous state P, in fact, if P is repelling, it becomes 
a driving force which together with the self-destruction dynamics sends some part (in 
space) of the solution to the background state without annihilation. Surprisingly the 
solution orbit approaches the unstable P locally in space even if the orbit starts from 
an initial data of step-function. This is due to the fact that P loses its stability in ODE 
sense, i.e., in constant space, and the pattern born after the front is almost average 
zero with respect to P, so it lies close to the stable manifold of P. When the orbit 
becomes very close to P, the instability becomes dominant and it starts to oscillate 
and eventually goes to the background state (1,0). Non-uniformity of the convergence 
to (1,0) in space is apparently quite important to form a heteroclinic cycle. If the 
system size is small, then the orbit first becomes almost homogeneous close to P then 
settles down to (1,0). More precisely there should be a balance among several time 
scales not to have a synchronization in space, namely the strength of diffusivity (= 
system size), velocity of the front, instability of P, and the strength of the aftereffect 
(= how far k is located from the saddle-node point), although these are related each 
other. 

3.2.1. STC of static type. We shall discuss how the the dynamics is controlled 
by the global arrangement of branches. STC of this type is typically observed in the 
area 4 of Fig. 2.1 and a typical time-evolution at F = 0.035 and k = 0.05632 is given 
by Fig.   1.2(a).  On the other hand, for slightly larger P, say P = 0.04, we do not 
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observe any chaotic pattern. To understand this difference and the onset of STC, we 
draw two global bifurcation diagrams of stationary patterns for each F (see Fig. 3.3). 
The main difference of two diagrams (a) (left) and (b) (right) of Fig. 3.3 is the order 
of two quantities kmin and &#0p/, namely kmin < kuopf for (a) and &mzn > kHopf 
for (b). Here the kmin is the smallest value of k among the locations of saddle-node 
points of the ordered states. kmin usually, as in Fig. 3.3, coincide with the SN-point 
of stationary branch which is the continuation of the final state after self-replication, 
and the kuopf is the Hopf bifurcation point of the homogeneous state P. The knopf- 
line is explicitly calculated and becomes a monotone function of F (see Fig. 3.5). 
The kmin-\me is much harder to compute, since it is a locus of saddle-node points 
of stationary branches depending on F. It turns out that the function kmin(F) is 
also monotone, but less steap than kHopf{F) (see Fig. 3.5). Therefore there exists 
a unique intersecting point G in (fc, F)-space as in Fig. 3.5, and the order of these 
quantities are reversed at G. It should be noted that the curve kmin{F) perfectly fits 
the right-hand side of the boundary of STC region 4 in Fig. 2.1, which reveals the 
nature of the transition boundary. 

Chaotic behaver 

self replication x 

Kmin      Kflopf 

(a)!^ < kH.pf (F=0.04) 

KHopf    Kmin 

(tykn*. > kHopf (F=0.035) 

FIG. 3.3. (a)Left: The schematic bifurcation diagram for F=0.04. After self-destruction, the 
orbit settles down to the stable homogeneous state. (b)Right: The schematic bifurcation diagram for 
F=0.035. Since the homogeneous state loses its stability due to Hopf bifurcation, the orbit itinerates 
in a chaotic way. 

The region below G sandwitched by two curves kmin and knopf is called STC 
(spatio-temporal chaos) region where we observe spatio-temporal chaos. The bifurca- 
tion diagram in this regime is given by Fig. 3.4. 

Heteroclinic cycle can be constructed at least formally at any point on the right 
boundary of STC-region (i.e., A; = fcmzn(F)), and STC is observed as a result of 
unfolding of this cycle. Heteroclinic cycle at k = kmin consists of three parts (see 
Fig. 3.2): P to (1,0), (1,0) to stationary pattern, and the destruction process to 
P.   As remarked before, the above stationary pattern is not hyperbolic, however 
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FIG.   3.4. 

we use "heteroclinic" in a generaized sense. Note that the connection between the 
unstable part of the saddle-node branch and the homogeneous state P still persists 
even if P loses its stability. When k belongs to the interval knopf < k < kmin (see 
Fig. 3.3(b)), the spatio-temporal chaos is invoked in the following way. A spatially 
periodic pattern is formed after the SRP process initiated by the initial trigger, but 
it only lasts for a while and approaches P due to the aftereffect of the connection 
to P. Since P is unstable, the orbit bounces except that it accidentally lies on the 
stable manifold of P. Recalling that the intial data is a localized spiky perturbation 
of finite amplitude, the process of approaching P does not occur uniformly on the 
interval J as is shown in Fig. 1.2; the solution is close to P on some portion of 
the interval, hence ODE dynamics becomes dominant there, and therefore it reaches 
quickly background state. Once such an background region is formed, the SRP wave 
(or modulating front) starts to propagates into this region and (l,0)-state is taken 
over by a periodic structure, however the periodic structure after the front survive only 
temporalily in this parameter regime as before, it eventually disappear and becomes 
close to homogeneous state P again. In this manner the orbit does not settle down 
to any ordered state and makes a chaotic cycle. On the other hand, if F is above G 
(for instance F = 0.04), the order of two quantities kmin and kjiopf is reversed as in 
Fig. 3.3(a). In this case self-destruction process also occurs for k < kmin, however 
no heteroclinic cycle is formed since P is stable, we have instead a traveling front 
connecting (1,0) to P like region 5 of Fig. 2.1. A similar thing also happens for 
the case Fig. 3.3(b), if k is chosen to be smaller than knopf- In view of the above 
discussion, the intersecting point 

fcmin — f^Hopf 
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gives the onset point G of spatio-temporal chaos in the phase diagram Fig. 2.1, 
and the boundaries of STC region (black triangle region) consists of two curves k = 
kmin(F)(lower boundary) and k = kno-pf {F)(upper boundary). We conclude that 
STC region of static type is completely characterized by two quantities kmin and 
fiHopf' 
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