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UNIQUENESS RESULTS IN NONLINEAR ELLIPTIC PROBLEMS 

MASSIMO GROSSI* 

Abstract.  In this paper we condider uniqueness results for the following nonlinear problem 

-Aw = f(u)    in Q, 

u > 0 in Cl 

u = 0 on dfi, 

We will show as the geometry of the domain plays a crucial role in this context. We also discuss the 
nondegeneracy of the solution. 

1. Introduction. In this survey we consider uniqueness results for semilinear 
elliptic problems of the type 

r -Au = f(u)    in ft 

(P) lu>0 in ft 

\ u = 0 on 9ft 

where ft is a smooth bounded domain of TZN\ N > 2 and / G C1(7^). In this context 
the shape of the domain and the structure of nonlinearity / plays a crucial role. 
Indeed, even in the simple case of f(s) = sp we have multiplicity results for domains 
ft with a "rich" topology or suitable geometry (see for example [3] and the references 
therein). So some restictions on the geometry of the domain is needed. 

We point out that an important tool in the uniqueness results seems to be plaied 
by the linearized equation associated to (P), namely 

f -Av = f'(u)v    in ft 

11> = 0 on 9ft 

where u is a solution of (P). We say that the solution u of (P) is nondegenerate if (L) 
admits only the trivial solution v = 0. 

First uniqueness results for (P) were obtained when ft is the ball, since in this 
case it is possible to reduce (P) to an ODE problem via the Gidas-Ni-Nirenberg 
theorem. Thanks to this reduction some uniqueness results for (P) were deduced for 
some special nonlinearities. We discuss this in Section 1. In Section 2 we consider the 
more difficult problem of a nonspherical domain. Of course, the previous approach 
does not work. At this stage the dimension of the space plays a role. Indeed, the 
results obtained in literature are weaker if the dimension of the space is greater that 
two. In this case, (N > 3), uniqueness results are obtained in perturbed cases, for 
example for special nonlinearities fe "close" to a suitable one. The reason of this 
restrictions relies on the difficulty to deduce qualitative properties of the solution of 
the linearized problem (L). 

Finally in Section 4 we consider uniqueness results involving the critical Sobolev 
exponent. 
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2.  The Radially Symmetric Case. We start this section recalling the follow- 
ing basic results, due to Gidas, Ni and Nirenberg (1979). 

with respect to.Xi, 1 < i < N.   Then u is symmetric with respect to Xi and J~ < 0 
THEOREM 2.1. Let us consider the problem (P) where Q, is convex and symmetric 

h respec] 
for Xi > 0. 

Proof, (see [17]). 

COROLLARY 2.2. Let us consider the problem (P) where fi is the ball \x\ < R. 
Then u = u{p) is radial and ?/(/?) < 0 for p > 0. 

Proof (see [17]). 
This Corollary is the starting point of the next uniqueness results in a ball. From 

this, Gidas, Ni and Nirenberg deduced the following result: 

THEOREM 2.3. Let us consider the problem (P) with f(s) = s?, 1 < p < ^| 
and Q is the ball \x\ < R.  Then there exists only one solution to (P). 

Proof. By the previous Corollary we have that u solves the following ordinary 
differential equation, 

r '-u» - ^v! = uP    in |:r| < R 
(2.1) I   u>0    in\x\<R 

{ u'(0) = u(R) = 0 

From the scaling invariance of (2.1) and the analiticity of the solution we get the 
uniqueness of the solution (see [18] for the details).    D 
Let us denote by Bp^ = {x £ TZN such that \x - P\ < r} and Br = BQ^. Moreover 
let \i be the first eigenvalue of —A in BR with Dirichlet boundary conditions. 

In the next years a lot of work was done to obtain uniqueness results for the more 
general problem 

—Aw = vP + \u in BR 

(2.2) {   u>Q mBR 

u = 0    in dBR 

where A < Ai if 1< p < $±§ and 0 < A < A* if p = ^±|. Here A* = Ai for iV > 4 

and A* = ^ for N = 3. 

Existence results for (2.2) are classical if 1 < p < ^|. If p = ^|. in [5] it was 
proved that for 0 < A < A* there exists at least one solution. Problem (2.2) is not 
scaling invariant and so it cannot be studied as (2.1). Indeed nontrivial ODE methods 
are used in order to prove the following results, 

THEOREM 2.4. Problem (2.2) admits a unique solution for any A < Ai if 1 < 
p<$±§ andQ<\<\* forp=%&. 

A lot of authors give some contribution to this result. We only recall the papers 
[28],[1], [37], [34]. As we remarked, in this papers an important role is played by the 
nondegeneracity of the solution u. 
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3.  The Nonradial Setting: the case N = 2.. In this section we will consider 
the more general case where Q has not any radial symmetry.   Of course the ODE 
methods of the previous section are not applicable anymore.   On the other hand, 
Theorem 2.1 continues to have a central role. 
First of all we recall the following result 

THEOREM 3.1. Let us consider the problem (P), with N = 2, f(s) = sp with 
p > 1. Here fi is convex and symmetric with respect to Xi, 1 < i < N. Then (P) 
admits only one solution. 

This result was proved by Dancer in [15] as a consequence of a general theorem 
contained also in [15] and of the known uniqueness result for the ball. 

At this point we would like to quote here that the linearized operator L plays a 
crucial role in the uniqueness proof of [15]. Some properties of L were studied in [13]. 

Before proving the main result we need to recall a few facts about the maximum 
principle for second order elliptic operators of the form Lu = Au + c(x)u with c(x) G 
^(D^ueW^nCiD). 

DEFINITION 3.2. We say that the maximum principle holds for L in D if Lu < 0 
in D and u > 0 on dD imply u > 0 in D. 

Two well known sufficient conditions for the maximum principle to hold are the 
following (see [20],[32]) 

(3.1) c(x) < 0    in L>, 

(3.2)there exists a function g £ Wfc* n C(D),g > 0 in 23 such that Lg < 0 in D 

Now we denote by Ai(L, D) the principal eigenvalue of L in D. For the meaning 
and the properties of Xi(L,D) we refer to [6], where is also condiderd the case of 
nonsmooth boundary. In particular we have 

PROPOSITION 3.3. The principal eigenvalue Xi(L,D) is strictly decreasing in 
its dependence on D and on the coefficient c(x). Moreover the "refined" maximum 
principle holds for L in D if and only if Ai(L, D) is positive. 

We refer to [6] for the definition of "refined" maximum principle which is a gen- 
eralized formulation of the maximum principle in the case when one cannot prescribe 
boundary values of the functions involved. 

It is important to notice that, by using this generalized definition of the first 
eigenvalue, it is possible to prove that also the following condition, which is slightly 
different from (3.2), is sufficient for the maximum principle to hold. 

there exists g G W^ n C(D),g > 0 in D such that Lg < 0 in D 

(3.3) but g =£ 0 on some regular part of dD 

We also recall the following sufficient condition for the maximum principle (see [5], 
[6]) 
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PROPOSITION 3.4. There exists 6 > 0, depending only on N, diam(D), \\c\\LOo^ 
such that the maximum principle holds for L in any domain D' C D with [I}'! < 8. 

Finally we remark that regardless of the sign of c if Lu < 0 in D and u > 0 in D 
then u > 0 in D unless u = 0 (Strong Maximum Principle). 
Now we consider a solution u € C3(ft) DC3 (fi) of the problem (P). We are interested 
in studying the linearized problem We have the following theorem, which holds for 
N > 2: 

THEOREM 3.5. Let u be a solution of (P) with /(0) > 0 and assume that ft is 
convex in the Xi- direction and symmetric with respect to the hyperplane Xi = 0. Then 
any solution v of (L) is symmetric in x\, i.e. v(xi,X2,... ,£JV) = v(—xi,X2,... ,£JV). 

Proof. The proof is the same as the one shown in a lecture of L. Nirenberg in a 
slightly different case (see also the remark after the proof). 

Let us denote a point x in TZN by {xi,y), y G T^-1.  Applying the symmetry 
result of Gidas, Ni, Nirenberg to problem (P) we know that u is symmetric with 
respect to xi and J^ > 0 in Q~ = {x = (xi,y) £ fi    such that x1 < 0}. 
We consider the operator 

(3.4) L = A + /» 

and want to prove that the maximum principle holds for L in Q^. To do this we show 
that the sufficient condition (3.3) is satisfied. 
If we set 

(3.5) 9=^    in ^ 

we have that g satisfies (3.3) since by the Hopf Lemma J^- ^ 0 on dQ, fl dQ^ (note 

that we have assumed /(0) > 0). So the maximum principle holds for L in Q^. 
Now we consider the function 

(3.6) .rl>(x) = v(xuy)-'v(-x1,y),        x = (x^y) G fij" 

where v is a solution of L. By easy calculation, using that u is symmetric in #1, we 
get 

Lip = 0        in Q^ 

ip = 0 in d^i 

and hence ^ = 0 in Q^ because of the maximum principle. So v is symmetric in xi. 
D 

REMARK 3.6. Let us consider the following eigenvalue problem 

f—Av + v = f'(u)v + fiv        in fi 

v = 0 on dCt 

where u is a solution of P. 
If /i < 0 in [2] it is shown that^ is symmetric in xi. 
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Of course if ft is a ball, the previous theorem gives the radial symmetry of v.   This 
was already shown by Lin and Ni in [27], using a different argument, for any ji < 0. 

We make now some important remarks about the nodal set of v that will also be 
used in the sequel. Let us set 

N = [x G fi such that v(x) = 0} 

n = {x e n: v(x) ± o} 

fir z= [x = (xi,..., £JV) G fi such that Xi < 0}    2 = 1,..., iV 

We have 

THEOREM 3.7.  TTie following properties hold 
i) there cannot exist any component of fi a// contained in one Q~, z = 1,.'.. ,iV. 
uj if N = 2 then the origin (0,..., 0) does not belong to J\f. 
Hi) ifN = 2 thenMndtt = <t). 

Proof i) Suppose that there exists a component D of fi all contained in fi^" and 
v > 0 in D. Then Xi(L,D) = 0 (where L is the operator defined in (3.4)) since v is 
an eigenfunction of L in D corresponding to the zero eigenvalue and does not change 
sign in D (being v = 0 on <9fi we have v = 0 on <9fi). On the other hand, in the proof 
of the previous theorem we have shown that L satisfies the maximum principle in fi~ 
and this implies, by Proposition 3.3, that Ai(L, fi~) > 0. Then, by monotonicity, also 
Ai (L, D) should be positive which gives a contradiction. 
ii) We will show that if v(0) = 0 then v = 0. Suppose v(0) = 0 and v ^ 0 and set 
UQ = fi. Since v ^ 0 and v(0) = 0 by the Strong Maximum Principle it cannot be 
v < 0 in fi, so that UQ = {x G UQ : v(x) > 0} is open and nonempty. Choose a 
component Ai of UQ. If Si, i = 1, 2 is the operator that sends a point to the symmetric 
one with respect to the a;i-axis, we have that.Si(Ai) is also a component of UQ because 
of the symmetry of v. It cannot happen that Ai fl Si(Ai) = 0 or Ai fl 52(-Ai) = 0 
for otherwise Ai or 5i(^4i) would be contained in fij", which is impossible by (i). 
So Ai = Si(Ai) = S2(Ai) is symmetric with respect to the coordinate axes and is 
open and connected, therefore arcwise connected. If we choose four symmetric points 
Pj, j £ {1,... ,4} and join them with simple poligonal curves symmetric in pairs, 
we can costruct a simple closed poligonal curve Ci C Ai which is symmetric with 
respect to the axes. By the Jordan Curve Theorem UQ \ C\ has two components and, 
because C\ is symmetric, the origin belongs to the component which has not dUo as 
part of the boundary. Let us denote by Ui the component that contains 0 and call 
it the interior of Ci, while by the exterior of C\ we mean the other component. On 
dUi = Ci we have v > 0, so that v^kOinUi and, by the Strong Maximum Principle, 
it is not possible that v > 0 in Ui, since v(0) = 0, so that C/{" = {x G.fii : v(x) < 0} 
is open and nonempty. Taking a component A2 of [/{" we observe that v = 0 on 
dA2 because v > 0 on dUi so that A2 is also a component of fi. As before we can 
costruct a closed symmetric simple curve C2 C A2 and in the interior U2 of C2 ( the 
component of Ui \ C2 to which the origin belongs) we can choose a component A3 
of U2 = {x G U2 : v(x) > 0} which is also a component of fi. Moreover A3 is 
disjoint from Ai because Ai contains Ci = 9fii which belongs to the exterior of C2. 
Proceeding in this way we obtain infinitely many disjoint components {ALn}n>i of fi. 
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This is not possible because by Proposition 3.4 there exists 8 > 0 such that |i4n| > 6 
for each n, otherwise by the Maximum Principle v would be 0 in An, since v = 0 on 
dAn and Lv = 0 in An with L = A — A + f'(v). Hence there are only finitely many 
components An which gives a contradiction. 
iii) We will show that in a.neighboorhood of dQ we have v > 0 or v < 0. Suppose 
the contrary and choose a component Ai of UQ = {x G UQ : v(x) > 0}. Since 
v — 0 on 9fi we have v = 0 on cM.i and as in (ii) we costruct a closed simple curve 
Ci C Ai symmetric with respect to the axes. In the exterior Ui of Ci, i.e. in the 
component containing dtt there are points where v < 0 by what we assumed. So we 
can costruct a closed simple curve C2 C ^.2 where A2 is a nonempty component of 
Ui = {x G Ui : ^(x) < 0}. Proceeding as in the proof of (ii) we obtain infinitely 
many components of Q which is not possible by Proposition 3.4, as we remarked 
before.     □ 

REMARK 3.8. If ft is a ball in TZN, the properties i) - iii) are easy consequences 
of the radial symmetry of v. 

Now we consider two solutions ui and U2 of the problem P and set 

M — {x G SI such that U\(x) = U2(x)}    ,     £1 = {x G St such that ui ^ U2} 

The next theorem contains some information on M and a uniqueness result. 

THEOREM 3.9. Suppose that f is convex.  Then we have 

there cannot exist any component Dof 

(3.7) Q all contained in one fir, i = 1,... ,N. 

(3.8) ifN = 2     then     M fl dtt = 0 

(3.9) if N = 2.     and      maxui(x) — m&xu2(x)    then     ui = U2 

Proof. Set w{x) = ui(x) — U2(x), x G St. Since / is convex w satisfies 

(3.10) { 
Aw + f'{u2)w < 0 in ft 
w = 0 in 3ft. 

and 

(3.11) 
AW + /

/
('U1)K;>0 in ft 

w = 0 in dCl. 

First we notice that if w > 0 by (3.10) and the strong maximum principle w > 0 
in ft so that ft = ft. Thus we assume that w changes sign in ft. To prove (3.7) let us 
argue by contradiction supposing that there exists a component D of ft all contained 
in ft^ for some i G {1,..., N} and w > 0 in D. 
Since in Theorem (3.5) we proved that in ft~ the maximum principle holds for the 
operators Li = A — \ + f'(ui) i = 1,2, by Proposition 2.1 we have that Ai(Li,ft^) > 
0, for i = 1,2. Hence also Ai(Li, £)) > 0 and, again by Proposition (3.3), the "refined" 
maximum principle holds for Li in D. This last fact together with (3.11) would imply 
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that w < 0 in D against what we assumed. If instead we suppose w < 0 in D then 
we argue in the same way using the operator £2 and (3.10). 
To prove (3.8) it is enough to observe that, by the Gidas, Ni and Nirenberg symmetry 
result, Ui and U2 are symmetric in any xi and hence so is w. Thus arguing as in iii) 
of the previous theorem the assumption M fl dfl ^ 0 would bring a contradiction. 
Finally, to prove (3.9), we notice that, again by the Gidas, Ni and Nirenberg result, 
m&xui(x) = t^(0), i = 1,2; therefore if the two maxima coincide the origin belongs 
xen 
to M. As in ii) of Theorem 3.7 this gives a contradiction.    D 
Now we prove a generalization of (3.9) of Theorem 3.9. 
Let Q be as before and N = 2. Let us call a function u G C1(^) symmetric and 
monotone if u is symmetric in Xi, X2 and J— > 0 in fi~, 2 = 1,2 and let / : 1Z —> 1Z 
be a C1-function. 

THEOREM 3.10. Suppose that N = 2, f is convex and ui,U2 G C3(Q) fl C1^) 
are symmetric and monotone functions that satisfy the equation 

(3.12) -Au + \u = f(u)        in    ft 

//,/^i(0) = ^(0) and Ui < U2 on dQ, then ui and U2 coincide. 

Proof. As in the proof of Theorem 3.5 we deduce that the operators L = A — A -j- 
f'(ui), i = 1, 2 satisfy the maximum principle in ft~, j = 1,2. 
Since the difference w = ui — U2 satisfies a linear equation Aw — Xw -j- c(x)w = 0 
with c G L00(Q) and / G Cl we have that Proposition 3.4 and the strong maximum 
principle apply to w. Arguing as in Theorem 3.7 we first deduce that cannot exist any 
component D of ft = {x G ft : ui ^ U2} such that ui = U2 on dD and cointained in 
ft7,i = l,2. 
Then we can follow exactly the proof of Theorem 3.7 with the only remark that in 
the first step we choose a component Ai of ftj = {x G ft : w(x) > 0} and we have 
w = 0 on dAi, because of the hypothesis w(x) < 0 on <9ft. So Ai is also a component 
of ft with ui = U2 on dAi. The same property holds, by construction, also for the 
other components A2, A3; therefore we conclude as in Theorem 3.7. 

REMARK 3.11. If ft is a ball then any solution u of (P) is radial and hence 
the claim of Theorem 3.10 follows immediately from, the theory of ordinary differen- 
tial equation. Therefore this result can be seen as a generalization of the uniqueness 
theorem for an o.d.e. 
Nevertheless it is instructive to see how we can get very easily this result in a ball 
without using the underlaying ordinary equation but exploiting only maximum prin- 
ciples. Therefore suppose ft = JBR(O) C TZ

N
 and ui G C2(ft); i = 1,2, satisfying 

—Au = f(u) in ft. Let us prove that if Ui(0) = U2(0) then Ui = U2. In fact the 
difference w = ui — U2 satisfies a linear equation Aw + c(x)w = 0. By Proposition 2.2 
there exists 6 > 0 such that if 0 < ri < r2 < R and r2 — n. < 8 then the Maximum 
Principle holds for A + c in Br2 \ Bri. We claim that ui and U2 coincide on dBr 

for any r < 6. In fact it cannot be Ui > U2 on dBr because by Proposition 3.4 and 
the strong maximum principle it would be ui > U2 on Br, against the assumption 
^i(0) = ^2(0). In the same way it is not possible that Ui < U2 on dBr. So Ui = U2 in 
Bs. Making the same reasoning in B3S \ Bi6 (that has dBs in the interior) we get 
ui = U2 in B36 and after a finite number of steps we get Ui = U2 in BR.    D 
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4. The Nonradial Setting: The Case iV > 3. In this section we consider 
uniqueness problems of (P) for suitable nonspherical domains Q C TZN, N > 3. In 
this context the uniqueness results are weaker than the previous section. Indeed, 
since the topology of the nodal zones of the solution of (L) with N > 3 is more 
complicated than the corresponding two-dimensional case, it seems very difficult to 
obtain nondegeneracity results for solution of (P): We only know uniqueness results 
to solution of (P) for perturbed problem, i.e. when the nonlinearity /■= f€ and the 
solution ue converges to a solution of a limit problem. A first example is the following 
result, due to E.N. Dancer. 

THEOREM 4.1. Let us consider a solution of the following problem 

{—eAu 4- u = up in Q 
u > 0 in n 
u — 0 in dft. 

Here 1 < p < ~^| and Q satisfies some geometrical assumptions (see [14]): 
Then, fore small enough, there exists only one solution to (4-1)- 

Proof See [14].    □ 
Now we come back to the nonlinearity f{s) = sv'. We recall that, by Pohozaev's 

identity, in this case there is no solutions to (P) in star-shaped domains for p > jfz^- 
Concerning the uniqueness we have the following result (see [22]) 

THEOREM 4.2. Let us consider the problem 

(4.2) 

Let Q C 1ZN, N > 3, be a bounded smooth domain satisfying 

(4.3) ft is convex in the Xi direction, i = 1, ..,iV. 

and 

(4.4) Slis symmetric with respect to the hyperplanes Xi = 0, i = 1, ..,iV. 

Then there exists e > 0 such that for any p £]^r§ — £, T^rfl there is only one solution 
to (4-2). Moreover this solution is nondegenerate, i.e. the linear equation 

,     v f  -Av = pN(N - 2)up-lv in ft 
^ '    . \ v = 0 in dQ. 

admits only the trivial solution v = 0. 

In order to prove the previous theorem we need to know with great care the 
asymptotic behaviour of the solutions of (4.2) asp —> -j^f. We start with the following 
result 

PROPOSITION 4.3. //ft satisfies (4.3) and.(44) then 

f I Viz I2    p^ 
(4.6) Jn       "' -Stfasn-xx,, 

-Au = N(N - -2)vP in ft 
u>0 in ft 
u = 0 in 9ft. 



UNIQUENESS RESULTS IN NONLINEAR ELLIPTIC PROBLEMS 235 

where SN is the best Sobolev constant in 7lN. 

Proof. In the proof of this theorem we use a blow up technique as in the paper 
of Gidas and Spruck (see [19]) and some important results of [26]. 
Since fi verifies (4.3) and (4.4), using the Pohozaev identity (see [31]) it is not difficult 
to prove that 

(4.7) un(0) = ||wn||oo —>  as n —> oooo 

Let us define 

1 X Pre ~1 
(4.8) un(x) = -—— un( ^r),    un : tin = ||iin||oo2    'ft->n 

By easy calculation un satisfies 

r  -Aun=pN{N-2)u^ in fin 

(4.9) <^   5n>0 inQn 

[  un = 0                                      on <9fin. 

Notice that un(0) = 1, 0 < un(x) < 1 for x G fin and fin converges to TZN (by the 
notation fin —» 7^^ we mean that for any K C 7?/^ we have fin D K for n large). 
Again by elliptic theory un —> U in ^{K) for every compact set K of 7^, and C/ 
solves 

f  -Al7 = iV(iV-2)ir^l in7^iV 

(4.10) I   Q<U<\ mKN 

{  U(0) = 1 

The solution of (4.10) is unique (see [11]) and 

(4.11) U(x) = 
(l + |z|2)^ 

Now by using some estimates contained in [26] we will prove that 

(4.12) / K|p"+1 -> /    U(x)&* 

First of all we recall the following inequality (see [26]): 

(4.13) un{x) <     Cn I if \x\ < 6 
|| Ujn ||oo 1^1 

where C and 8 are positive constant which do not depend on n. 
From (4.13) we will deduce (4.12). Let us compute 

(4.14) / K/"+1 = /       Kl^1 + / \un\^+l = Inil + J„.2 
Jn                   J\x\<8                   J{\x\>s}nn 

Let us prove that 

(4.15) /»,!-> S#/2 
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and 

(4.16) Ina - 0 

We have 

n lloo 

(4.17) = II^Hoc2   ("-2   P") /     «„( 

From (4.13) we get 

\x\<6 J\x\<6\\u 

{|x|<«||«„||^-}. 

Now since un is bounded near the origin and un -+ U pointwise in TlN, from (4.18) 
and dominate convergence theorem we get 

(4.19) /    un{xY-+1x Enpi   -> [    U{x) 
2N 

N — 2 

Moreover, again by [26], it is possible to deduce 

(4.20) IM;r(^~Pn) -+  as n -> oo 

and then 

(4.21) /nfl = K||;rC*S~PB) /    2n(a:)^
+1x z^-i   - sT 

and this proves (4.15). In order to prove (4.16), we remark that from (4.13) it follows 

(4.22) MS)<_^__1_       if,^ 

From this we deduce that 

(4.23) un{x) <   £     J_2        in {(a:! > } n fi 

Indeed, if by contradiction there exists a point xn € {\x\ > 6} Oft such that un(xn) > 
■fupfT—^^-2 ? we would get the existence of a maximum point for un in {|a;| > 6} D £1. 
But this is hot possible by (4.3) and (4.4) and Gidas-Ni-Nirenberg theorem.  Hence 
(4.23) holds and then we get (4.16) and so (4.12). 
Finally, since un is a solution of (4.2) we get 

(4,24) /nlVt*"l2   2     = N(N _2)( f lunP"*1)1'7^ -+ SN as n -, oo 

(/nKI^1)5^' Jn 

and this proves the claim.    □ 
Now we recall some results due to Han (see [23], Theorem 1, Lemma 3 and proposition 
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THEOREM 4.4.  Let Q be a smooth bounded domain ofTZN and un a solution of 
(4-2). If un satisfies 

(4.25) /n lV^l 
2 

| Pn + 1 
5jv as n —» oo 

(/nKI""-'1)1 

w/iere 5^ is t/ie 6esi Sobolev constant, then (up to a subsequence) 

(4.26) (%r4-Pn)\K\\l^2o* N 
N(N - 2) 

5 AT 

iV/2 
g(xo,xo) 

where g(x,y) is the regular part of the Green's function G(x,y), i.e. 

(4.27) g{x, y) = G{x, y) - ^ _ ^ _ y]N_2 

and aN is the area of the unit sphere in TZN and XQ is a critical point of g. Moreover 

I I  LLnn   11 r>4-\ 

(4.28) un{x) < k- 
(l + KH^k-xol2) 

N-2 
2 

and 

(4.29) \\un\\ooUn{x) -> (iV - 2)(TNG(X, XQ) 

in Crl(a;) for any neighborhood u of dfl not containing XQ. 

Finally 

(4.30)   \Vun\2 ->N(N-2) 
SN 

N{N - 2) 

N/2 
8Xo    in the sense of distributions 

REMARK 4.5.  If Q, is a smooth, bounded domain satisfying (4.3) and (4-4) it 25 

not difficult to deduce by Proposition 4-3 that XQ = 0 in Theorem 4-4- 

At this stage we are in condition to prove Theorem 4.2. 

Proof of Theorem 4.2. 
We argue by contradiction:  let us suppose that there exists a sequence pn / "wbi 
and functions un, vn G C00^) which solve (4.2) with p replaced by pn. 
Set 

(4.31) 
T X 

n(x)=un( tz=r)-vn{ i^rr)> wn:nn->n   Pn-1   , 

H^nlloo2 ||^n||oo2 

As in Theorem 4.2 we have ||wn||oo -* oo and nn -> TZN. Moreover 

(4.32) ( -Af" = C"(X)^ 
in ft 

in Oft. 
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where 

i 

cn(x) = N(N -2)pn I (-l—un{ ^zr) 
J     x|Pn||oo IL.    11     2 
0        "       " ||^n||oo 

We have 

(4.34) cn(x) - 
~* (i + kl 

■2) 
2)2     un: 

So, for x G fi n, let us define 

(4.35) Wn = 
Wn 

ll^nlloo 

Of course wn solves 

<4'33» +^i»»(^W))P""ldl 

uniformly on compact sets of 7lN 

,    Wn :  fin —> 7^ 

—Aif;n = cn(a:)i(;n in fi 
(4.36) <;   |K||oo = l 

if;n = 0 on 9fi. 

and K;n is a symmetric function. 
Since wn is bounded, using standard elliptic estimates we deduce that wn converges 
to a symmetric function w uniformly on compact set of TZN. Moreover w satisfies 

(4.37) {   IKHoo^l 
I   IHIoo<l. 

Now we need the following estimate: 

(4.38) t \S7wn\2<C 

In order to prove (4.38) let us multiply (4.36) by wn. Then by Sobolev inequality and 
for some 0 < 6 < j^ 

(4.39) SN( J Kf )^ <  / |V^n|
2 =  / \cn(x)\wl < J \cn{x)\w2

n-
6 

since ||ii;n||oo — 1- Then using Holder inequality and (4.32) 

r 2 p 2-6 r 2*-2+5 

SN(J\wnfY < (J Kf )^ < (/c^s^n)"^ < 

P 2-6 p w 2*-2+6 

(4.40) <C(     \u,nf)*' (          1
nW_2    2,    )    

2* 
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and then 
r 8 r -i x   2*-2+6 

C(    \WnfY * {     r   \^   >*   ) ± \J > W   (1 + [a;]2)^""1)   '   2--2+^ 

(4.41) < f  / ^N^    2«     )    2       < 00 
7^ TV    \ 11/ 

since 0 < 5 < 7732-   So  / |^n|2* is bounded and then again by (4.36) the claim 
i£n 

follows. 

The structure of the solutions of (4.37) satisfying ((4.38)) was described in [4], 
where was proved that the following cases occur: 
i) w = 0, 

ii) w = !£,    i = 1,..9N where [/(x) = (-^J^..' 
or 
-^     _     i-[^l2 

111;   ^ —   (1 + |;r|2)iV/2 

iV ,    .2 

So we have that w(x) — Yl ^(i+i^P)^/2 + ^(i+ig 2U/2'   ^ is easi^ seeri ^at the 

study of w is equivalent to consider i), ii), iii) separately. 
Now we will prove that in any case a contradiction arises. 

Case i) w = 0 
From (4.38) it is possible to deduce the following crucial estimates, (see [22], Appendix 

2): 

c 
(4.42) \wn(x)\ <  ^        for any xeKN 

(1 + |ir|2)~"2~~ 

From (4.42) a contradiction follows easily.  Indeed since ||iUn||oo = 1 we can assume 
that 3xn  G ^n such that maxwn(x) = wn(xn) = 1 and ||a?n||^jv  —>• 00 because 

wn —► 0 uniformly on any compact set of 7^^. But this is not possible by (4.42) 
au 

dxi 

Caseii)^^!^,    2 = 1,..,JV 

In this case we have a contradiction since w = ^- is not a symmetric function, i.e. 

does not satisfy w(xi,..., —Xi-.i,Xi,Xi+i,... ,xjv) = w(x) for any x G 7£   . 

Case iii) ^ = (^["pj^ 
In what follows we will use Theorem 4.4, where the point XQ = O (see Remark 4.5). 
First of all we notice that, for any neighborhood 0 of dft not containing O it holds 
that 

(4.43) KHL^^"^ - ~(N + 2)aNG(x,0) in C1(0) 
n        ^n 1100 

where, as in Theorem 4.4, G is the Green function. 
Let us prove (4.2). We have 

2   Un(x)-Vn(x)\ 2 vUnO^-VnOz) 
(4-44)       -A(|KILIK-«„IU) = IKILd"(a!)lK^: 

1 

where dn(^) = Ar(iV - 2)pn /(^(x) + (1 - tHOr))^"1^. 
0 
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So, using (4.28), (4.42) and the dominate convergence theorem we obtain 

J \\un ~ vn\\oQ J IL,    11     2 
n nn ll"n||oo 

(4.45)= Wunf^1-^" J cn(x)wn(x) -> -(N + 2)aN 

(the last integral can easily be computed by recalling that — Aw = n+uiS)^). 

Moreover, again by (4.28), (4.42) and for any x ^ 0 

\\an       ^n||oo 

<r IKHL W„(||-Un||oo2     X) 
~       \U.   llCPn-lX^f2^"-!)-!)    |^|(^-2)(P«-1)     - 

||"'n||oo 

(7 1 .        C 
(4'46^ - „     ll(p„-i)(^P„-i)-2 |a:|(w-2)pB ^ uKw-^pn 

11^1100 

Finally since, in the sense of distributions 

(4.47) \\un\\l fdn(x)U;{x)-V^X)4>(x) - -(N + 2)aN8o 
J \\un ~ ^nlloo 

by Lemma 2 of [23] we get (4.43). 
Now let us write down the Pohozaev identity for un and vn (see [31]) 

1   f,       ^dun.2      ,    N N-2,   f   _ a + 1 

<-)     yo->«%)'-i£i-!¥)j* 1+1 

By (4.48) and (4.49) we obtain 

1    /"/ \  d  /H      Ii2   ^n(^)-^n(^)x   9  r..      n     /        ,        M 

iV-2       Pn | 

2(iV-2)(pn + l)1 

2 
an 

(4-50) -2(iV-2)(,n + l)IM-/ ^WIKIU|K-,n|U 
n 

with /^(x) = (p„ + l)/(to„(x) + (1 - t)vn(x))*"dx.  Then from (4.26), (4.29) and 
o 

(4.42) we get 

^ f .,9G(x,0)v2 ,    ,,.     ^ /■,   , x.,     I,    un{x)-vn(x). 
C / (s • i/)(—^ ^J   + o(l) = C / /i„(a;)||un||oo-ii- —r + o(l) 

J OV J II "-n       ^nlloo 
an a 
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1 
C f      f /     t      " x 

J J   A||Mn||oo I 

c f    1-|a;|2     urn   c/1    ^^   yv-1 

again by the dominate convergence theorem. Finally, since (see [8] or [23]) 

(4.52) J(x ■ ^)(^% = (2 - N)g(0,0) > 0 
an 

we have a contradiction. This proves iii) and hence the uniqueness result . 

5. The Nonradial Setting: The Critical Case.. In this section we consider 
uniqueness and nondegeneracy results for a classical elliptic equation involving critical 
Sobolev exponent, namely 

r  -Au = N(N-2)up + eu     in  Q 
(5.1) <   u>0 in  ft 

[  u = 0                                      on  dD, 

where p = ^f. It is well known by the theorem of Brezis and Nirenberg (see [7]) 
that if TV > 4 and for 0 < s < Ai, there exists a solution of (5.1) while, if e = 0 and 
the domain is starshaped, the Pohozaev identity shows that there is not any solution. 
The asymptotic behaviour of the solution u£ was studied in [33] where it was proved 
that, for e —> 0, u£ concentrates around a critical point of the Robin function. We 
recall that, if g(x,y) is the regular part of the Greeen function for the laplacian with 
zero boundary condition, then the Robin function tp(x) is defined by 

(5.2) %l)(x)=g{x,x). 

Converesely, in [21] it is shown that if JV > 5, for any nondegenerate critical point 
of the function ^{x) there is only one solution u£ of (5.1) with the property that u£ 

concentrates at XQ. In the next theorem we state a more general uniqueness result 

THEOREM 5.1. Let Q be a smooth and bounded domain oflZN with N > 5, such 
that it is symmetric with respect to the coordinate hyperplanes and convex in the x^— 
directions. Let us suppose that u£ and v£ are two solutions of (5.1). Then, there exists 
So > 0 such that for s < SQ, 

(5.3) u£ = v£. 
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Moreover this solution is nondegenerate. 

Proof. In [9] this result was firstly proved by assuming that 

d 4) fa\Vue\*dx 
^ -0(/n|tt.|«H-l)VlH-ldiB-^' 

Assumption (5.4) was removed in [12]. The proof of this results follow the lines of the 
theorem of the previous section and so we omit it. We only show the nondegeneracity. 
First of all... Let us denote by A2,n the second eigenvalue of the operator A + N(N — 
2)pn<"-1. Then^ 

(5.5) A2,n > 0 

Proof. Since the solution of (2.1) is unique for n large, we can obtain it as a mountain 
pass solution of the following functional 

(5.6) F(U) = [ \vunf --±- [ (u:r+1 

Then, by a Hofer's result (see [24]), we get that A2,n > 0. 
Now we suppose , by contradiction, that A2,n = 0. Again let us set 

~ 1 x _ 
(^•T) V2,n(x) = 71 ij—^2,n( ^rr)       ,      ^2,n : ^n "^ U 

W^n \\oo \\n,    II     2 

and 

^2,n 
(5.8) W2,n 

F2,n||oo 

We get that W2,n satisfies 

-A^2,n = N(N - 2)pnuPl
n-1W2,n in nn (5.9) | 

W2n = 0   . on dtt. 

N-2 

So wn converges to function w uniformly on compact set of 1ZN, where 
i)w = 0, 

ii)w = |£,    i = l,..,iV where U(x) = (J^T)^  , 
or 
~'\     -     i-M2 

111J   W  -   (1 + \x\2)N/2 

As in the previous section the study of w can be reduced to the study of i), ii), hi). 
Case i). is treated analogously to case i) of Section 3, i.e. using the estimate 

C 
(5.10) \wn(x)\ < fora;€n„n{|a;|>l} 

whose proof is the same as that (4.42). 
Case ii) cannot occur because of Theorem (3.5). 
In order to avoid case iii) we follow an idea of Zhang (see [38]).   Since i^n is the 
second eigenfunction of the operator A + iV(iV — 2)pnu^n~l then it has two nodal 
zones. 
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Now we remark that, since ^.n -» (1+|~}f)w2 uniformly on ^(0,2) we get for n large 

and jl 

/K nx / ^2,n(^) >0 on \x\ =| 
(5-ilj \ ™n(£)<0 on|a:|=.f. 

This implies that 

V2,n > 0        on |x| = -—^rrr 

(5.12) 
^2,n < 0 on |x| =- 

JL 

2IKH 
3(5 

Pn—1 

2||lin||oor^ 

Hence, since f2,n has two nodal zone, ^f- does not change sign on the boundary of 
fi. Finally a contradiction follows by the identity 

(5.13) J^'U dV2,n dun  _ 

dv    dv 

which can be obtained by considering the function rj = x - Vun which satisfies 

(5.14) -Ar1 = N{N-2)pnup
n"-1ri + 2up

n" 

Then multiplying (4.1) by r] and (4.30) by i>2,n we obtain (5.13).    D 

[1 
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[5; 
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