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ON A HYPERCYCLE SYSTEM WITH NONLINEAR RATE 

JUNCHENG WEI* AND MATTHIAS WINTERt 

Abstract. We study a (N 4- 1)—hypercyclical reaction-diffusion system with nonlinear rate p. 
It is shown that there exists a critical threshold No such that for N < No the system is stable while 
for N > No it becomes unstable. It is also shown that for large p, No remains a constant: in fact for 
p>po~ 4.35, No = 5 and for p < po ~ 4.35, No = 4. 

1. Introduction. In this paper, we are concerned with the following reaction- 
diffusion system: 

>iV 

(1.1)< 
1,2, 

+ kM - 9MM - LMD-^i hjXiXf, 

..., AT,    x G E, 

where Xi denotes the concentration of the polymers, and M is the concentration of 
activated monomers. N is the number of different polymer species. The replication 
of each polymer Xi is catalysed by each Xj at a constant rate kij. Linear (non- 
catalytic) growth terms are neglected. The activated monomers are produced at a 
constant rate, kj^] 9x and QM are decay rate constants. L is the number of monomers 
in each polymer, and Dx and DM are constant diffusion coefficients. The exponent 
n is a positive number. 

We assume that the coefficients kij are represented by a hypercyclical N x N 
matrix, 

[kij) 

(0 0 0 ko \ 
ko 0 0 0 
0 ko 0 0 
0 0 0 

I  0 
0 ko 0  / 

/co>0. 

NxN 

When n 7^ 1, We call (1.1) is a hypercycle system with nonlinear rate. The reason 
is the following: at each Xi, the kinetic reaction rate is given by 

N 

(1.2) ri = -gx+Mj2kioX?' 
3 = 1 

When n = 1, we have a linear growth rate for Yi and the system is called classical 
hypercycle system. When n < 1, the growth rate is sublinear and n > 1 the growth 
rate is superlinear. Such nonlinear reaction rates were also introduced and studied 
in the one component case, i.e., N = 1, by many authors, see [18], [19], [20] and the 
references therein. 

The classical hypercycle system arises as a spatial model concerning the origin 
of life similar to the one introduced by Eigen and Schuster [12]. A number of RNA- 
like polymers ("components") catalyse the replication of each other in a cyclic way. 
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Examples in nature include Krebs and Bethe-Weizsacker cycles. Eigen and Schuster 
argue that the hypercycle satisfies important criteria of natural selection: 1. Selective 
stability of each component due to favorable competition with error copies, 2. Coop- 
erative behavior of the components integrated into the hypercycle, and 3. Favorable 
competition of the hypercycle unit with other less efficient systems. 

Nonlinear rates are interesting to model different coupling strength of the various 
components, where a higher rate n corresponds to stronger coupling. 

We consider stationary cluster-like solutions of (1.1). A cluster may loosely be 
defined as a region of high concentration ^Ji=lXi of the polymers and low concen- 
tration of the monomer, as monomers are consumed by the replication of polymers. 
(If the region shrinks to a point, this phenomenon is called point-condensation.) 

Cluster solutions for (1.1) have been studied by numerous authors. For numerical 
aspects of clusters, see [3], [5], [6], [7] and the references therein. In [35], we first 
made a rigorous study on the existence and stability of cluster solutions of hypercycle 
system with linear rate (n .= 1) in B?: it was shown that for TV < 4, cluster solutions 
are stable while for large N) cluster solutions become unstable. In [35], we analyzed 
the cluster solutions in R1 for n = 1 and we found the exact threshold for iV. More 
precise statements of the results of [35] will be stated later. 

Let us first reduce the system (1.1) to standard form. Dividing by gx and QM, 

respectively, gives 

N 

—dtXi = Qt-Xi - Xi + — Y kijXiX^x € R, 
gx gx gx frl 

±dtM = £KM" + hi-M-—y kijXiX?, xGR. 
9M 9M 9M 9M   .r^, 

Rescaling M = (kM/gM)M, Xi = (ffM/L)1/(«+i)xi) we get 

—dtXi = ^Lx: - & + J-^:M(M)«/(n+i) V hjXiX?, 
gx gx gx gM      L ~{ 

—dtM = ^-M   + 1 - M - M Y hiXiX". 
9M gM ^ 

Rescaling space variables x and time variable t: 

renaming constants: 

A       ku   ,gM^-2-       2     Dx 9M     ^     gx 
A=  (-7-)n+   '      e   =   n '      T=   gxQM   L DM gx gu 

and dropping the hats, we finally arrive at the following standard form 

f     dtXi = e2X; - Xi + AM £^1 hjXiX^    x e iJ, 
(     j 1   TdtM = M" + 1 - M - M E5=i kijXiX},    xeR. 



ON A HYPERCYCLE SYSTEM WITH NONLINEAR RATE 259 

We shall study (1.3) on the real line J^ for e > 0 smalL Since existence and stability 
of solutions might depend on A we will treat it as a parameter. We look for solutions 
of (1.3) which are even: 

Xi = Xi(\x\)eH1(R),    i = l,...,N, 

1 - M(x) = 1 - M{\x\) e Hl(R). 

The stationary equation corresponding to (1.3) becomes 

e2X- -Xi + AMZ"=i kjXiX? =0,    * = 1,..., AT,    € R, 

M" + 1-M-MZtijkijXiX? = 0,    x € R. 
(i.4)      <; -"»t;r ; '":^r^V'"J 

We first construct cluster solutions to (1.4).  To this end, we need to introduce 
some assumptions and notations. 

Let 

(1.5) p = n + l>l 

and w be the unique solution of the following problem 

J   w" — w + wp = 0,w > 0  in R, 

[ w(0) = maxyeRw(y),w(y) -> 0 as \y\ -> +oo. 

Put 

(1.7) Le := IL-re [ {w{y))^ldy. 
2Al+nkS   JR 

If lim€_>o L€ < LQ := (^TY)^^!? then the following equation has two solutions: 

(1.8) ri±(l-ri) = Le. 

We denote the smaller one by r?5, where 0 < r)s < -^y and the larger one by T/, where 

We now state the existence result.   In fact, this is quite easy.   We search for 
solutions of the following type 

(1.9) Xi = Xo,    2 = 1,...,JV. 

Substituting (1.9) into (1.4), we see that (Xo,M) satisfies 

(ll0) f    e2Xo-Xo + AMk0XZ = 0,xeR, 
{ '    ) \ M" + 1 - M - Mk0NXl = 0,xeR. 

Existence of solutions to (1.10) can be shown as in the case p = 2: the standard 
Gray-Scott model. Similar to the proof of Theorem 2.1 of [34], we can obtain the 
following existence theorem: 

THEOREM 1.1. 
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Assume that 

(1.11) e«l 

and 

(1.12) 6 << Le, lim Le < LQ. 

Then problem (1.4) admits two solutions (XI, M*) = (X*^,... ,X^N, M*) and 

(Xl
e, M[) = (Xl

el..., Xl
€iN, Ml) with the following properties: 

(1) all components are even functions. 
(2) XIi = j-(l + o(l))w(^), i = 1,..., iV, where w is the unique solu- 

' AMs(Q)ko)n € 

tion of (1.6). 
(3) Ml(x) -> 1, Ml

e(x) -* 1 for all x^Q and Me
s(0), Mj(0) satisfy 

(I-IS) 
Ms

e(0)~ns,    Ml
e(0)~r)1, 

0 < Me
s(0) < Me

z(0) < 1. 

(4) There exist a > 0, b > 0 sizc/i that 

1 - Me
s(x) < Ce-^l,     1 - Mi(a;) < Ce"^, 

€''V   y "       (AM6
s(0)fco)* ' (AMi(0)/co)n 

Finally, if \im€^o Le > LQ , then there are no single-cluster solutions. 

We note that existence of single-pulse solution has also been studied in [10]. 
The main goal of this paper is to study the stability and instability of the cluster 

solution constructed in Theorem 1.1. To this end, we first linearize the equations (1.4) 
around (X^M^) or (X^M^), respectively. From now on we omit the superscripts 5 
or / where this is possible without confusing the reader. The linearized operator is as 
follows: 

/ v        / e2^ - fa + AMe Ef=1 kijifaXZj + nfaX^X?-1) \ 
1  **•'   * +AAj:f=1kijXe,iX-j 

\ A 
^-A-AE^xhjX^x^ 

\ -McZ^ikijifaX^+nfaX^X^) J 
(1.15) 
where i = 1,..., iV. The eigenvalue problem becomes 

We consider Ce in the Sobolev space (H2(R)) ® H2(R) and equip (H2(R))N 0 
H2(R) with the following norm 

\\(X>
U

)\\
2

(H*(R))»<BH*(R) = \\x(y)\\2(H*mN + ll^)ll^2w 

Certainly 0 is an eigenvalue of Ce.   The criterion for linearized stability of a 
cluster solution is that the spectrum cr(Ce) of Ce (except for 0) lies in a left half plane 
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{A £ C :   Re (A) < —CQ} where CQ > 0, and that 0 is a simple eigenvalue, where C 
denotes the set of complex numbers. 

In [36], the linear case n = 1 is studied and the following result is proved. 
Theorem A: Let n = 1. Assume that 

(1.17) 6«1,    6«Le,     limLe<-. 

Let (Xg,Me
s) and (Xl

e, X
l

€) be the solutions constructed in Theorem 1.1. Then 
for e « 1, we have the following. 

(1) (stability) Assume that N < 4 and r « 1.  Then (X*,M*) is linearly stable. 
(2) (Instability) Assume that N > 4.  Then (X^M*) is linearly unstable. 
(3) (Instability) (Xl

€,M
l
e) is linearly unstable. 

A natural question is the following: what is the effect of n on the stability of 
cluster solutions? What is the relation between n and the critical threshold? Will 
large n increase the critical threshold? We shall answer these questions affirmatively 
in this paper and prove the following theorem. 

THEOREM 1.2. Assume that 

(1.18) e«l,     e « L€,     limLe<Lo. 

Let (X^M*) and (JSQ, Xl
e) be the solutions constructed in Theorem 1.1. Let 

(1.19) No:= 
4,7i < no ~ 3.35, 
5,n > no ~ 3.35, 

where UQ satisfies 

.      27rWj/.        ^N        27r ,NO// ^        27r     ^. 
(cos —)(4(no + 2) cos — + no + 4)2((no + 2) cos — + 2) 

(1.20) -(no + 2)ng(Sin— )2 = 0. 
5 

Then for e « 1, we have the following. 
(1) (stability) Assume that N < NQ and r « 1. Then (X^M^) is linearly 

stable. 
(2) (Instability) Assume that N > NQ.  Then (X|,Me

s) is linearly unstable. 
(3) (Instability) (Xl

e,M
l
e) is linearly unstable. 

Remarks: 1. As we see from the theorem, if p increases, the critical threshold can 
only grow by at most 1. This means that stability is only very marginally influenced 
by growing interaction strength which is a new and surprising fact as one would think 
that stronger interaction would improve stability. 

2. As in [35], we may generalize the results in this paper to the case of a gen- 
eral matrix (fcij). We will mention the results in the last section and present some 
examples. 

It is interesting and important to know the exact threshold also to verify the 
validity of our model by experiment: It can now be studied if the thresholds given by 
theory and the one determined by experiments are the same. Furthermore, the agree- 
ment between theoretical values and numerically calculated ones for related models 
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play an important role in finding which model to choose preferably. (We refer to the 
works quoted at the end of the introduction for related numerical investigations, in 
particular to [5], where among others multi-cluster states in one space dimension have 
been computed numerically). 

Let us conclude this introduction by mentioning some related results. 
In [6] the parameter dependence of stability of clusters and spirals against par- 

asites (i.e., rival polymers which receive catalytic support from the hypercycle but 
do not contribute to the catalysis of any other polymer) is studied numerically. A 
parasite may or may not destroy the hypercycle depending on the rate constants. In 
[7] clusters (for N = 5) are established numerically for the elementary iV-hypercycle 
system, 

In [5] for a closely related reaction-diffusion model the dependence of cluster states 
on diffusivities is shown numerically including the cluster size, their shape, and the 
distance between different clusters. 

The effect of faulty replication on the hypercycle has been studied by an analysis 
of the geometry of bifurcations around steady states and numerical computations in 
the framework of an ODE reaction model [1]. 

For a cellular automata model it was shown numerically that a spiral wave struc- 
ture may be stable against parasites [3]. The chaotic dynamics for this type of model 
has been investigated numerically in [17], [28]. 

There are a number of recent results on the special case N = 1, n = 1 of our model, 
which is then also called Gray-Scott system [13], [14]. We would like to recall them 
here. In [10], by using Mel'nikov method, Doelman, Kaper and Zegeling constructed 
single and multiple pulse solutions for (1.1) in the one-dimensional case with DM = 
l^Dx = 52 « 1, where Xi = X. In their paper [10], it is assumed that JZM = QM ~ 
fi2,gx ^ 62a/3, ku = 1, L = 1, where a G [0, |). In this case, they showed that 
M = 0(6a))X — 0{8~%). Later the stability of single and multiple pulse solutions in 
1-D are obtained in [8], [9]. (The techniques are extended to other reaction-diffusion 
equations in [11].) Some related results on the existence and stability of solutions to 
the Gray-Scott model in 1-D can be found in [26] and [29]. 

In R2 and i?3, Muratov and Osipov [21] have given some formal asymptotic 
analysis on the construction and stability of spiky solution. In [33], the system (1.1) 
for N — 1 is studied on the real axis in the shadow system case, namely, DM » 
l,Dx « 1 and UM = QM = 0(1),gx ='0(1), &ii = 1, L = 1. The shadow system 
can be reduced to a single equation. For spike solutions of single equations and other 
systems, we refer to [15], [16], [27], [23], [24], [25], [31], [32], and the references therein. 

In the general higher dimensional case rigorous existence and stability results 
on the Gray-Scott system have been established in [34]. The existence of one-spike 
solutions is proved. Their stability is established and rests upon the derivation and 
analysis of a related NLEP (nonlocal eigenvalue problem). 

The structure of the paper is as follows: 
In Section 2, we separate the eigenvalue problem into two cases: small eigenvalues 

and large eigenvalues. The small eigenvalue is shown to be 0 with dimension 1. The 
case of large eigenvalues is then reduced to a system of nonlocal eigenvalue problems 
(NLEP). 

In Section 3, we analyze the system of NLEP and show that it can be reduced 
to two eigenvalue problem-one is local but with complex coefficients, another one is a 
NLEP. 

In Section 4, we study the two eigenvalue problems and thus finish the proof of 
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Theorem 1.3. 
In Section 5, we make we drop the condition that the system is a classical hyper- 

cycle and make some remarks about the general matrix case. 
Finally, in Section 6, we discuss our results. 
Throughout this paper, the letter C will always denote various generic constants 

which are independent of e, for e sufficiently small. The notation A ~ B means that 
lime_o i = 1 and A = 0(B) is defined as |,4| < C\B\. 

2. Reduction to a system of NLEP. Let (X€, Me) be one of the two solutions 
constructed in Section 1. We now study the eigenvalue problem associated with 
(X€,M€). We assume that 

e << Z/e, limLc < LQ. 

We need to analyze the following eigenvalue problem (letting x = ey) 

'  Ay0C|i - 0C|i + AMe Ef=1 M-WM + ntejXetKj1) 

(2.1) 
+Ail>e EjLi kijXetXZj = X^u yen, 

-MeE^i kijiX^i + nX^X?-1^) = T\eil>e, xe i?, 

Ae€C.  ' 

We assume that (0c>i,...,0€|JVj^e).€ (H2(R))N © H2(R). 
Since X€ii = Xo,n — p — l,kij = k^k^ = kofiij+i modulo Ny problem (2.1) 

becomes 

{Ay(j)€ii - (j)^ -I- AkoMtX^ko Y^=i kij(<f>e,i + nfcj) 

^-■^-Nko^X* 

-MekoY^^j=i kji^i+ncfre^X^1 = T\eipe. 

Let us first formally derive the limiting eigenvalue problems. 
Since (Xo,Me) satisfies (1.10), we have 

(2.3) Xo(y)~(AMe(0)ko)-p^w(y)    in H^R) 

and 

(2.4) MrT(0)(l - Me(0)) ~ Le := ^^"e [ wiyfdy. 
2(Ak0)p-i   JR 

The eigenvalue problem is changed into 

Ay06ji - ^€>i 4- E^Li %(^e,i + (p - l)^)^-1 

+^o(AMe(0)A:o)"^T^e^ - Ae0M, 

A^ - ^ - Nko(AMe(0)ko)~^^€w
p 

-MMAMMko)-1 E.^=i kjiw^^i +.(p - IK"1^,;) - rA^e. 

From the equation for i/;e, we formally have (setting y92 = 1 -f-rA) 

(2.5) <^ 

^ (0) = i / e"'31"1 ( - AtoW(ilM6(0)fcorp?iiM>p 
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N 

-M.koiAM^ko)-1 J2 kij(™p-1<t>e,i + (p-~L)™p-1<J>elj) 
*J=1 

~ lpe[-il>MkoN{AMe{0)ko)-& J wp{y) dy 

r    N 

-MMhNiAM^ko)-1 / piT^wP-1 dy]. 

By (1.8), we have 

MO) - -fl + ^koN{AMMkoT^e j wA 

^M£(0)fcoiV(AM£(0)fco)"1e( / ^"^(^&,<)) 

~ "(1 + lpMMrl (^MMkoNiAMMhr'eij^p^^))] 

Substituting this relation into the equation for </>*, we obtain the following nonlocal 
eigenvalue problem (NLEP): 

iV 

(2.6) A&.i - <j)e,i + V?-1^ + (p - 1) ^ kijtejW?-1 

3 = 1 

p(l-M6(0))        ./^^^Ejli^     A  . 
pMeiO) + 1 - Me(0) AT/^P "   e<Pe'z* 

Although we have formally obtained (2.7), however we can rigorously prove the 
following separation of eigenvalues. 

THEOREM 2.1. 
Let Ae be an eigenvalue of (2.2). 
(1) Suppose that Ae —■> 0 as e —> 0.  Then we have X€ = 0 z/e zs sraa/Z enough and 

(<pe,ij€)espan{(x'e,M'e)}. 

(2) Suppose that Ac —» Ao 7^ 0.  TTien Ao ^ an eigenvalue of the following NLEP 

N 

(2.7) A^ - & + wp- Vi + (p - 1) Yl kij(t>jwp-1 

/3o?7 + 1 — 77 N J WP 
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where 77 =. lime_o ME(0), (3O = VTTrAo. 

Proof. 
(2) follows from asymptotic analysis. 
To prove (1), we can proceed exactly as in Section 6 of [34], where stability of 

a single cluster state is studied. Let us denote the linear operator on the left hand 
side of (2.7) as £, where C : (H2(R))N -» (L2(R))N. The key point is to prove the 
following lemma: 

LEMMA 2.2.   (1). Let 0 be an eigenfunction of (2.7) with AQ = 0.  Then we have 

(j) G /Co := span {w (y)eo}, 

where eb = (1,..., 1)T. (This implies that Ker(C) = KQ.) 

(2).  The operator £ is an invertible operator if restricted as follows 

where 

/C^'1 = {u e (H2(R))N\ [ uw'(y)e-h = 0}, 
JR 

IC^2 = {ue (L2(R))N\ I uw(y)eo = 0}. 
JR 

The proof of Lemma 2.2 is technical and is similar to Theorem 4.1 of [36]. 
The rest of the proof is exactly the same as in Section 6 of [33]. For the sake of 

limited space, we omit the details here. 

3. Analysis of system of NLEP. In this section we analyze the nonlinear 
eigenvalue problem (NLEP) which we have obtained in Section 2. To this end, we 
introduce two eigenvalue problems: the first is the following eigenvalue problem with 
complex coefficients 

,     v f A(/> - <f> + wP- V + (P - l^wP"1^ = X(f) 
{ ' ) \ a = <TR + V^laj = eie,6 G (-7r,7r],     ^GJT^iJ), 

where w is defined by (1.6). 
The second is a nonlocal eigenvalue problem (NLEP): 

(3.2)     A0 -cfr + pw?-^ Pi1-*!) JR™P
 V^ = X(f) ^    H2^ 

V TjVT + rA + l-r;    JRwP *'* V   ; 

where 

0<r7<l,T>0,AGC,A = Ail + iXj, XR>0 

and we take principal branch for y/1 + rA. 
We show that the study of NLEP (2.7) can be reduced to the study of (3.1) and 

(3.2). We say an eigenvalue problem is stable if there exists a constant CQ > 0 such 
that all eigenvalues A we have Re(A) < — CQ. We say it is unstable if there exists an 
eigenvalue A with Re(A) > 0. 
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We then have the following 

LEMMA 3.1.   Suppose that (3.2) with rj = lime^o-Me(0) has no Hopf bifurcation 
(as given in Lemma 4-6 below).   Then (2.7) is stable if and only if both (3.1) (with 

a = e~    N     J = 1?..., N - I) and (3.2) (with rj = lim6_o ^e(O)^ are stable. 

Proof. 
(1) Suppose (3.1) and (3.2) are stable.   We now show that (2.7) is stable, too: 

Asuming that there exists AQ > 0 such that (2.7) holds we show that 

0. = 0,    i = l,...,N. 

We first take care of the nonlocal terms.  Adding all equations for i = 1,..., N, we 
get 

2=1 2 = 1 2=1 

—p— 7 Wp = Anipi. 

Since (3.2) is stable and we have no Hopf bifurcation, we have 

N 

(3.3) X> = 0- 
2=1 

Suppose (3.3) holds so the nonlocal terms in (NLEP) all vanish. We end up with 
the following: 

N 

(3.4) Afc - fa + uf-^i + (p - 1) Y, kjfowP-1 = Xofa. 
3 = 1 

After diagonalizing kij (keeping the notation for fa) we get 

(3.5) Afa-fa + (l^(p-l)e^i^I/N)wP-1fa = Xofa, 

Since (3.1) is stable, we have fa = 0. Therefore (2.7) is stable. 
(2) Suppose (3.2) is unstable. Then there exists an eigenfunction fa ^ 0 with an 

eigenvalue AQ to (3.2) such that Re(Ao) > 0. Now we take fa = ... = </>JV = fa in (2.7) 
and we see that (2.7) also admits the eigenvalue AQ. SO (2.7) is unstable. 

On the other hand, suppose (3.2) is not unstable and (3.1) is not stable. Since 
(3.2) has no Hopf bifurcations, (3.2) is stable. Then similar to (1), we must have 

N 

2=1 

and so all the nonlocal terms vanish. We are left with the following local eigenvalue 
problem 

N N 

(3.6) Afa -fa + w^fa + (p - 1) Y, kjw^fa = \fa, Y & = a 

i=l i=l 

It is easy to see that (3.6) is not stable because (3.1) is not stable. Lemma 3.1 is thus 
proved. D 
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4. Study of the two eigenvalue problems. In this section, we study two 
eigenvalue problems (3.1) and (3.2) derived from Section 3. The analysis presented 
in this section is the key estimate for this paper. 

To study (3.1) and (3.2), we first collect some important properties associated 
with the function w. We first study some local eigenvalue problems. 

LEMMA 4.1.  (1) The linear operator 

f Lot :=<!>" -(f)JtpwP-1(t), 

has the kernel 

Ker (LQ) = span < w (y) >. 

(2) The eigenvalue problem (EVP) 

(EVP) { t'-t + l"*-1*-*' 

admits the following set of eigenvalues 

fii = 1, vi = span {w}, 

M2 =P, V2 = Ker (LQ), 

Ms > P. 

(3) If fin > 0; then the following eigenvalue problem 

\ fjLR>0,(l>eH1{R) 

admits a positive (principal) eigenvalue Ai such that 

inf     J„W + ^-(i + MK-V'<0 
0GHi(H)\{O} JR(j)2 

(4) Let (j) (complex-valued) satisfy the following eigenvalue problem 

j    (/)"-(/> + VjP^cf) -f (p - ^(TWP-1^ = \<f> 

\       Re{a) <0,     <f)eHl(R),     A ^ 0. 

Then 

Re(X) < -co < 0. 

Proof The proof is similar to Lemma 3.1 of [36]. We omit the details. D 
We are ready to study the first eigenvalue problem (3.1).   We consider 0 as a 

parameter.   By Lemma 4.1 (3) and a perturbation argument, for \6\ small, there is 
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an unstable eigenvalue A for problem (3.1), i.e. A = A^ + iXj where A^ > 0. On the 
other hand, by Lemma 4.1 (4), for \0\ > |-, problem (3.1) has only stable eigenvalues, 
i.e. \ = \R + iXj where XR < 0. Now if we vary 0, then there must be a point 6h 

such that for 0 = 6h, problem (3.1) has a Hopf bifurcation, i.e. there is an eigenvalue 
A = iXj. Let us now compute 9h. That is 

LEMMA 4.2. Let (/> (complex-valued) satisfy the eigenvalue problem (3.1). Then 
there exists some 0h with 6h = arccosan, where aR is the unique zero with 0 < OR < 1 
of the following polynomial 

(4.1) g(a) := ^(4(p + 1W + p + 3)2(p + 1)^ + 2) - (p + l)(p - 1)2(1 - a2
R) 

such that (1) If 

\e\ > 6h, 

then 

Re{X) < -co <0. 

(2) If 

\e\ < eh, 

then there exists an eigenvalue X with Re(X) > 0. 
(3) If \0\ = 6h, then there exists an eigenvalue X with X = iXj. 

Proof We are looking for a Hopf bifurction for problem (3.1). Therefore we have 
to solve 

(4.2) A4> - <t> + (1 + (p - l)a)wp- v= A^ 

with 

A = V-lAj 

(i.e. the real part XR of A vanishes) and 

CT = OR + yf-lOj, w\2 = 4 +^ = 1 

Let 

7 = VT+A, /X = 1 + {p - l)cr, 0 = ii;7F. 

Then F satisfies 

(4.3) F"'+ 27^-^' + (/* - (7 + ^^7(7 - l)))^"1^ = 0. 

Next we introduce the following new variable 

(4.4) *=¥-i)- 
Then 

in (1 z 
— = l-2z, w"-1 = 2(p + l)z(l - z), — == (p - l)z(l - z). 
w ax 
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This yields the following equation for F as function of z 

(4.5) z(l - z)F" + (c - (a + b -f l)z)F - abF = 0, 

where 

(4.5)    a + o4-l = 2H -, ab = 2 ~ — , c =1 + . 
p—1 [P — 1) p — 1 

The solutions to (4.5) are standard hypergeometric functions.   Now there are two 
solutions to (4.5): 

F(a, b] c; z), z1~cF(a - c + 1, b - c + 1; 2 - c; z). 

Since by our construction, F is regular at z = 0. At z = 1, F(a, 6; c; z) has a singularity 

where c — a — b = — —^y. Note that since A = \A + *Aj, the real part of 7 is positive. 
So a solution that is regular at both z = 0 and z = 1 can only exist if T(x) has a pole 
at a or 6, respectively. In other words, a = 0, —1, —2,... or & = 0, —1, -2,.... 

From (4.6), we compute that 

27 a=  - a 
p-1 

or 

P-I 

where a satisfies 

(4.7) 2        2
(P +1) /i = 0. 

By symmetry we may assume that a = -^- — a = —/, / > 0 and a = OIR + V^Taj. 
So we to solve the system 

(4.8) 
a£ + aR - a] - |2±^(1 + (p - 1)^) = 0 

2^ 
P-1 

= a-Z 

Since we take the principal branch for 7 = y/l + iA/, it follows that 

a > l. 

Moreover we have 

which implies that 

2 
(4.9) aR > I + 

p-1 
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On the other hand, we have 

 = (<xR - I)2 -a2
I = a2

R-a2
I- 2laR + I2 

2 

So we obtain 

(p-i) 

= -(21 + l)aR + l2 + 1^(1 + (P - 1W). 

1       2        2      ,  2(p+l)_ 

By (4.9), we have 

'    (i,+    2    +2(E±l) 2 

2Z +1 p -1        p-1 p-l 

which is impossible unless Z = 0 or Z = 1. For I = 1 we just recover the case I = 0 
with the eigenfunction wf given by Lemma 4.1 (1). This clearly does not correspond 
to Hopf bifurcation. 

For Hopf bifurcation to occur we must have a = 0 or b = 0. In this case, we have 

2      ,  2(p + l)_ 2(p+l) 
p-l        p-l (p-l){2aR + l) 

Substituting this relation into (4.8) we obtain that CTR must be a zero of the polynomial 
g defined by (4.1). 

In summary, Hopf bifurcation can occur only at the point aR such that g(aR) = 0. 
Since such a point is unique, we conclude that for \9\ < 6h = arccoscr^, there is 
unstable eigenvalues and for \0\ > Qh, all eigenvalues are stable. □ 

Let us now analyze the polynomial g((jR) for a = e N . We note that as 
p —> +oo, the zeroes of g approach the zeroes of 

(4.10) g0(aR)=a2
R(4aR + l)2-(l-cj2R). 

The zero of go is approximately 0.3726. Thus as p becomes large, Ncriticai-t>h.e critical 
threshold- can not exceed 6. In fact, one can compute explicitly that in the case 
p > no + 1, where no is given by (1.20), we have #(cos(^)) < 0 for JV < 5 and 
p(cos(^)) > 0 for N > 6. In the case p < no + 1, we have #(cos(^) < 0 for iV < 4 
and g(co8(jr)) > 0 for N > 5. That is we have the following corollary 

COROLLARY 4.3. For N < No, the problem (3.1) is stable, while for N > No, 
problem (3.1) is unstable, where 

N = f 4     ifp<po, 

\ 5     ifp>Po 

and po ~ 4.35. 

We next study the NLEP (3.2). We first recall the following lemma 
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LEMMA 4.4. [37] Consider the following eigenvalue problem 

f w^d 
(4.11) Acf) - fi+pw^cj) - 7(p - 1)^—^V = A&0 G H2{R). 

JR 

Then if ^ <p, we have Re(X) < —c\ < 0 for some Ci > 0. 

From Lemma (4.4), it follows immediately we have the following 

LEMMA 4.5.  Consider the eigenvalue problem (3.2). 
(1) If r « 1 and 0 < 77 < K  Let \Q ^ 0 be an eigenvalue of (3.2).   Then we 

have Re(Xo) < —ci for some Ci > 0. 
(2) Suppose that ^ < 77 < 1, then problem (3.2) admits a real eigenvalue \Q with 

Ao > C2 > 0 for some C2 > 0. 

Proof 
(1). When r = 0, we have 

^-"rt =p(l-Tt)>p-l 
rj^/1 + rA + 1 — rj 

if 0 < rj < -. By Lemma 4.4, we must have that A^ < —ci < 0. The case r << 1 
follows from a perturbation argument. 

(2).   Assume that - < rj < 1.  By Lemma 4.1 (3), LQ has a positive eigenvalue 
fii > 0. Consider the following function 

h(a) = [ ((Lo - a)"1^-1)^-1. 
JR 

It is easy to see that 

ft'(a) = / ((Lo - a)"2^-1)^-1 = / [(Lo - a)-1^"1]2 > 0 
JR JR 

and 

lim h(a) = +00. 

Next we consider the function 

(4.12) p(A) = 7?^;)
1-?? - 1 - (/^-AMA). 

Note that 

since ^ < 77 < 1. On the other hand, 

lim   p(X) = —00. 
A->/ii- 

Hence there must exist an AQ G (0,^I) such that p'(Ao) — 0. 
It is easy to see that this AQ > 0 is an eigenvalue of (3.2). □ 
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In the general case r > 0, 0 < rj < ^ there are no analytic results for problem 
(3.2). Fortunately, we can use hypergeometric functions and generalized hypergeo- 
metric functions to reduce problem (3.2) to a computable problem. Such an idea has 
already been used in [8]. However, here we propose a different transformation so that 
the eigenvalue problem becomes computable more easily. We recall that by Lemma 
4.3 (2) for r = 0, all eigenvalues are stable. So if we vary r, either we obtain stability 
or Hopf bifurcation. All we need is to compute when Hopf bifurcation occurs. 

Let us first introduce the so-called generalized Gauss function. Let ai,a2,...,a^ 
and bi,b2i..-,bB be two sequences of numbers. Consider the following series 

(4.13) a1a2...aA z      (oi 4- l)(o2 + l)-(aA + 1) z2 

+ M2...&B 1!      (h + 1)(62 + l)...(bB 4-1) 2! + ' 

ai,    02,    ...,    aA    ; 

AFB <j z 
h,    h,    •••,   bs    ; 

AFB is called generalized Gauss function or generalized hypergeometric function. 
Now we have the following lemma. The proof is similar to Lemma 3.4 of [36]. So 

we omit the details. 

LEMMA 4.6.   Let A = y—TAj be an eigenvalue of problem (3.2).   Then X is a 
solution of the following algebraic equation 

(3p - l)(p2 - 1 - A) TIVTTTX + 1 - 77 

P{P2 - 1) p{l-r]) 

(4.14) = 4i?3< 

1     I 
-L5      2' 

JlL 
p-1' p-1 ^ -L      > 

p-y/l+\    ,   -j p+x/l+A    ■   -,        _r__   , 
p_l       ^ -L5 p_l       ^ -LJ      p-i ^ 

3       . 
2      > 

By Lemma (4.6), problem (3.2) can be solved by using Mathematica. We will not 
produce any numerical results here. The readers can refer to [8] for some numerical 
results. 

5. General Matrix Case. Theorems LI and 1.3 can be extended to more 
general matrices (kij). 

Let us consider system (1.3): 

(5.1) 
dtXi = e2^ - Xi + AM £f=i k^XiX?,    x £ R, 

TdtM = M" + 1-M-M £f7-= hjXiXf,    xeR, 

where (kij) is a general matrix. To ensure existence, we put the following symmetric 
condition 

(5.2) 
N N 

i=l j=l 
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Then Theorem 1.1 holds true without any change. 
The main problem is the stability. To this end, we need to put an extra assumption 

(5.3) (HI)       [1 + spec(B)] fl spec(EVP) - {p}, 

where B = (kij) and the EVP is defined in Lemma 4.1. 
The following is our main result on stability. 

THEOREM 5.1. Assume that 

(5.4) e << 1,     6 « Le,     lim Le < Lo, 
e—>0 

and that assumption (HI) holds. Let (X^M^) and (Xl
e, X

l
€) be the solutions given in 

Theorem 1.1. 
Let a = CJR + V-Tar be an eigenvalue of (kij) and let the polynomial g be defined 

as in (4.1). 
Then for e « 1; we have the following. 
(1) (stability) Suppose that r « 1. Assume that a = 1 is a simple eigenvalue 

and that for all a with OR > 0 , we have g(a) < 0.  Then (X|,Me
5) is linearly stable. 

(2) (Instability) Assume that either a = 1 is not simple or there exists a ^ 1 with 
(JR> 0 such that g(a) > 0.  Then (X*,M*) is linearly unstable. 

(3) (Instability) (Xl^Ml
e) is linearly unstable. 

The proof of Theorem 5.1 is the same as that of Theorem 1.2. We omit the 
details. Note that the analysis in Sections 2-4 deals with general matrices kij and is 
not restricted to merely the hypercycle case kij = <S;,j+i modulo N. Let us now apply 
Theorem 5.1 to some interesting examples. 

Our first example is the following cyclical bi-diagonal matrix 

( 1-a       a           0        ...        0     \ 

0        1-a       a       ...        0 

0           0       1-a    ...       0 ,    A:0>0. 

        a 

V      a 0 ...       0 1 - a ) KT   AT \ /   iVxiV 

(5.5) {k^) = ko 

It is easy to calculate that the eigenvalues are a — 1 — a(l — e
27rjV-i/iV)5 j = 1,..., JV 

and are all simple. 
We substitute a into the polynomial and compute the critical threshold Ncriticai • 

It turns out that NcritiCai depends on both a and p: Ncriticai will increase of the 
order a as a increases but Ncriticai increases only slowly in p. In fact, let us fix a and 
consider the case p —> -J-oo. Then as p —> +00, the zeroes of / approach the zeroes of 
the polynomial 

go(cT):=(J2
R{AcrR + l)2-aj 

which was defined in (4.10) above. Substituting <7R = 1 — a + acos(#),crj = asin(#) 
into (4.10), we obtain the following 

(5.6)    p(0,a) = (l-a + acos(<9))2(5 - 4a 4- 4cos(l9))2 - a2(l - cos2(0)) = 0. 
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Note that for a large and a6 = 0(1) 

which by 6 — 27r/iVo implies that 

5 
OL 

-NQ rsj —a. 
5 

On the other hand for •p = 2 we get under the same assumptions 

2^73 
iVo 

Yly/E' 

In both cases the critical threshold iVo grows linearly in alpha but it is bigger by 
the factor -4== ~ 4.39 in the first case. Thus in this case large p changes quantitative 
but not the qualitative behavior of iVo- This shows a more striking change of behavior 
than in the hypercycle case. 

Our second example is a system with (iV — 1) interactions. 

(5.7) (kij) = ko 

(0 1 1 ... l\ 
1 0 1 ...   1 
1 1 0 ...  1 

...  1 

{1 1 i   o) 

ko >0. 

NxN 

The eigenvalues of (kij) are a = 1 (which is simple) and a = 0. The small cluster 
state is stable for all N independent of the rate p. 

From all the previous examples, we see as a general trend that if the system is 
not too much dominated by diagonal terms we have stability. Otherwise, a parasite 
emerges. This means that cooperative behavior in contrast with self-enhancement is 
needed to stabilize the cluster. 

For large p stability in increased somewhat. We point to the second example 
where the stability threshold TVo for large a grows linearly in a and large p can 
improve iVo by a constant of about 4.39. In the case a > 1 (which means that the 
diagonal becomes negative and the off-diagonal elements are positive and bigger than 
the diagonal), this describes self-inhibition coupled with cooperative enhancement and 
leads to particularly good stability. 

Furthermore, the second and the third example indicate that coupling between 
more and more different components Xi also improves stability. Note that in the last 
example the system can be arbitrarily large. 

6. Discussion. We have studied a general system of N + 1 equations with non- 
linear rate n describing the interaction of N polymer species which catalyse each 
other in a hypercyclic way and are all composed of the same type of monomer. In the 
special case iV = 1, n — 1 the system reduces to the well-known Gray-Scott system. 

We study the case of single-cluster solutions in the whole 1-D space. These are 
in some sense the simplest concentrated solutions in 1-D. This case appears to be 
relevant if the early biochemical reactions take place in very thin lines for example on 
the edges of rocks. 
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Besides the existence proof we provide the first rigorous results on stability for 
cluster states of a hypercyclic system with nonlinear rate. Namely, we establish the 
exact threshold between stability and instability in terms of the system size and the 
nonlinear rate n. It is shown that as n < 3.35, the stability regimes extends exactly in 
the range iV = 1,2,3,4. If n > 3.35, the stability regime extends to N = 1,2,3,4,5. 
This shows that the maximum critical threshold for hypercycle system with nonlinear 
rate is 5. This result might be important for making predictions about the outcome 
of experiments in biological applications and also for the testing of the validity of the 
models used. Furthermore, now a comparison of this theoretical result with numerical 
computations becomes possible. 

We have also studied reaction-diffusion systems with nonlinear rate and general 
connection matrix (A^-). There we have observed that the nonlinear rate can help 
increase the critical threshold Ncriticai when there is large self-inhibition (Example 1, 
Section 5). We show that large self-inhibition and to some lesser extent large n can 
help stabilize large reaction system. 

So how can very large systems be stabilized? 
One possibility is to increase self-inhibition and the nonlinear rate, as in Example 

1, Section 5. 
Another possibility which is frequently observed in nature is by the formation of a 

block-diagonal structure. Then, since the spectra of different blocks are independent, 
they can for example be chosen as small hypercycles which are stable up to size 5. 
On the other hand, by assembling a large number of blocks the system can become 
arbitrarily large and still be stable. 

In fact, it is much simpler to create systems which display block-diagonal struc- 
ture with only a few interactions than systems with many components catalysing 
each other. Therefore block-diagonal structures are frequently observed and are very 
important for natural phenomena. 

Finally, let us recall attention to the point made in the introduction numerically it 
is known that parasites may destroy stable cluster states. Our results complement the 
picture by the rigorously proved fact that even pure cluster states may turn unstable 
if they become two large. This implies that the hypercycle although it has some very 
preferable properties (see the beginning of the introduction) on the other hand it has 
an inherent instability behavior which may be an obstruction to the evolution of large 
biological systems. 
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