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ON STABILITY AND HOPF BIFURCATIONS 
FOR CHEMOTAXIS SYSTEMS 

E. N. DANCER* 

The purpose of this paper is to study the stability of peak solutions (boundary 
or interior peaks) for the chemotaxis system 

dA       2 .   .       .     A?   .     . 
— = e2AA-A+— in fi 

(1) T\£l\^ = -m + i-> I A'dx 

^— = o on dn 
on 

where e > 0,r > 0, fi is a smooth bounded domain in RN, |£2| denotes the measure 
qr 

of Cl,p > l,q > 0,r > 0,5 > 0 and we usually also assume 70 = -, TTJ rr > 1. 

This system is known as the shadow-system of the Gierer-Meinhardt system. The full 
Gierer-Meinhardt system is a quite regular perturbation of this system so it is nearly 
always very easy to deduce results for the full system (with a large parameter) from 
that of the shadow system. Now, as is well known, stationary solutions are determined 
by the equation 

(2) - e2Au = up - u in fi 

■   u > 0 in Q 

^ = 0 on dil 
on 

by the substitution A = ^p-1u(x) provided 70 7^ 1. (If 70 = 1, there is either no 
solution or a curve of solutions, depending upon the other parameters). However, the 
parabolic system does not seem to reduce in such a simple way. 

It is easy to see that the eigenvalue problem for the the linearization of (1) at a 

solution A = £q(p~iy)ue(x) where £* = Ifi]-1 /  ur and t = 1 + 5 — qr/(p — 1) reduces 
Jet 

to the eigenvalue problem 

(3) -e2Ah+h-pu*-1h + fif€a(h)u* = ah on ft 

h = 0 on 9ft 

-1 

where /^(fi) = —^  ( [ <)       f u^h 
s + l-ra \Jn   eJ     Jn 
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If u is an interior peak solution of (2), Wei [10] proves that the much of the 
stability properties of the solution of (1), for small e, is determined by the number of 
eigenvalues a with negative real part of the problem 

(4) A0 + 0 - pw**- V + f %^^^ = a(j> 
s + 1 — ra     J1 RN w 

where w is the positive radial decaying solution of —Au = up — u on RN. More 
precisely, if all the non-zero eigenvalues of (4) have negative real part, one can prove 
that the corresponding solution of (1) is metastable, that is the only eigenvalue of 
the linearization of (1) with non-positive real part are small in e. (In the boundary 
peak case, the solutions may be stable). This implies that for small e the solutions 
are stable for large times. Note that our eigenvalues have opposite sign to Wei's. 

We prove more precise statements relating eigenvalues of (4) to these of (3), 
and further analyze (4). In particular, we show that one of the results of Wei [10] 
is essentially best possible (which is a little surprising since the proof in [10] is by 
quadratic forms). We also use the analysis of (4) to show that there can be a global 
generalized Hopf bifurcation of (1) to periodic solutions of (1) rather localized in 
space and time period neither small nor large. Ni, Takagi and Yanagida [9] proved 
a much more restrictive result of this type. They also obtain a number of related 
stability results on (1) by different arguments. We discuss this the relation of their 
work to ours in more detail later. Note that the results here, [9] and [10] are largely 
complementary. 

In Section 1, we analyze (4). In Section 2, we relate (3) to (4) and look at Hopf 
bifurcations. 

1. Analysis of the limiting equation. We analyze the problem (4) in the 
space L2(RN) (with domain H2(RN)). We first show the system reduces. We write 

L2(RN) = L2
r(R

N)®W 

where L2(RN) is the set of radical L2 functions on RN and W is its orthogonal 
complement (in L2(RN)). It is easy to see that La, the left hand side of (4), maps 
Ll(RN) D H2(RN) into L2

r(R
N) and so this space is invariant. On the other hand, if 

</> G W, wr~1(j) = 0 and hence on this subspace La(f) = — Acj) + </) — pwp~1(j) and 
JR

N 

it follows easily La maps H2(RN) D W into W.  (Remember that —A is self adjoint 
and maps L2(RN) fl H2(RN) into Ll(RN). Thus our equation (4) reduces to one on 
L2(RN) and one on W. We sometimes write L2 for L2(RN). On W, our equation is 

(5) - A0 + (j) - pw^1^ = acj) 

which has zero as an eigenvalue of multiplicity N and all the other eigenvalues (and 
other points of the spectrum) are real and positive. This is well known and follows for 
example from the argument on p970 of [2]. Note that the negative eigenvalue Ax of 
(5) (considered on L2(RN) is simple with a radial eigenfunction. The zero eigenvalue 
of (5) on W corresponds to the small eigenvalues which are discussed carefully in Wei. 
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Thus our problem largely comes down to the study of the eigenvalue problem 
La(f) = acj) on 1%. Henceforth for this section, we work exclusively on 1%. Note that 
this is an ordinary differential equation rather than a partial differential equation. We 
always look at a with rRea < s + 1. This includes the eigenvalues which determine 
stability. 

Before discussing this in detail, we look at Fredholm properties. Consider the map 

(f> —> P^"V + 7i(<*)/i.(0K (where f^) = ^ W   / and ^(a) = —J?——). 

It is easily seen to be relatively compact as a map of H2(RN) into L2(RN). Hence 
Z/Q, — al is Fredholm if and only if —A — (1 — a)I is Fredholm and this is true only if 
a < 1 or Ima ^ 0. Thus La — al is Fredholm of index zero if a < 1 or Ima ^ 0 and 
is not Fredholm otherwise. 

Next note that, if a is an eigenvalue oi La(t) = acj) on L2 then its geometric 
multiplicity on L^ is 1 unless a — Ai or a is a positive eigenvalue of 1/ = —A + (1 — 
w'p~1)L To see this, note that if Wi and W2 are linearly independent eigenfunctions, 
a (possibly complex) linear combination w must satisfy fi{w) — 0. Thus L'w = aw 
and w G L2. Hence a is real (by self-adjointness of L') and a = Ai or zero or is a 
positive eigenvalue of L'. We will show a = 0 is impossible in a moment which proves 
our claim. 

To complete the proof of the claim of the previous paragraph, we must study the 
eigenvalue zero on L2. To do this, one writes our eigenvalue problem as 

(6) ■(L'-aI)<f>=-<y1(a)f1(<l>)wP. 

Hence, if a is not an eigenvalue of Lf on L^, 

(7) 0=-7i(a)/i(0)(L,-aJ)-1^ 

Hence if a is an eigenvalue of (4) on L2 and <f) is the corresponding eigenfunction, 
hW 7^ 0, 0 is a multiple of (1/ — al)~1wp and taking /i of each side we see that 

(8) 7i(a)/i((i,-aJ)-1ti;P) = -l. 

Conversely, if (8) is satisfied, it is easy to use (7) to check (1/ — al)~1wp is an 
eigenfunction corresponding to a. (8) is very useful. Our argument also shows the 
one dimensionality claimed earlier. 

Now L' is invertible on L^ and we easily see as in [10] then L'w = — (p — l)wp 

that is, (.L/)~1('u;p) = —(p — l)~1w. Hence by (7), the definition of fi and a simple 
calculation, zero is an eigenvalue of (4) if and only if 70 = 1, that is qr = (p— l)(s +1). 

(8) also implies that (4) has no eigenvalues with \a\ large and Rea < K. Firstly 
note that, such a are not in the spectrum of 1/ and in fact by standard resolvent esti- 

mates for self-adjoint operators (cp [6], eqn. V.3.16), ||(Z/ — ^)~1|| < 
d(a,a(L')) 

0 as |a| —> 00 in this region. Since 7(a) —► 0 as |af| —► 00 in this region, we easily 
see that left hand side of (8) tends to zero as |a| —► 00 and hence (8) can not be 
satisfied. This proves our claim. It is easy to check that this estimates holds uniformly 
for p, r, s, r in a compact set. For real a it is possible to use the positivity in the cone 
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sense of (L7 — a/)-1 for a < Ai, to ensure a is not an eigenvalue of (4) if a is real 
and a < Ai. In fact, since wp £ R (Lf - Ail) (where TZ denotes the range), one can 
also easily show that Ai is also never an eigenvalue of (4). As we will see later, (4) 
sometimes has complex eigenvalues. 

Note that this, the analyticity of our operator in a for rRea < 1 + 5, the Fredholm 
property for Rea < 1 and a theorem of Gokhberg and Krein [6, Theorem 3.6 ] imply 
that the eigenvalues of (4) in rRea < 1 4- s and Rea < 1 are isolated. 

We need the notion of the multiplicity of an eigenvalue a of (1) with Rea < 1 or 
Ima y£ 0 (where (4) is Fredholm of index zero). This is defined for example in Ize [5]. 
(Basically in the finite-dimensional case, the multiplicity of ao is defined in terms of 
the multiplicity of ao as a zero of the determinant, while in the infinite-dimensional 
case, we first do a Liapounov-Schmitt reduction to finite-dimensions. Note that while 0 
always has geometric multiplicity in L^ at most 1, it sometimes has higher multiplicity, 
as we see below. 

We will sometimes make use of the following remark. If we choose a continuous 
curve y(t) in (p, q, r, s) space so that there is no eigenvalue a with Rea = 0 for any 
y(t), then the sum of the multiplicities of the eigenvalues of the negative eigenvalues 
is independent of t. This uses our earlier bounds and properties of multiplicities 
under perturbation (cp. Dancer [3], Lemma 4 and the remark afterwards). Hence the 
stability can only change by an eigenvalue crossing the imaginary axis (as we vary 
p,q^r,s). Moreover it is easy to check that if a is a complex eigenvalue, a is also an 
eigenvalue and a and a have the same multiplicity (since the coefficients in (4) are 
all real). Hence by our comments on multiplicity above, we see that if the sum of the 
multiplicities of the real negative eigenvalues is odd, this persists as we vary p, g, r, s, r 
unless an eigenvalue becomes zero (since the sum of multiplicities of the eigenvalues 
with negative real part is always odd). This is a very useful instability result which 
we exploit below. Note that we only have a zero eigenvalue when 70 = 1. 

To apply this, we need to examine the behaviour of small eigenvalues in L^ as 
parameters vary. We first consider (4) with r = 0. Note that while (1) is not well 
behaved for r = 0, (4) is well behaved. For r = 0, (4) is a standard eigenvalue problem 
and the multiplicity is then the standard algebraic multiplicity. 

We now partially calculate this when 70 = 1 (which is the necessary and sufficient 
condition for zero to be an eigenvalue for r = 0). As we saw earlier, the kernel of 
LQ is then spanned by w.   The algebraic multiplicity is 1 if w is not in the range 

of LQ (on ZY).   NOW, as Wei observed Z/((p — l)~1w + TT^TTT:) = — w (where R = 
2    oR 

\x\).   Now if LQZ = w, then L'z + j(0)fi(z)wp = w.   Since if z is a solution so is 
z + Bw (since LQW = 0).   Since fi(w) ^ 0 by a simple computation, if there is a 
solution there is one with fi(z) = 0 and L'(z) — w.  Hence by our comment above 

z = — ((p — l)~lw + +7:^-^7;).  Hence the algebraic multiplicity is at least 2 if and 
2    oR 

only if fi((p — l)-1^ -f R-^T;) — 0- By the definition of fi and a simple integration 
OR 

by parts, this becomes (p — l)-1  / wr — — / w7* = 0, that is N(p — 1) = 2r. Hence 

we see that the algebraic multiplicity of zero is 1 if 70 = 1 and N(p — 1) ^ 2r and is 
at least 2 if 70 = 1 and N(p - 1) = 2r. 

We do not know if an algebraic multiplicity of 3 or more is possible. (This reduces 
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to discussing when the solution of LlZ\ = (p — l)~1w + -R-^rz; satisfies fi(zi) = 0.) 
2    uR 

Note this is purely a condition on r, p and N and if it occurs it can be proved that it 
only occurs for isolated r for fixed iV). We will prove later indirectly that this does 
not occur for r close to 2.   (In other words the algebraic multiplicity is exactly 2 if 
70 = 1, N(p — 1) = 2r and r is close to 2.) 

To prove the algebraic multiplicity of zero is indeed 2 for r = 0, r close to 2, 
70 = 1, N(p — 1) = 2r, we need to make a bifurcation analysis of the small eigenvalues 
of LQ for r = 0 and /x near [IQ.   Here fi = 7(0) and /JLQ = p — 1.   To do this, we 
need to know the kernel of LQ. NOW it is easy to prove that LQ.= 1/ + 70/2(   )'wr~1 

where jfe^) =   /     wpz/ /     ^r.   (Note that LQ is a similar type of operator to LQ 
JRN JRN 

for different parameter values).   We can argue much as before to deduce that the 
adjoint eigenfunction corresponding to the eigenvalue zero is w = (L')~1(wr~1). We 

or 
examine the bifurcation equation using fi =  as a parameter. We prove that the 

bifurcation equation for small eigenvalues of La<t> = <p on Z^ for r = 0 is of the form 

(9) k6m + fci/i7 + hot = 0 

where k, ki ^ 0, the higher order terms hot are terms independent of // and of smaller 
order than Sm or are of o(/x/) (and the corresponding properties of the derivatives) and 
m is the algebraic multiplicity of zero. Here // = /i — /JLQ where zero is an eigenvalue 
for fi = fio = p — 1. 

Assuming this for a moment, we analyze the small eigenvalues. It follows easily 

from (9) that —^r" is close to a solution of z™ + —sqnfj, = 0 if fi ^ 0.  By this and 
|/l| rn k 

the implicit function theorem, we see that for small non-zero fi there are exactly m 
small eigenvalues of LQ and these are of the form |/x| ^Ti + o(|/x|^) where T; is a root of 
z™ — —ki/k if fi > 0 and is a root of z™ = fci/fc if fi < 0 (for small fi). Note that this 
means that, if m > 1, asymptotically the arguments of the roots are equally spaced 
to first order. Note that since a complex conjugate of a solution is again a solution, 
the real solutions correspond to the real T;. 

Let us now consider cases. Assume first that m = 1, that is the eigenvalue is 
simple for /1 = /J,Q. In this case, our analyses shows that there is a unique small 
eigenvalue for // small, it is always real and it crosses the imaginary axis as // crosses 
zero. Thus stability must fail on one side of zero. In particular if there are no 
purely imaginary eigenvalue at all for // = 0, the number of real negative eigenvalues 
must change for even to odd as // crosses zero. As we remarked earlier, this local 
instability for // on one side of zero must continue rather globally. If the algebraic 
multiplicity m is greater than or equal to three, we see that, if // is non-zero and 
small, there must always be at least one eigenvalue with negative real part and there 
must be instability. If in addition, m is odd, we easily see that the number of small 
negative real eigenvalues changes by 1 as // crosses zero (as does the number of small 
eigenvalues with negative real part). If m is even (including m = 2) the number of 
small negative real eigenvalues still changes by 1 as // crosses zero but the first order 
terms are insufficient to determine the number of small eigenvalues with negative real 
part for // on one side of zero (because there is a pair of eigenvalues which are purely 
imaginary to first order). Note that this shows the delicacy of some of Wei's results. 
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Note that our analysis for m > 2 and Wei's stability result for r = 2 shows that the 
algebraic multiplicity is 2 when p — 1 + 4:/N,r = 2 and 70 = 1. By continuity, it is 
still true if r is close to 2. 

We need to justify our form for the bifurcation equation. Here, as in [4], it is 
convenient to choose a complement to the kernel of LQ carefully respecting the Jordan 
chain structure of the eigenvalue zero of the linear operator LQ. If one does this and for 
// = 0 uses the argument in §8 of Dancer [4], one finds that the bifurcation equation 
for // = 0 is exactly Sm. Since our bifurcation equation will be smooth in 8 and //, 
it then suffices to calculate the term linear in // (and independent of 8). To do this, 
we need to look at the construction of the bifurcation equation a little more closely. 
Let P be a projection onto R(LQ) and let M be a complement to N(Lo) = span {w}. 
Now for // near zero and a small eigenvalue 8 any eigenvector must be close to N(Lo). 
Hence it suffices to look for solutions w -f m where m G M and m is small. Now by 
the implicit function theorem, the equation PL(/i/, cr)(m + w) = 0 can be solved for m 
as a function of pt and 8,m = m(fi,,8), and ||m|| < fc(|//| + \8\). Here L^',8) = L5 for 

M — Mo + //-and r = 0. Then the bifurcation equation is /(£(//, 8){w + m(//,5)) = 0 

where / spans N(LQ). If we note /(L(0,0)) = 0, we see that terms linear in // can 

only come from /((!/(//,0) - L(0,0))w). Since / is a multiple of LQl(wr~l), we see 
that the term linear in // is simply 

(by the formula for £(//, 5)). It is easy to check that fi(w) > 0, since w(R) > 0 for all 
R    >    0.        Now,    by   self-adjointness,    (wp,Z,(7

1i<;r-1)    =    (L^w*^-1)    = 

— (p — I)-1  / w1" j£ 0.  Here we have used L(^
1('u;p) = — (p — I)-1?*; which we noted 

earlier. Hence a ^ 0 and we have proved our claim on the bifurcation equation. 
We now use our ideas to obtain instability results for r = 0 (and hence by continu- 

ity also for small positive r). Remember if we can find a region T in parameter space 
where 0 is never an eigenvalue of La for any point of T, the sum of the multiplicities of 
the negative real eigenvalues is odd, then LQ, has an eigenvalue with negative real part 

qr 
for every point of T. Now zero is only an eigenvalue if 7 — r = 1 and hence 

(s + l)(p-l) 
we need to look at the two components of Z = {(#,r, s,p, r) : qr ^ (s + l)(p— 1)}. It is 
easily seen that there are only 2 components by looking at q has a parameter. (By the 
same argument, there are only two components of Zn {r = 0}). We know from Wei's 
work (or implicitly in [9]), that the component where 70 > 1 contains stable points 
and hence, by our remarks above the number of negative real eigenvalues is even if 
70 > 1. By crossing 70 = 1 at a simple eigenvalue, it follows that the number of 
negative real eigenvalues is odd if 70 < 1 and there is always a negative real eigenvalue 
if 70 < 1 and r > 0 (and hence there is instability in this case). 

We now make a more careful analysis of the signs of the coefficients of the crossing 
when fi = fio and r = 0 in the case of multiplicity 1 (and using our earlier bifurcation 
arguments) to obtain more cases of instability. When fi = /XQ, we can take the kernel 
to be spanned by w and the adjoint to be spanned by (L/)-1(^r~1). Remember that 
1/ is invertible on Z^. In this case it is easy to see from our earlier discussion that the 
bifurcation equation becomes 
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v'f1(w)(v?,(LT\vr-1))-6(w,(L,)-1(v>r-1) + hot = 0. 

As we noted earlier, 

/1HK,(L,)-1K-1)) = -fiH(p- i)-1K«'r"1) < o 
while (w^L')'1^-1)) = ((L')-1(w),wr-1) 

= {(p-l)-1-lNr-l}(w,wr-1). 

Hence we see that the direction the eigenvalue 8 moves across zero as we increase // 
across zero depends on the sign of N(p-l)-2r and the eigenvalue decreases (increases) 
across zero with increasing /x if N(p - 1) < 2r(N(p - 1) > 2r). In particular we see 
that there is a small real negative eigenvalue (and hence there is instability) for /x 
slightly larger than (p - 1) if p > 1 + 2N~lr. In particular if r = 2, this shows we can 
have instability if p > 1 + 4/iV which shows a result of Wei's in [10] is in a sense best 
possible. Note that as we increase r stability can only be regained by the negative real 
eigenvalues coalescing and then crossing the imaginary axis (necessarily not at zero). 
This is not really a local phenomenon. Indeed we suspect stability is never regained 
by increasing r. By a similar but more complicated calculation it can be shown that 
if r > 0, we have instability for fi a little greater than fio if 

(s + l)-2qrT - 1 + I(p - ^ATr-1 > 0 

and there may be stability if the inequality is reversed. 
We now consider the case of large r. We show on L^ that there is one or two 

negative eigenvalues and all the remainder of the spectrum lies strictly in the half 
plane Rea > 0. Thus there is always instability. Moreover there is one negative real 
eigenvalue if (p-1)70 < 1 and two if (p-1)70 > 1. To prove these results, we will con- 

fine ourselves to the reeion Rea < -r-1 which ensures that stays bounded. 
2 s + l — ra 

Now        the        eigenvalues        are        given        by        the        solutions        of 

 -/i((Z/ — al)~lw'p) = —1.   Now unless a is close to zero  is 
s + l — ra ' s + l-ra 

small for large r while (1/ — a/)-1 is uniformly bounded on Rea < -r-1 except near 

Ai.   (By standard resolvent estimates, (1/ — a/)-1 is uniformly bounded on our set 
except near Ai). Hence we see that, for large r, eigenvalues can only occur near Ai or 

zero. Near a = Ai, is an analytic function of r-1 vanishing when r-1 = 0. 
s + l — ra 

Moreover Ai is a simple eigenvalue of Z/z = az.   Hence by standard perturbation 
theory (as in [6]), for large r there is unique eigenvalue near Ai which is simple (and 
necessarily real). 

To discuss eigenvalues near zero, we use (8). For a small, /i((I/ — al)~1wp) is 

near fi((L,)~lw'p) = -(p - I)-1 by earlier.  Hence  is close to (p — l)-1 

and hence ra is close to JIQ where 
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(10)  ?L^ = (p_l)- 
K    J 54-I-//0 

If we then use £ = ra as the new variable (rather than a), we have the equation 

-fi(Lf — £T~
1
)~

1
W

1P
) = — 1. We use the implicit function theorem (on C) to 

qr 

s + 1 -. 
show that this has a unique solution £ near /XQ for r large. This proves our claim. We 

see that this solution is positive if  < (p-l)-1 and is negative if  > (p-l)_1. 

This proves our claim. 
Next we see that it is a very frequent occurrence that as we vary parameters, 

we obtain a curve on which non-real eigenvalues of (4) cross the imaginary axis. We 
choose an example where (4) for r = 0 has no eigenvalues with non positive real part 
and 70 > 1 and we then increase r. For large r there are exactly two real negative 
eigenvalues. Thus by continuity of eigenvalues, as we vary r, eigenvalues must cross 
the imaginary axis at non-zero points. By our earlier results this must occur with r 
neither small not large. We can use an analyticity argument as at the bottom of p25 
of [3] to deduce that when the crossing occurs, there is strict crossing of the imaginary 
axis. (In particular, there are only eigenvalues in L^ on the imaginary axis for isolated 
values of r). We use this in Section 2 to obtain Hopf type bifurcations. Finally note 
that these examples imply that in some cases the eigenvalue of (4) of smallest real 
part are complex. 

Note that there is a completely analogous theory for (4) on a half space (which is 
equivalent to (4) on RN where our space of functions are even in one variable). The 
problem still reduces as before and indeed the spectrum with a real and a < 0 or 
Ima ^ 0 and rRea < 1 + s is the same as before (as is its multiplicity). 

Finally, we want to see how some of these ideas can be used to simplify Wei's 
calculations. If r = 0 and r = p 4- 1, our operator is self-adjoint (for example, it is 
easy to prove (LQU.U) is always real) and hence the eigenvalues are real. Thus, by 
our earlier remarks it suffices to look for real eigenvalues of (3) in (Ai,0) with radial 
eigenfunctions. We then need to follow the argument in the four lines following (5.17) 
in [10]. 

In the case where r = 2 and r = 0, Wei's argument can be simplified a little 
because we need only work in the space of radial functions and the kernels are much 
smaller which simplifies the arguments. 

2. Results for the original equation and Hopf bifurcation. The purpose 
of this short section is to prove that eigenvalues of the limit equation (4) generate 
nearly eigenvalues of (3) and conversely. We also consider Hopf bifurcations. We 
mainly consider the interior peak case. 

It is convenient to consider rather than (3) the rescaled equation 

(11) -Ah + h-pu^h + fhe(h)up
€ = ah 

on tte 

h = 0 on dft€ 

where ?2e = {e~l(x - xe) : x G fi}, and where 
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fi c(h) = I   /   Sg )      /    ur~lh, xe is the peak point of u€,ue = uJeix — 
s + 1 - ra \J^e    )     Jne 

x€)) and we are working on the space L2(ne). It is convenient to write this equation 
in the form 

h = ReWi-pv*-1* + .MfcK) = UaW) 

where -Re(a) is the inverse of —A + (1 — a)I with Neumann boundary conditions on 
fie (which exists if Rea < 1 or Ima ^ 0). We then consider the mapping Z€(a) = 
ieZe(a)P€ on L2(RN) where Pe is the natural projection of L2(Rn) on L2(Oe) (by 
restriction) and Le is the natural inclusion of L2(Qe) into L2{RN). (In fact Le = P*). 
Since Se converges to w in L2(RN) (and L00^1*) as follows easily from the estimates 
in [11] and [7]), we see easily that Ze(a)h —> Z(a)h for each h in L2^1*), if we 
prove that ||Pe|| are uniformly bounded (for Rea < 1 — 6) and Re(a)h —► R(a)h in 
L2^) for every h G C^{Rn). Here Z = JR(a)(-pK;p-1/i + 7(a)/(/i)^)) where i? is 
the inverse of —A + (1 — a)I on L2(Rn). Remember that Aeh —> Ah as e —► 0 for 
every h G L2(Rn) if ||-Ae|| are uniformly bounded and the convergence holds for /i in 
a dense set. (Note that the resolvent equation for R(a) then ensures that the map 
a —> ^(a) is uniformly continuous and thus the a variation causes no difficulties). 
The uniform estimate for ||i?€(a)|| holds from trivial estimates (and in fact Re(a) 
are uniformly bounded as maps from L2(Cte) to W1,2(tte)). We simply multiply the 
equation for Pe(/i) by Re(h) and take the real part. By using the weak form of the 
equation for Re(a)h, it is easy to check that Re(a)h converges weakly to R(a)h in 
L2(Rn) as e tends to zero and hence, by the Sobolev embedding theorem there is 
strong convergence in L2 on compact sets in Rn. Hence we see that it suffices to prove 

that  / ||Pe(a)/z||2 —> 0 as K —> oo uniformly in e. Choose £ smooth such that 
J\\x\\>K 

£ = 1 if \\x\\ > K and £h = 0. Recall that h has compact support. We scalar multiply 
the equation for v€ = Re(a)h by £2v€ and take the real part. After a simple calculation, 

we find that inf {l,ite(l - a)}||foe||?|2 <  /    M2|W|2 < Id [ \ve\
2 < K^v.g 

Jsiz Jci€nBk 
i 

where.Kf — sup |V^|. Since we can choose Ki to be small if K is large, we see that 
if K is large H^lb is small and our claim follows. 

We now prove that Ze{a) are a collective compact set of operators in the sense 
of [1] for a in a suitable set in C. We first prove that, if T is bounded in L2(f]) and 
W is a compact set in C, then 

{/^(aX-jmP-1/! + fi,e{h)up
e) : 0 < e < e0,a G W,x G C} 

lies in a compact subset of L2(Rn). Our expression splits naturally into two terms. 
It suffices to separately prove the compactness for each term. We first consider the 
second term which is the easier. By the properties of ite(a) proved a little earlier, it 
suffices to prove that {fi,e(ti)v%} lies in a compact set. Since ue (or more strictly ieue) 
converges to w in L2(Rn) and since ||/i>c|| are uniformly bounded, the result follows 
easily. 

We now return to the first term. First note that if, m has compact support in 
Pn, then the map h —> R(a)(mh) is compact on L2(RN).   This follows by very 
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similar arguments to those used in our proof that Re(a)h —> R(a)h as e —> 0 if 
h £ C^>(RN). (In particular, we use the test function argument to prove the uniform 
(in h) decay at infinity). Since we can write m G Co(RN) (that is the continuous 
functions in Rn tending uniformly to zero at infinity) as m = mi + m2 where mi 
has compact support and |m2| < e on RN, it follows easily that the map h —> 
R(a)(mh) is compact on Rn if m G CQ(R

N
). Essentially the same argument shows 

that {Re{a){mh) : h G L2(RN), \\h\\2 < 1,0 < e < Co} is compact if m G Co^). 
With these results, it is now easy to check the compactness of the first term. Hence 
the collective compactness follows. 

We can now apply Lemma 4 in [4] to prove that near each eigenvalue of (4) with 
Rea < 1, there is least on eigenvalue of (3) for all small e (and in fact the local sum 
of multiplicities of eigenvalues is preserved). (It is possible to prove a similar result 
holds if Ima y£ 0 with a similar proof). As noted in [10], the converse follows easily 
by normalizing eigenfunctions h in L2(Q,e) to have ||/i||oo equal to 1 and then using a 
blow up argument where \h\ has its maximum. 

Finally     using     again     the     estimate     that     if     L     is     self-adjoint, 

11(1/ — BI)~1\\  <   : ^TT it is easy to see our bounds in Section 1 for 11 v ^     ii  -  distance (£, a(L)) 
the spectrum of (3) in Rea < 1 hold uniformly in e.   (We use the same arguments 
as we did to bound the spectrum of (4)).   Hence we have established the following 
theorem. 

THEOREM 1. (i) If a is an eigenvalue of (4) on L2 with Rea < 1, for all small 
6; there is an eigenvalue ae of (3) near a. Conversely, if ae^ are eigenvalues of (3) 
with Reae(n) < B < 1 for all n, then a subsequence of ae(n) converge to an eigenvalue 
of(4)onLl 

(ii) If B < 1 and (4) on L2 has no eigenvalue with ReX = B then for small e, 
the number of eigenvalues with ReX < B counting multiplicity is the same for (4) and 
(3). 

REMARKS. It is easy to see that the results holds locally uniformly in the param- 
eters. We could prove results for curves of eigenvalues but we do not meet it. (The 
formulation needs care because eigenvalues may split). There is an analogous result 
for boundary peak solutions where we replace (4) by a half space problem with a Neu- 
mann boundary condition (or equivalently to a problem on Rn but where we restrict 
our functions to even in one variable). Note that this only affects the spectrum by 
changing the multiplicity of zero. There are similar results for Dirichlet problems with 
an interior peak (where the proofs can be simplified a bit) or for multipeak solutions. 
The last result needs considerably more care. For example, in the case of 2 boundary 
peaks not close and peaks both near non-degenerate critical points of the mean cur- 
vature on <9Q, the non-small eigenvalues of (3) with Rea < 8 (where 6 is small and 
positive) are close to those of (4) with the same multiplicity or to Xi (and thus the 
solution is unstable). The methods can also be used to study more than 2 peaks and 
cases where some peaks are boundary peaks and some interior peaks. 

We now obtain Hopf bifurcation. We consider the analytic curve y{i) we con- 
structed at the end of Section 2 so that (4) on L2 has no eigenvalues with non-positive 
real part for t = 0, exactly 2 (both real) for t = 1 and no zero eigenvalue for all 
t G [0,1]. By our last result, if e is small, (3) along the curve y(t) will have 2 negative 
real eigenvalues which are not small for t — 0, no small eigenvalues with non-positive 
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real part for t = 1 and exactly n small eigenvalues for counting multiplicity all t which 
stay separated from the rest of the spectrum. We now argue as in Section 1 with 
the eigenvalues which are not small to show that along y(t) for fixed small positive 
€ there are only non-small purely imaginary eigenvalues for isolated values of t and 
there is a strict net crossing of the imaginary axis of non-small eigenvalues as we vary 
t from 0 to 1. We can then apply global Hopf bifurcations theorems to the non small 
purely imaginary eigenvalues of (3) provided we know that 0 is not an eigenvalue of 
(3). As we will see in a moment, this holds in many cases. Assuming this condition 
holds, we can apply global Hopf bifurcation theorems exactly as on p26 of [3] to ob- 
tain a global branch of positive periodic solutions. They continue to large solutions 
or collapse on to another stationary solution or the period of the solutions on the 
branch becomes large. Here we are using r as a parameter. Note that when we apply 
the Hopf bifurcation techniques we only need to look at purely imaginary eigenvalues 
which are a positive integer multiple of the given one so that small purely imaginary 
eigenvalues do not affect the argument. These periodic solutions, when they bifurcate, 
bifurcate for r close to a point where (2) has purely imaginary eigenvalues and the 
period of the solutions will be neither small nor large (because it is determined by the 
imaginary part of the non small purely imaginary eigenvalues. Thus our bifurcating 
purely periodic solutions will be peaked in the space variables (with peak close to that 
of the stationary solution) and the time period will be neither small nor large and 
is determined by (4) at least asymptotically. Note that we could use more general 
analytic curves (where the other parameters depend on r). This is much more general 
than the results in [9] because we prove bifurcation to periodic solutions much more 
generally, our bifurcation is much more global and we keep better control of the so- 
lutions. We suspect that these solutions are sometimes stable in the boundary peak 
case and meta stable in the inteior peak case. (At a classical Hopf bifurcation point, 
this is determined by the direction of bifurcation). 

It remains to check when the invertibility conditions holds. For a boundary peak 
solution, this holds if the solutions peak close to a non-degenerate critical point of 
the mean curvature on dft and in the interior peak case if the peak is close to a non- 
degenerate peak point in the sense of [10] (cp [10] and [11]). Note that it is much 
easier to prove that zero is not an eigenvalue than to determine the small eigenvalues. 
Note also that Wei's results in [10] and [11] (when combined with the ideas in the 
appendix to [10]) imply that in fact there are no small purely imaginary eigenvalues 
when there is non-degeneracy so our bifurcating branch can not return to where it 
bifurcates with solutions of large minimal period. 

Note that when these conditions fails, but Cl is symmetric one can sometimes 
regain invertibility by working in a symmetric subspace (as in [2]). For example, 
this method can be used for the domains in [2]. Note also that we could prove Hopf 
bifurcation along much more general curves in parameter space. 

In the two peak case mentioned after Theorem 1, it is possible to modify our 
argument to prove that there is also Hopf bifurcation (at parameters close to the ones 
for which one peak Hopf bifurcation occurs) and the solutions here have the two peaks 
oscillating almost in phase. This can also be done for more than 2 peaks. 

Our methods are quite different to those of [9] where they instead reduce to a 
complicated scalar equation depending on e (which is similar to (8)). We obtain a 
limiting problem independent of e (which already gives information on the limit of 
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quantities in [9] as e tends to zero), our methods seem more flexible than those in [9] 
and show that asymptotically the boundary and interior peak solution case have the 
same non-small complex eigenvalues. Moreover, we obtain much better information on 
the solutions when there are Hopf bifurcations and we prove Hopf bifurcations much 
more generally (and more globally). Our results are complementary to those in [10]. 
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