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REACTION-DIFFUSION SYSTEMS WITH SKEW-GRADIENT 
STRUCTURE 

EIJI YANAGIDA* 

Abstract. The aim of this paper is to introduce reaction-diffusion systems with skew-gradient 
structure and review recent studies on the stability of steady states of the skew-gradient systems. 
The reaction-diffusion system with skew-gradient structure is a sort of activator-inhibitor system that 
consists of two gradient systems coupled in a skew-symmetric way. Due to such structure, the system 
enjoys some nice mathematical properties that help iis to study the behavior of solutions analytically. 
First, we consider standing pulse solutions on R, and give a simple criterion for the instability of the 
standing pulse. Second we give a general criterion for the Eckhaus instability of spatially periodic 
steady states on R,. Finally, in the case of bounded domains, we show a relation between the stability 
properties of the steady state and mini-maximizing properties for some functional. 

1. Introduction. It is known that various interesting spatial patterns are ob- 
served in reaction-diffusion systems of activator-inhibitor type, and many mathemat- 
ical results have been obtained concerning the behavior of solutions. However, since 
such systems are not order-preserving and the linearized operators around steady 
states are not self-adjoint, their mathematical analysis is extremely difficult and a 
general approach does not seem to be fruitful. Therefore, in order to study the ex- 
istence and stability of large amplitude steady states, we usually introduce a small 
parameter to the system and consider a singularly perturbed problem. 

In this paper, we adopt a different approach for the stability problem. Instead 
of introducing a small parameter, we introduce special structure called skew-gradient 
structure. The purpose of this paper is to review recent studies on the skew-gradient 
systems [5], [9], [10]. 

Let us consider (m -f n)-component reaction-diffusion system 

(1.1) 
Sut = CAu + f(u,v), 

Tvt = DAv + g(u,v), 

where u(x,t) = t(ui,..., Txm) and v(x,t) = t(vi,... ,i>n), S and C are rath or- 
der positive diagonal matrices, T and D are nth order positive diagonal matrices. 
We say that the system (1.1) has skew-gradient structure if for some C3-function 
H(u,v) : Rm+n -> R, the nonlinear terms / = t{fi,...Jm) : Rm+n .-> R™ and 
g = *(<7i,..., gn) : Rm+n —> Rn are expressed as 

(1.2) f(u,v) = +VuH(u,v),        g{u,v) = -VvH(u,v), 

where V^ and V^ are gradient operators with respect to u and u, respectively, i.e., 

v -vA     JL)      v -H—     —) Vu     [du1"-'dum
)'       v-~ (dv1

,---,dvn
)' 

(More general definitions of skew-gradient structure are given in [5], [10].) Throughout 
this paper, we assume that (1.1) has skew-gradient structure. 

* Mathematical Institute, Tohoku University, Sendai 980-8578, Japan 
(yanagida@math.tohoku.ac.jp). 

209 



210 E. YANAGIDA 

We note that there are many examples of skew-gradient systems. An important 
example of the skew-gradient system is the FitzHugh-Nagumo system with diffusion: 

(1.3) 

Indeed, by setting 

(1.3) is rewritten as 

J ut = Au -h f(u) - v, 

[ vt = dAv -\- e(u — 7/i>). 

H(u,v) :—   / f{u)du — uv — -"/v2, 

OH 
ut = Au+—-, 

ou 

6   lVt 
ldAv 

dH 
dv ' 

Another important example is the Gierer-Meinhardt system 

(1.4) 

9  A "' Ut = e Au — u-\ h cr, 
vq 

rvt = dAv — v H—-, 

which has skew-gradient structure when p + 1 = r and q + 1 = s. Indeed, by setting 

(1.4) is rewritten as 

rr/       \ r   2      Q   2      u 

H(u, v) := — -u  -f -v   -j (- rau, 
2 2 v* 

2 A dH 

rut = re Au 4- —-, 

qvt = qdAv 

du 

dv ' 

Notice that both of the above examples are of activator-inhibitor type. In general, 
any two-component reaction-diffusion system 

J  nut = diAu + f(u,v), 

\  T2Vt = d2Av + g(u,v), 

has skew-gradient structure if the nonlinearities satisfy 

21 
dv 

dg_ 

du 

dH2 

dudv 

Therefore, the skew-gradient system is neither a cooperation system nor a compe- 
tition system so that it is not order-preserving. However, due to the skew-gradient 
structure, the system enjoys some nice mathematical properties that help us to study 
the behavior of solutions analytically. 

In this paper, we discuss three problems and demonstrate how the skew-gradient 
structure is helpful for the analysis of reaction-diffusion systems.   In Section 2, we 
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consider stability problem associated with standing pulse solutions on R, and give 
a simple criterion for the instability. In Section 3, we consider spatially periodic 
steady states on R, and give a general criterion for the Eckhaus instability. Finally, in 
Section 4, we consider skew-gradient systems on bounded domains, and show relations 
between stability properties of steady states and mini-maximizing properties for some 
associated variational problem. 

2.  Standing Pulse Solutions. In this section, based on [9], we consider the 
skew-gradient system on R: 

f  Sut = Cuxx + f{u,v), 
(2 1) \ x e R- V ' ; [ Tvt = Dvxx+g(u,v), 

Any stationary solution (u,v) = (u(x),v(x)) of (2.1) satisfies 

f  Cuxx + f(u,v) = 0, 
(2.2) { x £ll. 

[ Dvxx+g{u,v) = 0, 

Let (p,q) be any critical point of H(u,v). Then we have f(p,q) = 0 and g(p,q) = 0, 
which implies that (u(x, t),v(x, t)) = (p, q) is a spatially homogeneous stationary solu- 
tion of (2.1). Assume that there exists a standing pulse solution (u, v) = (<p(x),il>(x)). 
More precisely, {ip{x),ip(x)) is a nonconstant function satisfying 

{C<pxx + f(<p,il>)=0, 

Dipxx+g(v,ip) = 0, xeR, 

(v(±oo),^(±oo)) = (p,g). 

In this section, we discuss stability of the standing pulse solution. We note that if the 
spatially homogeneous steady state (u, v) = (p, q) is not stable, then the standing pulse 
solution cannot be stable. Therefore, we assume in the following that the stationary 
solution (u, v) = (p, q) is linearly stable at least for some S and T. 

Let us consider the linearized equation of (2.2) around (<p(x),il)(x)): 

( cuxx + fuU + fvV = o, 
(2.4) I n ^^R, 

[ DVxx+9uU + gv = ^ 

where /n, /v, gu, gv are Jacobian matrices evaluated at (u,v) = (y?(a;),^(a:)). Dif- 
ferentiating (2.3) by x, we see that (U,V) = (<Px,il>x) is a bounded solution of (2.4). 
Here we impose the following nondegeneracy condition on the standing pulse solution: 

(ND) (f/jV) = (ipxiipx) is ^e unique bounded solution up to multiplication by 
constants. 
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By (1.2), we have 

fu ■= Vu/ = 
dh =    + 

9v ■= Vv9 = 

fv := Vvf = 

d2H 
duiduj 

d2H 
dvidvj 

d2H 
duidvj 

\dujj      \   dujdvi 

dvj 

dvj 
+ 

that 

Ju —   Jui      Jv 

Hence the adjoint system of (2.4) is written as 

f cuxx + fuU - fvV = 0, 

1 DVxx-guU + gvV = 0, 

tn _ t 

(2.5) x e R. 

Therefore, ([/", V) = ((px,—ipx) is a bounded solution of (2.5), and it is unique up to 
multiplication by constants if (ND) holds. 

Here we define orientations of standing pulse solutions as follows.   We rewrite 
(2.2) to a (2m -f 2n)-dimensional dynamical system 

(2.6) 

where 

Clearly 

dx 
w = h(w), 

w = 

/u \ 
v 

Ux 

\   Vx    J 

( 

h{w) 

\ 

Vx 

-li 

p:= 
Q 

0 
GR 

2m+2n 

is an equilibrium point of (2.6). It follows from (2.3) that 

i){x) 
w = ^>(rr) := 

\ ipx(x) ) 
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is a solution of (2.6) which connects p with itself. Such a solution is called a homoclinic 
solution, and its trajectory in the (2m + 2n)-dimensional phase space is called a 
homoclinic orbit. 

Define a function J : R2™+2™ -> R by 

J(w) := 2CUx ' Ux ~ 2DVx ' Vx + H(u'v^ 

where " • " denotes the usual inner product of two vectors. It is easy to show that if 
w satisfies (2.6), then 

J{w(x)) = Const,    for all x. 

Let M be a (2m + 2n — l)-dimensional hypersurface in R2m+2n given by 

M = {w e K2m+2n ; J(w) = H(p,q)}, 

and let Ms, Mu be a stable manifold and an unstable manifold, respectively, with 
respect to the equilibrium p. It is clear that the equilibrium point p is on these 
manifolds. It is also clear that there exists a homoclinic solution connecting p with 
itself if and only if 

Mu H M V 0, 

and the homoclinic orbit is entirely contained in the intersection manifold. Since any 
solution on Mu converges to p as x —» — oo, we have 

J{w) = H(p,q)     foTweMu. 

Similarly we have 

J{w) = H(p,q)     iovweM8. 

Therefore, Mu and Ms are submanifolds of M. 
Let us study properties of the stable and unstable manifolds. If w(x) is in a 

small neighborhood of p, then W(x) = w(x) —p satisfies approximately the linearized 
equation 

■^■W = hw(p)W, 

where hw is a Jacobian matrix of h given by 

(2.7) hw{w) 

( 0 0 Im $    \ 

0 0 0 In 

-C-lfu{u,v) 0 0 0 

V 0 -D^g^v) 0 0   ) 

Let on, i = 1,2,..., 2m + 2n, be characteristic roots of hw(p). Since hw is of the form 
as above, we may assume 

0 < ^{ax} < 3?{a2} < • • • < 5ft{am+„} 
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and 

<x ra-f-n-H = -a* 1,2,... ,m + n. 

It can be shown that if (u, v) = (p, q) is a stable steady state of (2.1), then ^{ai} ^ 0 
for all i (see [9, Lemma 3.1]). 

Let ai,a2,.... ,am+n G R2m+n be independent vectors which belong to the 
eigenspace of hw(p) associated with «!,... ,am+n, and let am+n+i,... ,a2m+2n G 
R2m+2n be independent vectors which belong to the eigenspace of hw(p) associated 
with am+n+i,..., a2m+2n- Then Mu is an {m + n)-dimensional manifold which is 
tangent to ai, a2,..., am+n at p, and Ms is an (m + n)-dimensional manifold which is 
tangent to am+n+i,..., a2m+2n ^ P- We take these vectors as bases of Mu and M5, 
respectively. Now the orientations of Mu and Ms can be defined by these bases. We 
assume without losing generality that 

det (ai,... ,an,am+n+1,... ,a2m+2n) — 1? 

which introduces a relationship between the orientations of Mu and Ms. 
Let us consider the linearized equation of (2.6) around w = <f>(x) 

(2.8) 

and its adjoint equation 

dx 
W = hw^(x))W, 

(2.9) 
dx 

W = -'h^ix^W. 

Differentiating (2.6) by x1 we see that W = <&x(%) satisfies (2.8). Then it follows from 
(2.5) and (2.7) that 

W*(x) := 

/. +Cipxx \ 

-Dipxx 

-Ccpx 

satisfies (2.9). Since 

-V^J(^) 

/ +fM) \ 

+C(px 

\    -D^x    ) 

( +C<pxx \ 

-D^xx 

-C^x 

\   +D^X   ) 

W* 

W*{x) must be a normal vector of M (and hence a normal vector of Mu and Ms) 
at w — $(x) which points the direction where J{w) becomes smaller. Thus, the 
nondegeneracy condition (ND) implies that the intersection of normal spaces of Mu 

and Mv at <I>(:r) is one-dimensional for any x. In other words, Mu and Mv intersects 
transversally in M. 

Let {«9i,..., 5m+n} be a positively oriented basis of the tangent space of Mu at 
v — ^(0), and let {sm+n+i,..., 52m+2n} be a positively oriented basis of the tangent 
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space of Ms at v = ^(O). Without loss of generality, we may assume si = S2m+2n = 
$a;(0). By (ND), the vectors si,... ,S2m+2n-i are linearly independent. 

Let Wi(x), i = 1,2,... ,2m -f- 2n, be solutions of (2.8) subject to the initial 
conditions 

Wi(0) = 5*. 

Then the solutions satisfy 

Wi(:r) —> 0     as a; —> — oo,    z = 1,2,... ,m + n, 

Wi(x) —■> 0     as x —^ +oo,    i = m + n + 1,... ,2m + 2n. 

In particular VFi(:r) and W/2m+2n(^) satisfy 

Wi (x) = $x(x)=L W2m+2n{x). 

We note that the set {Wi(x),..., W2m-\-2n-i{x)} is a basis of the tangent space of 
M at v = ^(x), the set {Wi(a;),..., Wm+n(a:)} is a positively oriented basis of the 
tangent space of Mu at w = ^(x), and the set {Wrn^n+i(x),..., W2m+2n(x)} is a 
positively oriented basis of the tangent space of Ms at w = $(x). 

Let Wo(x) be a solution of (2.8) subject to the initial condition 

Wo(0) = W*(0). 

Since W*(0) is a normal vector of both Mu and Mv, WQ(X) must satisfy 

|Wo(x)| —■> oo     as a: —> ±00. 

We note that WQ(X) is transversal to the tangent space of M at w = $(a;). 
Now we give a definition of an orientation of the homoclinic solution $(x) as 

follows. 

DEFINITION The solution (u,v) = {<^{x)^{x)) is said to be positively oriented 
(resp. negatively oriented) if 

det (si, ... , 5n, Sm+n+i, . . . , S2m+2n-l, W*(0)) 

is positive (resp. negative). 

Now we are in a position to state our main result. 

THEOREM 2.1. Let (u,v) = (ip(x),ip(x)) be a standing pulse solution of the 
skew-gradient system (2.1). If ((^(x),/0(x)) is positively (resp. negatively) oriented, 
then it is unstable for any S and T with 

I  S(px - (pxdx <  /  Tipx • ipxdx 
Jn Jn 

{resp.    /   S(px • ipxdx >   /  T^ • ^xdx). 

This theorem is proved in [9] by analyzing the eigenvalue problem 

f \SU = CUxx + UU + fvV, 
< x € R, 
1   \TV = DVXX + guU + gvy. 
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The complex number A is called an eigenvalue if this system has a uniformly bounded 
solution, and the standing pulse solution is unstable if there exists an eigenvalue with 
a positive real part. To determine the location of eigenvalues, the so-called Evans 
function [2] is used in [9]. We omit details here and refer the reader to [9]. 

3. Eckhaus Instability. In this section, based on [5], we consider the skew- 
gradient system on R written as 

(3-1) 
Sut = Cuxx + f(u,v), 

Tvt = Dvxx+g(u,v), 
x e R. 

Let (u,v) = ((p(x;s),ilj(x;s)) be a family of spatially periodic stationary solutions of 
(3.1) parametrized by s with its minimal spatial period Z(s), that is, ((p(x]s),ip(x]s)) 
satisfies 

(3.2) 

Ctpxx(x; s) + f(<p(xi S),I/J(X; s)) = 0, 

Dil)xx{x\ s) + g{ip(x] s)^(x\ s)) = 0, 

<p{x\s) =(p(x + l(s)]s). 

x e R. 

The aim of this section is to investigate the stability of (</?(#; s)^{x\ s)) in the space 
of uniformly bounded functions on R. Namely, we consider the linearized eigenvalue 
problem 

(3.3) 
XSU = CUXX + fuU + fvV, 

XTV = DVXX + gull + gvV, 
x G R, 

where /„, /„, gu and gv are evaluated at (u,v) = ((p(x;s),'ip(x;s)). We denote the 
spectrum of (3.3) by A(s). Differentiating (3.2) with respect to x, we immediately find 
that A = 0 is an eigenvalue of (3.3) with an eigenfunction (U, V) = (<fix(x; s),ipx(x; s)). 
As is well-known, the spectrum near zero often determines the stability/instability of 
stationary solutions in dissipative systems. 

Setting 

W = 

(U   \ 
V 

ux 

\vx ) 

we can rewrite (3.3) as a system of first order system 

d 
(3.4) 

dx 
W = (B(x; s) + XK)W, 

where B(x; s) and K are (2m + 2n) x (2m + 2n)-matrices given by 

/       0 0 Im    0  \ 

B(x; s) = 

V 

0 

0 

0 

0 

-D-1 
gv 

In 

0 

o / 
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and 

K 

\ 

0 0       0 0 \ 

0 0       0 0 

c^s 0       0 0 

0 D^T   0 0 / 

respectively. Clearly, B(x'1 s) is an Z(.s)-periodic function of x. We will consider condi- 
tions so that (3.4) has a uniformly bounded solution for some 5i{A} > 0. To do so, it 
suffices to consider the monodromy matrix $(Z(s); A, s) : C2rn+2n -> C2m+2n of (3.4), 
where ^>(x; A, s) is the fundamental matrix of (3.4) defined by 

d 
dx 

$(x', A, s) = (B(x] s) + \K)$(x; A, 5),    $(0; A, s) = l2m+2n. 

Then, A becomes an eigenvalue of (3.4) if and only if $(Z(s); A,s) has an eigenvalue 
whose absolute value is equal to one. 

Differentiating (3.2) with respect to x and 5, we immediately find that $(Z(s); 0, s) 
has a degenerate eigenvalue 1. Moreover, we can show that if fi is an eigenvalue of 
$(Z(s); A, 5), then l//x is also an eigenvalue of $(Z(s);A,s). Noting these facts, we 
consider conditions such that the degenerate eigenvalue 1 of (&(Z(s); A, s) splits into 
two simple eigenvalues with the absolute value equal to one when A moves from the 
origin into the right-half plane. In this case, the stationary solution is unstable with 
some spatially modulating unstable mode, and such instability is called the Eckhaus 
instability. 

Here we introduce a function that will play an important role in our stability 
analysis. From (3.2), we see that 

Av^] := 2CcPx ■ Vx - ^DI/JX ■ ipx + H((p, ip) 

is constant in x. In other words, J[(p,ip] = Const, is a first integral of the equation 
in (3.2). Thus we can define a function J(s) by 

J(s):=J[p(-,s),4{-;s)] 

on the one-parameter family of stationary solutions (ip(x] s),ip(x] s) of (3.1). We note 
that dJ(s)/ds is computed as 

S'M C(px(x] s) - (pxs(x] s) - Dil)x{x\ s) - ipxsix] s) 

-\C(pxx(x]s) -ips(x]s) - D^xx{x]s) 'il)3(x\s)\ 

=    Cipx (0; s) • ipxs (0; s) - D^x (0; s) • il)xa (0; s) 

-\C(pxx{P\s) -^(Ojs) -Dti)xx{Q\s) 'tl)a(Q\8yf. 

Now, our main result is roughly stated as follows. (See [5] for a precise statement 
of the result, ). 

THEOREM 3.1.    The Eckhaus instability occurs if and only if 

dJ{s)   / dl(s) 
dJ/dl := 

ds / ds 
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and 

fi3)'-= /       iSipx(x)s) '(px(x;s) -Til)x(x\s) 'il)x(x\s)>dx 

have the same sign. 

It should be noted that {}p(x\s)^{x\s)) is not required to be small in this the- 
orem. This theorem implies that a stability-instability transition must occur at ex- 
tremal points of J(s) when Z(s).is strictly monotone in s. Thus, a first integral J{s) 
is an index of the instability property of periodic stationary solutions. 

Our proof of Theorem 3.1 is based on a careful analysis of the linearized eigen- 
value problem (3.3) when A varies around A = 0. One of the advantages to introduce 
the skew-gradient structure is that the analysis of an adjoint system for (3.3) becomes 
easier than that for systems without gradient/skew-gradient structure. In fact, we can 
express solutions of the adjoint system for (3.4) by using solutions of (3.4). This ad- 
vantage helps us to derive a rather explicit description for the behavior of eigenvalues 
of the monodromy matrix $(Z(s); A, s). 

Here we give a few applications of Theorem 3.1 to demonstrate its usefulness. 

APPLICATION. Let us consider the following reaction-diffusion system of 
activator-inhibitor type 

[ TxUt = d-LUm + au - u3 - V, 
(3-5) ,   + [   T2Vt = d2Vxx -\-U-JV, 

where Ti, T2, di, d2, a, 7 > 0. By setting 

rr/ \ l        2        1    4 ,    ^       2 H{u,v) = —au  — —u  — uv + —jv, 

(3.5) is written as 

nm = diuxx + -r—, 
ou 

T2Vt = d2Vxx - —-, 
ov 

so that (3.5) has skew-gradient structure. Applying a standard argument based on the 
Liapunov-Schmidt method, we can construct a family of spatially periodic stationary 
solutions of (3.5) when 0 < a < 7 and cry < 1 as follows. Let us define 

1 7 
d2(s2) = s2(a-dlS

2) ~ ?' 

Assume 0 < s2 < a/di and ^(s2) < c^- Then, for (s2,^) near (s2,d2(s2)), we have 

(3-6) ( ^ s) ) = 2V —1 ^^ { c(S)2 J + ^^ 
where c{s) := a — dis2. Neglecting higher order terms and noting l(s) = 2TT/S, direct 
calculation yields 

I(s)= |ri^(^;s)2 -T2ilJx(x\s)2>dx 

= ^-(d2-d2)c(S)2(n-T2c(s)2). 
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On the other hand, the computation of dJ/ds is extremely complicated, but the result 
turns out to be 

Aj(s) = -is3iir(a2)d2), 

where K(s2, c^) is a polynomial of degree four in s2 and quadratic degree in c^- Thus 
we obtain 

2s5 

dJ/dl=— K{s2,d2). 
OTT 

Consequently, we have the following result. 

THEOREM 3.2. Let (u,v) = ((p(x;s)1
/ilj(x]s) be a stationary solution of (3.5) of 

the form (3.6). Suppose that K(s2,d2) > 0 (resp. K(s2,d2) < 0). If Ti > c(s)2T2 
(resp. Ti < r2c(s)2); then (u,v) = (p(x]s) is unstable. 

Although this results does not necessarily guarantee the stability of bifurcating 
stationary solutions in the region {(s2,^) | K(s2,d2) < 0}, numerical simulations 
suggest that these stationary solutions are stable when Ti > c(s)2T2. Since the sign 
of K(s2,d2) is independent of ri and T2, this result implies the following by the aid 
of numerical simulations: the bifurcating stationary solutions are stable in the region 
{(s2,^) \;K(s2,d2) < 0} when the ratio of time constant coefRcients of activator 
and inhibitor T1/T2 is large, whereas these stationary solutions become unstable and 
various complicated behavior of solutions can be observed when T1/r2 is small. For 
example, when di is small, the stationary solutions lose their stability, and there 
appear metastable patterns. On the other hand, when di is large, there appear 
oscillatory patterns which cannot be observed in gradient systems. 

Next we briefly mention about the Gierer-Meinhardt system (1.4), where the 
parameters are assumed to satisfy p > 1, q,r > 0, s, a > 0 and 

p — 1 r 
 < 

5+1 

Then there exists a unique positive spatially homogeneous stationary solution. As is 
noted in the introduction, the Gierer-Meinhardt system has skew-gradient structure 
when p -f 1 = r and q + 1 = s. Recalling [8], in a manner similar to (3.5), we can 
construct bifurcating stationary solutions with spatially periodic structure around the 
unique positive spatially homogeneous stationary solution. In a manner similar to the 
above, we can also obtain a criterion for the Eckhaus instability as in Theorem 3.2. 

4.  Mini-Maximizers. In this section, based on [10], we study the skew-gradient 
system 

Sut = CAu -f- f(u, v)     in ^, 

(41) J   Tvt = DAv + g(u,v)     in ft, 

d d 
—u = 0 = —v on 0ft, 
0l> ov 

where ft is a bounded domain in R^ with smooth boundary 9ft, d/dv stands for 
the outward normal derivative on <9ft. Any steady state (u,v) = {ip{x)^{x)) of (4.1) 
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satisfies the system of elliptic equations 

( CA<p + f((piil;) = 0,    infi, 

(4.2) J   DAip-{-g((p,i/;) =0     in fi, 

I    d d 
—-cp = 0 = -—ib on 90. 

v   du dv 

We note that the solution of this problem corresponds to a critical point of the func- 
tional 

E[u,v):= I [)-(CVu,Vu) -)-(DVv,Vv) -H(u,v)\dx, 

where V is a gradient operator with respect to x and 

m n 

2=1 1=1 

with C = diag(ci,C2,... ,cm) and D = diag(di, ^2? • • • ? dm). In fact, (4.2) is the 
Euler-Lagrange equation for E[u,v]. We say that (u,v) = (ip,il>) is a mini-maximizer 
of JE7[W, v] if u = <^ is a minimizer of £?[w, ^l an(l ^ = ^ is a maximizer of £7[^, v], that 
is, 

for any U in a neighborhood of cp in Jfi
rl(0), and 

E[<p,V]<E[(p,tl,] 

for any V in a neighborhood of ^ in if1(0). The purpose of this section is to study 
the relation between a stability property of (u,v) = (<p,ip) as a steady state of (4.1) 
and a mini-maximizing property as a critical point of E[u, v]. 

When v is fixed to ^(x) in the first equation of (4.1), then we have a system for u 

(  Sut = CAu + f(u,ip)     in ft, 

(4-3) )     d n ^o —u = 0 on oil. 
v   dv 

For any solution u(x, t) of this equation, we have 

jtE[u{x,t)^{x))    =     f {(<7Vu,Vut) -f(u,1>)-<ut}dx 

< — CAu • i^t — /(w, V;) * wt \dx 

=    —      Sut - utdx < 0. 

I 
Jn 

Hence (4.3) describes a gradient flow of E[u,il>]. Therefore, u = cp is a steady state of 
(4.3) if and only if u = (fi is a critical point of E[u, -0], and is stable if and only if it is 
a local minimizer of E[u,ip(x)]. 
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Similarly, when u is fixed to <p(x) in the second equation of (4.1), then we have a 
system for v 

{Tvt = DAv + g((p, v)     in ft, 

d 
■—v = 0 on 9ft. 
ov 

For any solution v(x,t) of this equation, we have 

—E{ip{x),v(x,t)}    = {-{DVv,Vvt) +g(cp,v)-vt}dx 

{DAv ■ vt + g(ip, v) ■ vt} dx 

- !■- Jn 

n 

Tvt - vtdx > 0. 

Hence (4.4) describes a gradient flow of — E[(p,v]. Therefore, v = ip is a steady state 
of (4.4) if and only if v = ip is a critical point of E[(p,v], and is stable as a steady 
state of (4.4) if and only if it is a maximizer of (4.4). 

Even if u — ip is a minimizer of E[% ip] and v = ip is a maximizer of E[(p, v], due to 
the interaction between u and v, it does not automatically mean that (u,v) = ((p,ip) 
is stable as a steady state of (4.1). In fact, if (u,v) is a solution of (4.1), then 

—E[u(x,t),vfat)] 

- (CVw, Wut) - - (DVv, Wvt) - f(u, v)'Ut+ g(u, v) -vAdx -a 
=  /  {-Sut'Ut+Tvt'Vt}dx. 

Jn 

Hence E[u, v] is not necessarily nonincreasing or nondecreasing in t, and cannot be 
used as a Liapunov functional. Thus, roughly speaking, the reaction-diffusion system 
with skew-gradient structure is a sort of activator-inhibitor system which consists of 
two gradient systems coupled in a skew-symmetric way. 

Let ((p,ip) be a solution of (4.2). As is well-known [4], stability of (u,v) = ((p,ip) 
as a steady state of (4.1) can be determined by the eigenvalue problem 

,     , { \SU = CAU + fuU + fvV, 
(4.5 < 

[ \TV = DAV + guU + gvV, 

on ft under the Neumann boundary conditions, where fU) fv, gu and gv are evaluated 
at (ip^iji). Since this is not a self-adjoint eigenvalue problem, there may exist complex 
eigenvalues. Usually, in such a situation, it is extremely difficult to locate the eigenval- 
ues. However, if {u,v) = ((p,ip) is a mini-maximizer of i£[iA,i;], we can show by using 
the skew-gradient structure that any eigenvalue has a negative real part regardless 
of the choice of S and T. Conversely, if (u, v) = (</?, I/J) is not a mini-maximizer of 
E[u:v], then there exists a positive eigenvalue for some S and T. 

A critical point u = ip of E[u,ip] is said to be nondegenerate if the linearized 
operator 

(4.6) A := CA + fu 
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is invertible. Similarly, a critical point v = I/J of E[(p,v] is said to be nondegenerate if 
the linearized operator 

(4.7) B:=DA + gv 

is invertible. Finally, we say that (u, v) = ((/?, ip) is a nondegenerate critical point of 
E[u,v] if u = cp and v = ip are nondegenerate critical points of Elu^ip] and E[ip^v\^ 
respectively. 

Next, we describe some properties of the eigenvalue problem 

( \SU = AU     infi, 
(4.8) I    d 

^-U = 0       on on. 

Since fu = t/n, the operator A is self-adjoint. Hence, by the variational principle, we 
have the following result. 

LEMMA 4.1. All eigenvalues of (4.8) are real. Moreover, there exists a maximal 
eigenvalue Xu with finite multiplicity that is characterized by 

/{-(CW,W) +fuU'U}dx 
Xu =     sup    ^ —, 

tfetfiW) SU-Udx 
Jn 

and the supremum is attained by an eigenfunction of (4.8) associated with Xu. 

We see from this lemma that the maximal eigenvalue Xu depends on S but its 
sign does not depend on S. We say that u = cp is linearly stable if Xu < 0 and linearly 
unstable if An > 0 as a steady state of (4.3). 

Next, we consider the eigenvalue problem 

r  XTV = BV     in ft, 

(4.9) <     d 
^-V = Q        ondCl. 

The following lemmas can be obtained in the same manner as Lemma 4.1. 

LEMMA 4.2. All eigenvalues 0/(4.9) are real. Moreover, there exists a maximal 
eigenvalue Xv with finite multiplicity that is characterized by 

I {- (I}W,W) +gvV-v\dx 
Xv=     sup     ^ —, 

VGHHQ) /   TV . Vdx 

Jn 

and the supremum is attained by an eigenfunction of (4.8) associated with Xv. 

We note that the maximal eigenvalue A^ depends on T but its sign does not depend 
on T. We say that u = ip is linearly stable if Xv < 0 and is linearly unstable if Xv > 0 
as a steady state of (4.4). We note that (<£>,^) is a nondegenerate mini-maximizer of 
E[u, v] if and only if both u = cp and v = ip are linearly stable. 
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Let (</?,ip) be a solution of (4.2). In order to study the stability of (u,v) = ((p,ip) 
as a steady state of (4.1), we rewrite the eigenvalue problem (4.5) as 

f \SU = AU + fvV, 
(4.10) < 

where A and B are the operators defined by (4.6) and (4.7), respectively. We note 
that the eigenvalue A and the eigenfunction (£/, V) of (4.10) may be complex-valued. 
We say that (u,v) = (</?, ip) is linearly stable as a steady state of (4.1) if for some S > 0, 
all eigenvalues of (4.10) satisfy J£{A} < —6. Conversely, the steady state is said to be 
linearly unstable if there exists an eigenvalue of (4.10) with a positive real part. It is 
well-known [4] that the linearly stable (resp. unstable) steady state is stable (resp. 
unstable) in the sense of Lyapunov. 

First we consider the case where (ip,ip) is a nondegenerate mini-maximizer of 
E[u,v]. 

THEOREM 4.1.   Let (u,v) = (<p,ip) be a nondegenerate mini-maximizer ofE[u,v]. 
Then, for any S and T, (u,v) — (vvVO *5 linearly stable as a steady state of (4.1). 

The proof is given as follows. From 

J  \SU = AU + fvV, 

[\TV = BV + guU, 

and fv = — tgU) we have 

(4.11) A / SU-Udx + X [ TV-Vdx= f AU -U dx + f BV-Vdx. 
Jn Jn Jfi Jft 

Here, the integrals 

/ SU'Udx,    j TV-Vdx, 

are positive. On the other hand, by partial integration, we have 

/ AU'Udx= [   C-^U-Udx+ [ {-(CV[/,W) +fuU-U}dx. 

The first term in the right-hand side vanishes due to the Neumann boundary condition, 
and the second term satisfies 

/ {-(CW,W) + fuU -U] dx < \u j SU'Udx 
Jn Jn 

by Lemma 4.1. Hence we obtain 

/ AU • Udx < Xu I SU ■ Udx. 
Jn Jn 

Similarly, we have 

f BV'Vdx<Xv f TV-Vdx. 
Jn Jn 
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Since Xu < 0 and Xv < 0 if (</?,/0) '1S a nondegenerate mini-maximizer, there exists 
6' > 0 such that 

[ AU'Udx+ [ BV-Vdx<-8' \ [ SU'Udx+ [ TV-Vdx). 

Then it follows from (4.11) that for some 8 > 0, all eigenvalues satisfy 3?{A} < — 8 < 0. 
Thus the proof of Theorem 4.1 is completed. 

Next, we consider the case where u = ip is linearly unstable so that ip is not a 
local minimizer of E[u, ip]. (The case where v = I/J is linearly unstable can be treated 
in the same manner.) 

THEOREM 4.2. Let ((p,ip) be a solution of (4.2). Suppose that u = (p is linearly 
unstable as a steady state of (4.3). Then for each S fixed, if ||T_1|| is sufficiently 
small, (u,v) — ((p,ip) is linearly unstable as a steady state of (4.1). 

Intuitively speaking, if HT-1]! is sufficiently small, then v is almost fixed to if) so 
that u behaves like a solution of (4.3). Hence, if u = ip is unstable, (u,v) = (</?,'0) is 
unstable if HT"1!! is sufficiently small. 

A remarkable property of mini-maximizers is that they must be spatially homo- 
geneous if the domain Q, is convex. 

THEOREM 4.3. Let Q be a convex domain with C3-boundary, and let (<p,^) be a 
solution of (4.2). // (y, VO zs spatially inhomogeneous, then Xu > 0 or Xv > 0. 

The proof is based on the idea of Jimbo and Morita [3]. Similar results for min- 
imizers were obtained by Casten and Holland [1] and Matano [7] for scalar reaction- 
diffusion equation, and by Jimbo and Morita [3] and Lopes [6] for gradient systems. 

From this theorem, the following result is immediately obtained. 

COROLLARY 4.3. Let ft be a convex domain with C3-boundary, and let ((p^) 
be a solution of (4.2). // ((p,ip) is spatially inhomogeneous, then (u,v) = ((p,ip) is 
linearly unstable as a steady state of (4.1) for some S and T. 

Let us apply the above results to the diffusive FitzHugh-Nagumo system 

(4.12) 

where r, d, e > 0 and 7 > 0 are positive parameters. Suppose that ft is a convex 
domain with C3-boundary and that (u^v) = ((p,ip) is a spatially inhomogeneous 
steady state of (4.12). The maximal eigenvalue of 

ut = Au + f(u) — v inn 

Tvt = dAv 4- e(u — jv) infi 

d.         .       d 
—u = 0=—v 

\  au              au 
on d 

< 
-XV=-AV-~fV         in ft, 
e           e 

4-V = 0                         on (9ft, 

satisfies A^ = —ej/r < 0. Then, by Theorem 4.3, the maximal eigenvalue of 

(  XU = AU + fuU         in ft, 

I   —U = 0                  on aft, 
v   dv 
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must satisfy An > 0. Thus, by virtue of Theorem 4.2, we obtain the following result. 

THEOREM 4.4. Let fi be a convex domain with C3-boundary, and let (u,v) = 
((p,ilj) be a steady state of (4.12). // (^,'0) is spatially inhomogeneous, then there 
exists a constant r* > 0 such that ((/?, ij)) is linearly unstable for all r > r*. 

Next, we consider the Gierer-Meinhardt system 

UP 
ut = e2Au — u-\ h a in Q, 

vq 

(4.13) 
u 

rvt = dAv — v H  in Q, 
Vs 

—-u = 0= —v on Oil, 

where the exponents are usually assumed to satisfy p > 1, g,r > 0, s,cr > 0 and 

v — 1 r 
 < 

s + 1 

Suppose that fi is a convex domain with C3-boundary and that (w, v) = (cp, tp) is a 
spatially inhomogeneous positive steady state of (4.13). Since s > 0, the maximal 
eigenvalue of 

qTXV = qdAV - q(l + s<pr/rl>a+l)V in fl, 

4-V = 0 on an, 

satisfies Av < 0. Then, by Theorem 4.3, the maximal eigenvalue of 

rXU = re2AU + r(-l + pifp-1 /il)*)U        in fi, 

— LT = 0 on 0ft, 

satisfies Xu > 0. Thus, by virtue of Theorem 4.2, we obtain the following result. 

THEOREM 4.5. Let Q be a convex domain with C3-boundary, and let (u,v) = 
(</?,^) be a positive steady state of (4.13) with p + 1 = r and g + 1 = s. // (ipiip) is 
spatially inhomogeneous, then there exists a constant r* > 0 such that the steady state 
is unstable for all r > r*. 
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