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1. Introduction. This paper studies the behavior as ¢ — oo of weak and strong
solutions of the nonstationary incompressible Navier-Stokes system in the half-space
Dr"=RY,n>2:

u+u-Vu=Au—Vp (ze€D" t>0)
(NS) V-ou=0 (x e D™, t>0)
ulp =0, Ult=o = a.
Here,
D" =R} ={z = (2',2,) = (x1,-,2n) €ER" : z,, >0}

is the upper half-space of R", the boundary of which will be denoted by I'. The
functions u = (u!,---,u™) and p denote, respectively, unknown velocity and pressure;

a is a given initial velocity ; and

0, = 9/, V= (04,-,0p), 0;,=0/0x; (j=1,---,n),

Auzi@?m u-Vuziujajm V-u:iajuj.
j=1 j=1

j=1

Our aim is to find asymptotic profiles of Navier-Stokes flows under some specific
conditions on the initial velocities. In the previous work [4] we studied the case of flows
in R™ under some integrability assumption on the initial velocities and deduced large-
time asymptotic profiles of solutions which are described in terms of the first-order
spatial derivatives (in all coordinate directions) of Gaussian-like functions, thereby
extending a result of Carpio [2] with slight improvement. The result of [4] was then
applied in [14] to find a characterization of flows which admit lower bounds of rates
of energy decay in time. The present work extends the results of [4,14] to the case
of flows in the half-space. As will be shown below, our asymptotic expansion (given
in Theorem 3.5) involves only the normal derivatives of Gaussian-like functions in
contrast to the case of flows in R™; but the essential feature is the same. Namely,
in both cases the functions describing the profiles possess the form =K (xt’%),
where K stands for some specific functions which are bounded and L%-integrable for
all 1 < ¢ < co. However, it should be emphasized here that in the case of flows in R™
the functions K are all in L', while this is not always true for flows in the half-space.
This suggests that the Stokes semigroup on the half-space would never be bounded in
L'. We then apply our expansion result to the analysis of the modes of energy decay of
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Navier-Stokes flows in the half-space and prove a result similar to one of [14] regarding
the existence of a lower bound of rates of decay. A remarkable difference of our result
(given in Corollary 3.6) from one given in [14] is that in the case of the half-space
our characterization of flows admitting the lower bound involves interaction of initial
velocities with solutions, which did not appear in characterizing such flows in R".
We should also mention that in the case of flows in R™, one can deduce higher-order
asymptotics for a specific class of solutions. This result was deduced in [4] with the
aid of the estimates for L2-moments of velocities ([6,21]), the Ll-estimate ([11,12])
and the pointwise estimates ([13]) with respect to space-time variables for solutions
on R™. We here mention that a similar expansion of higher order can be deduced
also for flows in the half-space, once we establish some boundedness and decay results
on L?-moments of velocities. We further note that our main result (Theorem 3.5)
exhibits no boundary effects. This is probably because we are dealing only with flows
which decay very rapidly as || — oo.

The paper is organized as follows: In Section 2 we collect basic results regarding
the Stokes semigroup in general LP-spaces, which will be applied in the subsequent
sections. We then define a class of initial velocities for which the corresponding Stokes
flows decay in L-norm, 1 < ¢ < oo, like 727309 We also give the first-order
asymptotic expansion of Stokes flows under the same assumption on the initial data;
see Theorem 2.3. All the arguments in Section 2 are based on Ukai’s representation
formula ([24]) for the Stokes semigroup over the half-space (see (2.1)). In fact, this
formula is indispensable and will be systematically applied to obtain the results of this
paper. Our main results are stated in Section 3. First we establish, in Theorems 3.1
and 3.3, the existence of weak and strong solutions of the Navier-Stokes system which
decay in time like 2 30-q) (1 < g < 2 for weak solutions), and then assert in
Proposition 3.4 that these solutions admit the first-order asymptotic expansion of the
form as described above. We next assert in Theorem 3.5 that the expansion given in
Proposition 3.4 can be simplified ; and in Corollary 3.6 we apply our expansion result
to characterizing weak solutions which admit the lower bound of rates of energy decay
of the form ||u(t)|lz > ¢t~ "i", extending a result of [14] to flows in the half-space.
Theorem 3.5 and Corollary 3.6 will be deduced in Section 4 from Proposition 3.4, and
Proposition 3.4 will be proved in Section 5.

In this paper we could deal with weak solutions only when n < 4. The reason is
discussed in detail at the end of Section 5.

2. Preliminaries and asymptotics for the Stokes semigroup. We first
deduce a few specific properties of solutions v = (v/,v™), v/ = (v!,---,v"~ 1), of the
Stokes system

0w =Av—Vp (x e D", ¢t>0)
(S) V-v=0 (x e D™, t>0)
vlr =0, V|t=o = a.
Consider the Helmholtz decomposition ([1]):
L' p")y={L"(D")*=L,®d L., 1<r<oo,
with
L

o

={ueL"(D"): V-u=0, u"|p=0},

L, ={VpeL'(D"): pe L}, (D")},

loc
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and let P = P, be the associated bounded projection onto L] . Then problem (S) is
written in the form

(s v+ Av=0 (t>0), v0)=aclLl,
in terms of the Stokes operator
A=A, =—-PA, D(A)=L.n{ue W (D") :u|r=0}.

We know (see [1]) that — A, generates a bounded analytic semigroup {e *4};>¢ in L]
so that for each a € L, the function v(t) = (v/,v") = e~*a gives a unique solution
of (S') in L. Ukai [24] gave the following concrete representation of the solution v :

(2.1) v"(t) = Ue *Bla" — S - d]; V' (t) = e Bla’ + Sa"] — Sv™.

Hereafter, B = —A denotes the Dirichlet-Laplacian on D™ ; {e~*B},> is the bounded
analytic semigroup in LP-spaces generated by —B; S = (S1,---,S,-1) are the Riesz
transforms on R"~1; and U is the bounded linear operator from L"(D") to itself,
1 < r < 00, which is defined in terms of the Fourier transform on R"~! as

(2.2) U ) = I€] / " I Fe ) dy.

For basic properties of the Riesz transforms, the reader is referred to [23]. In this
paper we need only the fact that each S; defines a bounded linear operator in L"(D"),
1 <r < oo. Asis well known, we have

(2.3) e Pf=Ex |,
for a function f defined on D™, where
Ey(z) = (4mt) "2 exp(—|x|?/4t)

is the heat kernel on R™ and f* is the odd extension to R™ of the function f defined
on D™:

f@ zy) (xn, > 0),
—fa,—z,) (zn <0).

Let || - [lq5 1 < g < o0, denote the norm of L?(D™). The following are the standard
L"-L7 estimates for the Stokes semigroup.

(24) F(a 2 = {

PROPOSITION 2.1. There hold the estimates
(2.5) IV*e=t4all, < Ct72 750D lq,

with k =0,1,2..., provided either 1 <r < g<oo, orl<r<g< .
Furthermore,

(2.6) Ve al, < Ct 2|all,  (r=1,00).
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Note that in (2.5) the exponents r and ¢ may take on values 1 and oo, respectively,
although the Stokes semigroup itself seems not bounded in L', nor in L™. Estimates
(2.5) are proved in [1]; and estimates (2.6) are proved in [5] for » = 1 and in [22] for

r = 00, respectively.
In this paper we further need the following estimates :

PROPOSITION 2.2.  Let a € LI for some 1 < g < 0o and
2.7 [ 0+ latwldy < oc.
Then,

le=t4all, < C(1 +t)_%_%(1_%) (||a||q +/ yn|a(y)|dy>
D'Vl

1

@8)  letal, <0 E0ob [ aldy (1< <o0)

|Ve—t4a|), < Ct-1-30-H) / yela()ldy (1 <r<oo).

n

More generally,
1/q
_l_mnel_1
fe=ttat, < 150 (ot o)

vetal, < ceson (

fora € C°(D™) with V- a =0, whenever 1 < qg<r<oo orl<gqg<r< .

(2.8) L
<yn|a<y>|>wy)

n

Proof. We use representation (2.1) for e *4a. It is easy to see that
eftBS . a/ _ etAS . (a/)*7

where e’® means convolution with the heat kernel on R”. The Fourier image of the

kernel function of the convolution operator 'S is given by

(2.9) e—fW%, €= (&1, 6n 1)

—1/2 fooo n—%e_n|£/|2d1’] gives

Inserting [¢/| 1 =7

- =/ [ee) o0
eft\E\zé _ F*%if/eft\ﬂz/ n*%e*n\E’Ian _ Wf%eftéi/ 77*%2'5’67(”“)'5,'2@7.
'] 0 0
Applying the Fourier inversion formula, we get
1 2 > 1 ’
etAS = 7T_§et8n / n_Ev/e("]"l‘t)A d’l]
0

with V' = (01,-+,0,—1) and A’ = Z;le 872 Thus, the kernel function F; =
(FL, - FEP™1) of €28 is given by

(2.10) Fy(z) = (e"8)(z) = 72 By (xy,) /0 h 02V Eyyi(2')dn
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Hereafter, we use the same notation E; to denote the heat kernels in various dimen-
sions. Thus, for example, for © = (¢/, x,) = (z1,...,z,) € R", we will write

Et(.I) = Et(iE/)Et(iEn) = Et(iEl) tee Et(xn)

We have

Fi(x)| < CEy(xy n_% n+t _%6_0‘1/|2/("+t)dn
0

o0
<Ot 2 / T E(n+t) " Edy < Ct 3.
0
Furthermore, for 1 < p < oo,

_1
1Ellp <72 1B C)llp

/o 07V Byt (-)dn

p
<Cr 309 /0 02V a4l

1

< Ct—%u—;)/ n 4t BT O Dy = o 30D,
0

Note that the last integral diverges when p = 1. Similarly, we can show that

L _n
S e ()

(2.11)  ||OIVEy|, < Ct™ 2 forl<p<ooand?, m=0,1,....

We now prove (2.8). In what follows integration with respect to the space variables
will be performed on the whole space R™ unless otherwise specified. Suppose (2.7)
holds. Since [ f*(y/, yn)dyn = 0 for a.e. y’ € R"~ whenever f € L'(D"), direct
calculation gives

eBlam) = /Et(l" =Y )[E(xn — yn) — Er(zn)|(a")"(y)dy
(2.12)

1
- / / UnEo(a’ — o) (OnEr) (@ — ya0)(@™)" (y)dydb.

So, application of Minkowski’s inequality for integrals yields

e~ a" o < CIEaouErls [ lonl @) ()ldy < Ce4=30-0 [y laty)lan

n

Similarly, from
S () = 7z /[Et(!En = yn) — Ei(n)]

/ AV E, (@ — o) - (@) (y)dndy

X
0
1 [e%s) .
/// n 2V Epp(2 —y)
0 0

X yn(anEt)(xn - yna) ' (a/)*(y)dﬂdyfw

(2.13)

[SE

= —ﬂ'_
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we get

et aly < O b0 [Tyt 07 R0 Ddy [y fa* )l
0

T ) / yula(y)|dy.

Since U and S are bounded in L"(D") for 1 < r < oo, these calculations imply that

n

le=*all, < Ct 23 17%)/ ynla(y)|dy for all 1 < ¢ < oo.
Dn

)

On the other hand, we have ||e~*4al|, < C|lal|, by Proposition 2.1; so we obtain

HeftAqu <c _|_t)—%_%(l_é) <|£L||q+/ yn|a(y)|dy) .
Dn

The above argument and Proposition 2.1 together yield
Ve |, < Ct™2|e 2|, < ct-l—%@-%)/ ynla(y)|dy  forall 1 < r < oo.
Dn

This proves (2.8) in case 1 < r < co. When r = oo, we apply Proposition 2.1 to get

+n
/ ynla(y)|dy,
Dn

— 1, _1-n
Ve Aal < O 2l all < €% [ yatu)lay,
Dn

le**alloe < Ct2[le™**2al],, <

and

To prove (2.8)',let 1/¢+1/p =1+ 1/r. From (2.12) and (2.13), we get
lePa"|, < 022G lyyla”(l and [le S - a|l, < 72 G g, ld'[],

respectively, as in the proof of Young’s inequality for convolution. The derivatives
Ve~ *4q are similarly estimated and we obtain (2.8)". The proof of Proposition 2.2 is
complete.

We can now prove our main result in this section:

THEOREM 2.3. Let a € LL(D") satisfy (2.7). Then, for v = (v',v") = e"*4a we
get

A o 20 (0,800 [ e @ty @0 - | v | 0
30D oo 2| @00 [ nd Gy + @0 [ e
=250 @RI [ vy~ @R - [ v | — 0

as t — oo. Here, Fy is the function given in (2.10).
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Proof. We rewrite (2.12) in the form
¢ = = OuEN@) [ (") 1)y
[l )0 08)  Gu NN it
—20,E)() [ ")y
[ e = BN~ 108) ~ GuE ) )i

— (OnEr) (@) / B’ — o) — Ey(2)) (™) (y)dy.

Here we have used the fact that [*_yn(a™)*(y)dyn = 2 [;° yna™(y)dyn. We thus
obtain

HUe—tBa + U0, Et)()/ )|

<orritEis //HaEl = 20) = Gu Bl )
L op-i-3a-t /||E1 —y't72) = BLC)lalyal - ()" ()| dy

for 1 < ¢ < co. But, [|(0nE1)(- — ynt = 20) — (0nE1)(+)|lq and | By (- — ¢/t %) — E1 ()|l
are bounded and

lim [ By(- = y't7%) = Br()llg = lim (9 E1)(- = yat™20) = (BuB1)(lly =0
for any fixed y and 6. So the dominated convergence theorem gives

= 0.
q

t—o0

lim t2+301-3) HUe—tB a" +2U (0, Et)()/ yna” (y)dy

n

We next rewrite (2.13) in the form

e2S - (d) = = 2(0,F)(x) - / yna' (y)dy

7%/// ynl” 2 [(OnEe) (@0 — ynb) V' Epse(’ — /)

- (6nEt)($n)v/En+t($l)] ) (a')*(y)dndde

20, F)(x) - / yne!()dy

—/// a2 [(OnE)(@n — ynb) — (On Fr) ()]
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X V' Eyqi(2z’ —y') - (a')"(y)dndydd
@B ) [V By’ )~ Byl (@) )iy
0

As in the foregoing calculation, we invoke

Jlim [[(9.E1)(- — Ynt~20) — (OnE1)()]lg = 0

and
Jim [[(V'ED (- —y'(n + t)72) = (VE)()g =0,
to obtain
tlggot%%(l*%) ‘Ue—tBs-a'+2U(anFt)(-)-/nyna’(y)dy =0.
q

So

2+30-9) lyn(¢) + 2U [(8nEt)(~)/nyna"(y)dy— (&th)(')'/n yna’(y)dy} —0

q

as t — oo, and therefore

(a3 (=9)

5004250 | 0,500) [ e ay- @, - [ yna%y)dyﬂ 0

n n

as t — oo. Similarly, we can deduce

t%JF%(l*%) -0

q

50142 (0,500 | i G+ @0 [ ]

n

as t — oo, and so

n n

v+ @50 |
— 28U [(8nEt)(~)/ ynﬂln(y)dy_(anFt)(')'/

)y + @5 | yna"@)dy]

— 0
q

n n

yna’(y)dy}

as t — oo. This completes the proof of Theorem 2.3.

Remarks. (i) The divergence-free condition for a is not invoked in the above
argument. Indeed, all that we needed is the fact that if f € L(D"), then

/ @ yn)dyn =0 and / ynf*(y’,yn)dyn:2/ Yn S (' yn)dyn
—00 ) 0

for almost every y’ € R™~L. For this reason, we need only assume (3.2) instead of the
condition [(1+ |y|)|a(y)|dy < oo which was imposed in [4] for dealing with flows in
R™.

(ii) The function in (2.9) is discontinuous at £’ = 0, so the convolution opera-
tor e"*2S is not bounded in L. This suggests that {e~*4},5¢ would not define a
semigroup in L.
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3. Weak and strong solutions of (NS) and statement of the main re-
sults. We write problem (NS) in the form of the integral equation

u(t) = e ta-— t e~ E=DAP(y - Vu)(s)ds
(IE) /O

¢
e ta — / e APV . (u @ u)(s)ds
0

with u@u = (u’ uk);I w1, and discuss the existence of weak and strong solutions with
specific decay properties that are needed in proving our main result.

We first deal with the weak solutions, which are known (see [1,10]) to exist
globally in time for all a € L2, satisfying the identity :

(3.1) (u(t), p) = <e_tAa, o)+ /0 (u @ u, Ve_(t_s)Agp>ds

for all p € C3°(D™) with V- ¢ = 0 and the energy inequality :

t
(E) ||u(t)||§+2/ Vul2ds < [|a|2  for all £ > 0.
0

THEOREM 3.1. Suppose a € L(QT satisfies

(32) [+ mlatwly < oc

(i) There exists a weak solution w, which is unique in case n = 2, such that

(3.3) lu(®)l2 < CO+8)7"5 .
Furthermore, this weak solution satisfies
(3.4) lu®)l, < CL+1)"2 5070 foralll<q<2.

(ii) When n = 3,4, the weak solution u given in (i) is constructed via approzimate
solutions {un} as given in [1,7,15], which satisfy

oo

lim llun (t) — u(t)]|2dt = 0.

N—oo [

Proof. (i) Proposition 2.2 implies

le™all < C(L+5)7"F,
so the existence of a weak solution with decay property (3.3) is deduced in exactly
the same way as in [1]. Therefore, we here omit the proof of (3.3) and prove only
(3.4). The assumption implies @ € LI for all 1 < ¢ < 2; so Proposition 2.2 and (3.2)
together imply

_1

(3.5) le Mall, < C(1+8)7273070)  foralll<gq<2.
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To estimate the nonlinear term of (IE), suppose first 1 < ¢ < n’ = n/(n — 1).
Proposition 2.1 implies

n

C(t—s (t—s 1 _m(q_1
[(u@u, Ve =940)| < [|ull3[[Ve g0 < Ot — )72 2073 [ul3]l¢lly-

Since 1/24+n(1 —1/q)/2 < 1 because 1 < ¢ < n’, we get by duality, (3.1), (3.3) and
(3.5),

1

t
_ _1l_nen_1
[u(®)llg < lle “‘alq+0/0(t—s) 2= 5070) |lu|3ds

t
<O+t) 373070 4 0 [ (t—s) B0 (14 g) 7 Hds
0

This shows (3.4) in case 1 < ¢ < n/. Since we know (3.3), the result is deduced in
general case via interpolation. Assertion (ii) is well known and is deduced as in [15].
The proof is complete.

To deal with strong solutions, note first that (IE) can be rewritten as

t
u(t) = e a — / e~ IAPY . (u @ u)(s)ds
0

t
=2~ [ IAPY . (s e
t/2

THEOREM 3.2. Let a € LY for all 1 < g < co. Given 1 < p < 2, there is a
number n, > 0 so that if ||a||, < np, a unique strong solution w exists for all t > 0,
satisfying v € BC(]0,00) : L) for all p < ¢ < 00, and

lully < CO+1)~ 362
(3.6) ) . for all p<q< .
IVu(tll, < cr-b-3G-D

Theorem 3.2 is proved by following the argument given in [8,9,12]. The proof is
lengthy and delicate, and so omitted here. We invoke Theorem 3.2 to deduce

THEOREM 3.3. Let a € L'(D™) N LY for all 1 < q < oo and satisfy (3.2), i.c.,

/ (14 yn)laly)ldy < oc.
If a is small in L), the strong solution u given in Theorem 3.2 satisfies
()], < C(1+ 1)~ 5=30-%)

(3.7) for all 1 < g < cc.
IVu(t)]l, < Ct 72070
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Proof. We recall that (see [1]) whenever 1 < ¢ < oo, we have
(3.8) D(Aé) = LINWy9(D") and ||A%u|\q &~ ||Vullqy (equivalent norms).

This implies via duality that the operator A~2PV defined originally on smooth
functions extends uniquely to a bounded linear operator from L"(D™) to L. for all
1<r <oo.

Now observe that Proposition 2.2 gives the estimates

e Aally < C(1+ 7275070
forall 1 < g< oo
HVe*tAqu < Ot—l—g(l-%)

and that we have already proved (3.7) for ||u|, in case 1 < ¢ < 2, because u is a
unique weak solution with «(0) = a and a satisfies (3.2). So it remains to show that

o) lu(®)lg < C(1+1)727 070 (2< g < oc0)
IVu(t)lg < Ct 75070 (1< g <o0).

But, to prove (3.9), we need only show that
lu(®)ll, <CO+8)7E070) (2<g<oo)

(3.10) ct 172070 (1< g<?2)
IVu()lq < o
Cct7:7307%) (2 < g< o).

Indeed, assume (3.10). Then for ¢ > 2, we see that ||e~t4/2u(t/2)||, < C|lu(t/2)|l, <
C and

n (1l 1

le=*42u(t/2)ll, < Ot 2D u(t/2)]ls < Ct72 75070,

Therefore,

(3.11) et A2u(t/2)]ly < C(1 + )2~ 3073,

Similarly,

(3.12) Ve A2u(t/2)]lg < Ct 35 G70) |lu(t/2)||, < Ot 73070,

Writing e~ (=94 PV. = Aze~ (=94 4~2 PV. and applying ||A%e’tAqu <Ct 2 lvllgs
we get

t
/ e~ =DAPY . (u @ u)(s)ds
/2

t
<c [ (t-s) Hultds
. /2

t
= O/ (t—s)"2(1+5) "1 2)ds < O(1 +1) 2 50170

t)2
<C+t)72mE0)
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for t > 0, by the boundedness of A"2PV- and the fact that n > 2. This, together
with (3.11), implies (3.9) for ||ul|q. We further obtain

t t
/ AR e==9AP(y . Tu)(s)ds gc/ (t = )7 % [|ullaq | Vee]l2qds
t)2 . t/2

t
< C/ (1 —s) s 2 273
t/2

<Ctr#0mm)(1 4 4)7 %

[N

Combining this with (3.8) and (3.12) proves (3.9) for || Vul||, in case ¢ > 2. The proof
of (3.9) is thus complete.

It therefore suffices to show (3.10). Let ¢ > 2. We fix 1 < p < 2 and apply (3.7)
for |lul|, to see that, with k£ = 0,1,

IVEe=t4/24(t/2) ||, < Ct 22 G |u(t/2)|l, < Ct~ 2 ~20-0)

Furthermore, we use e~ (("9)APV. = A2~ (=94 4-3 PV.  to get
t t )
//2 e~ APV . (u@u)(s)ds|| < C’/ (t—s) 2 HuH%qu
¢ ¢
q
<O+ 6 m) = ¢

1_|_t)T—;—%
by choosing p so that 1 < p < nz—fl < 2; and

=) < 01+ )~ 30-D)

t
/ A%ef(tfs)AP(u -Vu)(s)ds
t)2

t
<C [ (=5 Hu- Vulyds
. t/2

t t
sc/ (t—s)‘%l\ul\qu\vullzquSC/ (t— sy b G
t/2 t

35)
24/ ds
/2
-3 — o=~ 50-3)
by choosing 1 < p = f—fl < 2. This proves (3.10) in case ¢ > 2.

We finally prove (3.10) in case 1 < ¢ < 2. Let ¢ > 1. Since 2g > 2, we can apply
(3.10) with ¢ > 2 to get

< Ot_n(il’_ﬁ) _ Ot%_n

t
A%e_(t_S)AP(u -Vu)(s)ds
/2

t
<C [ (0= 5 lullag | Vadlagds
. /2

t
= O/ (t—s)"7(1+s) 20 25737 50720) s
t/2

<Ot 303 (1 44)7 30730 < o 85070 < op s,
When 0 < t < 1, we have
[Vu(t)]lq < Ct~3 = Otz t3(73) 5 ¢71-50-3) < op=1-50-3),

This completes the proof of (3.10) ; so Theorem 3.3 is proved.

To state and prove our main result, we need some specific functions of (x,t)
which will describe the profiles of general solutions as t — oco. Recall that we are
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using one and the same notation F; to denote simultaneously the heat kernel of one
space variable and several space variables.

The following is the complete list of necessary functions.
Fia) =7 BuGen) [V By
0
Eji(z,t) = /OO 00,00 Ery((z)dr, i k=1,...,n
Fip(z,t) = / 0;0k0n Fryi(z)dr, jhk=1,....n

Gjr(x,t) / / (0;0kV' Erqt)(2") sgn ()
X Ey(xn — 2n)Er(20)dzpdr (j,k<n-—1).

3.13 00 (100
B ontant) = [ B sen e
X (OnEe)(xn — 20)(On Er)(2n)dzndT.

Hjj.(x,1) / / / (0,00 Enyrit) (') sgn (2n)
X (OnEy)(xn — 2n) (OnEr)(2n)dzpdndr  (j,k <n—1).

H,m(x,t)zw_%/ / / A Eyyrii(2)) sgn (2,)
0 JO J—oo

X (OnEe)(xn — 20)(On Er) (2n)dzndndr.

Here sgn (z,) = 2zn/|2n| for z, # 0 and sgn(0) = 0. Note that the functions F,
Fjx and G, are R"~!-valued functions. The expressions above are complicated, but
the important fact is that all of the above functions except F; are written in the

form K;(z) = K (zt~2) in terms of some functions K which are bounded and
LP-integrable on R” for all 1 < p < oo together with their derivatives. So each K;
satisfies

1+7n+2l (1_1)

10V K|y = Coet™ (1<g<oo, ¢, m=0,1,2,...).

By using the functions listed above, we can prove

PROPOSITION 3.4. (i) Let u = (v/,u™) denote the strong solution given in
Theorem 3.3. Then for all 1 < g < oo,
(3.14)

lim t2730-%)
t—o0

w0 +20 [0,E)C) [ @iy~ @0 [ v )as]

+2U 3Et // |u"| dyds — (0, Fy)( // u"u/dyds}

+2U ZEW // uukdyds—i-E,m, // |u"|?dyds

_],k 1

n—1
—2U | > Hjk(t // wuPdyds + Hyp (-, 1) // lu2dyds || =0

Jkl

n
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and

(3.15)

lim ¢2+3(-%)

t—o00 n

yna'(y)dy]

w0+2[0R)0) [ war+ 0,50 |

=250 (0B [ a0y = @uF0) - [ )]

+2{a B)( / / ’dyds+(8nFt)(~)/m/n |u”|2dyds}
- 28U {(a E)( / / |u"2dyds — (0, F;)( / /nu udyds}

42 ZG];C // wu kdyds—i—G,m, // |u"|?dyds

],k 1
+2 Zij // wuFdyds + Fpp(-,t) // lu”|2dyds
jk 1 n n
— 28U ZEM // wuFdyds + Eyp(-,t) // [u™ *dyds
],]i} 1 n n
+ 28U Zij // wubdyds + Hy,p (-t // |u™2dyds | || = 0.
7,k=1 " "

q

(ii) The weak solutions u given in Theorem 3.1 (ii) satisfy (3.14) and (3.15) for
1<qg<2.

We prove Proposition 3.4 in Section 5. But, expansions (3.14) and (3.15) are unnec-
essarily complicated and contain many terms that cancel one another. In fact, they
can be simplified into the following form, which is our first main result in this paper.

THEOREM 3.5. (i) For all1 < q < 0o, the strong solution u given in Theorem 3.3
satisfies

Jlim 275079 (1) + 208, B, () / yna” (y)dy
(3.16) v
—2U 0, Fy(-) - (/ yna’(y)dy+/ / u"U'(y,S)dyds> =0
and
Jim ¢ E0D () 4+ 20,F() - SUBLE) [ aa”(5)dy
—00 Dn
(3.17) +20,E(+) (/ yna’(y)dy—i—/ / u”u’(y,s)dyds)
n 0 n
+2SUO, Fi(-) - </ yna’(y)dy—l—/ / u”u’(y,s)dyds) =0.
D’Vl O n q
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(ii) The weak solutions u given in Theorem 3.1 (ii) satisfy (3.16) and (3.17) for
1<qg<2.

Note that (3.16) and (3.17) exhibit no boundary effects. We next apply Theorem 3.5
to a characterization of flows with the lower bound of rates of energy decay. The
result below extends a result of [14] to flows in the half-space, and it is our second
main result.

COROLLARY 3.6. The weak solutions u given in Theorem 3.1 (ii) satisfy

(3.18) llu(t)]|2 > ot for large t >0

if and only if
(3.19) (/n dy—i—/ /n s)dyds, /Dn ymz"(y)dy) #(0,0).

It should be noticed here that our characterization given in [14] for flows in R™ involves
all of the quantities [ y;a”(y)dy and [;°[(u/u")(y, s)dyds, and this reflects the fact
that no coordinate direction plays a distinguished role in describing the motion of a
fluid in R™ which is at rest at the spatial infinity. For related results on flows in R"”,
the reader is referred to [17]-[20]. In contrast to the case of flows in R™, Corollary 3.6
shows that in describing the behavior of flows in the half-space a distinguished role
is played by the normal components a” and u" and the normal derivatives 0, F;
and 9, F;. Moreover, the quantities fooofDn (uIu®)(y, s)dyds, j,k =1,...,n — 1, and
I~ e (W™ u™)(y, s)dyds do not appear in Corollary 3.6.

In the next section, we shall deduce Theorem 3.5 and Corollary 3.6 from Propo-
sition 3.4. Proposition 3.4 will be proved in Section 5.

4. Proof of Theorem 3.5 and Corollary 3.6. We first deduce Corollary 3.6
from Theorem 3.5, and then Theorem 3.5 from Proposition 3.4.

Proof of Corollary 3.6. In view of (2.2), the functions U9, E; and U(?nth, j=

1,---,n — 1, have the form t*"T“K(If%), 5o
V0Bl = Cut=F >0, U I3 = 0n~F >0

We easily see that U9, E; is an even function of 2/, and U 8nth is an odd function of
xj. Furthermore, let j <n —1, k <n —1and j # k. Then U9, F} is odd in z; and
even in zy, while U BnFtk is odd in z;, and even in z;. So we easily see that

(U8, By, U, F}) =0, j=1,....,n—1,
(4.1) U8 FH5 = ... = U0 F M3,
(U(?nFj, UanFtk) = 57;§HU(9”F,5J||%,

where (-, -) is the inner product of L?(D™). Using (4.1) we see that if we set

a=2/ yna” (y)dy, ﬁ=2/ yud (y)dy, —2// §)dyds,
D’Il n n
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then
42) [UOnE:()a = U8, F(-) - (B+Y)53 = |UE:30” + |UdF3]8 + ~I?
' - ot

We shall apply (4.2) to the proof of Corollary 3.6. Firstly, suppose that (8 4+, «) #
(0,0). Then (4.2) implies

|UOWE:(Yo — UDLFy(-) - (B+4)la=Ct™ "5 >0  forallt>0;
so (3.16) yields, for large t > 0,
[u"(@)]l2 2 [UdnEe(-)or = U Fi(-) - (B + )2
—[u"(®) + UOnE(-)a = U () - (B + )|z

n+2 n+2

Ot " —otT ) >t

Secondly, suppose that ||[u™(t)|l2 > ct="%" for large t > 0. Then (3.16) implies
1UORE(-)or = Ud Fy(-) - (B + )l
2 [lu™(®)ll2 = [lu™(t) + UG Er () = Udn Fy () - (B + )l

_n+2

>t —o(t— s )>0
for large ¢ > 0, and so we conclude that (3 + v, «) # (0,0).
Suppose finally that
(4.3) 1igglft%“ [u" ()2 =0  and  [lu(t)]lz > ct T
In this case we invoke

n+2

C=t 3 U0 E(-)o —UOnFi(-) - (B +7)ll2

< " (1) + U0 Er(Ja = UOLF,() - (B+)ll2 175 [u” (1) -
Passing to the limit as t — oo and applying (3.16) and (4.3) gives C = 0, since
lim inf[f(¢) + g(t)] = lim f(¢) +liminf g(2).
This implies that (8 +~,a) = (0,0), so (3.16) and (3.17) together yield
Jim £ ut) 2 = 0,

n+2

contradicting the assumption (4.3). Hence |u(t)||2 > ¢t~ 2 implies ||u”(t)|2 >
ct_%, and so we get (B + «,a) # (0,0). This completes the proof of Corollary 3.6.

Proof of Theorem 3.5. Let

= [T i),
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where 1 <j<mn—1land1<k<n-—1,orj=k=mn. By (3.14) and (3.15), it suffices
to show that

(4.4) OnBrc™ 4+ Ejpc?® 4 Eppc™ — (Hjp?* + Hyppd™) =0
and
(4.5) OnFic™ + G * + Gnc™ + Fjrcd® + Fpe™ = 0.

Here, and in what follows, we will employ the summation convention for repeated
indices with respect to 1 < j<n—1and 1 <k <n—1. Now we apply the Fourier
transform with respect to 2/ € R"~! to the left-hand side of (4.4), to get

e~ HEN? (CnnanEt(xn) - cjkfjﬁk/ e TP, Br () dr
0

+cm / eTlg,zaflETH(xn)dT)
0

— e HE? (cjk% e_Tlg/P/ sgn (2,)O0n B (T, — 20)On B (2 )dzndT
0 —00

_ |§’|c"”/ e*"|5,‘2/ sen (2,)0n By (xy, — zn)anET(zn)dzndT> .
0 —00

We then multiply the above function by |§'|et|5/‘27 to obtain

|§I| <CnnanEt(xn) - Cjkfjgk / e_T‘gllzanETth(zn)dT

0
+cm /000 675/|2(92E7—+t($n)d7'>
— Ik /OOO 677|§,‘2/OO sgn (2,)O0n B (xy, — 2n)On Er(2y)dzndT
F el /OOO e—r\f’IQ/oo s (20)O0n Bi (2 — 20)0n Er (20)dz,dr.
But, since 0, E, () = 02> E.(2,,), we have

/ 6_7‘5/‘282E7+t(xn)d7':/ 6_7‘5/|2878nEf+t(xn)d7'

(4.6) 70 0 .

O Ey(n) + €2 / T 0 By (20 dr,
0

so the resulting function is written as

€1 e — ckesg) / D, By () dr
(4.7) 0

oo

+(c""|§'|2—cjk§j§k)/ e_Tlg/P/ Sen (20)On B (2 — 2 ) On By (20 ) dzpn dT.
0

— 00

We regard the above function as an odd function of z,, € R and apply the Fourier
transform with respect to x,. The first term of (4.7) is then transformed to

_ie2 [€( € P — IR g
&% + &2 ’

i&pe
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and the convolution in the second term of (4.7) has the Fourier transform

i€e 0 sgn ()0 Ex] (€)-

Therefore, if we show that

(48) gt [ e b 00 B ) =0,

then (4.4) will be deduced irrespective of the values of ¢/* and ¢"". Direct calculation
gives

[Sgn( ( ) eiiz"gnanET(zn)dzn
2/ cos(2n&n ) On B (2n)dzy,.

Hence,

/Ooo e*T‘EI‘Z[sgnmET](én)dT = 2/000 cos(zn&n)0n {/000 eTEIlQET(zn)dT] dzy,

[ee} B [ee} eitzn

R !
— / cos(znﬁn)e_lg 20 dzn
0

g
NEE

This proves (4.8) and so (4.4) is proved.
We next prove (4.5). The Fourier transform, with respect to 2’ € R"~1, of the
{-th component of the left-hand side is written, after dividing by e_t‘5/‘2, as

onn |’L§/Z| 0 Et($n) ’Lffcjkgjgk / / e*T\E’\zsgn (Zn)Et(iUn - Z’ﬂ)ET (Zn)dzndT
0 J—oo
+i§£cnn/ / e—r\m?sgn (20)On (2, — 20)0n By (2n)dzpdr

|Z§£’e| ka;ﬁk/ e 10, By () dr

G AR R A B RS
0

We then apply (4.6) to see that the above function is written, after dividing by &,
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as
—cIkE €y /000/00 e*Tlg,‘zsgn (z20)Ei(xn — 20) Er(2n)dzndT
(4.9) + ™ /000/00 e_Tlg/Psgn (20)OnEt(xy, — 20)0n Br(25)dzndr
HE R = o) [ e 0, B ()

But, the first term of (4.9) is computed via integration by parts as

= |§’|_20jk§j§k /OOO 87-@_7‘“2 (/:: sen (zp) By (xy, — zn)ET(zn)dzn) dr

— &~ 2cjk§ §k/ / —TleP? sen (zn) Et(xy, — 20)0- Er (2n)dzndT

Sl [ s () B, — 20) OB

%) ) 0
— _ || 2k, —rl¢')? _ Ei(zy — 2,)0%E, ndn)d
e [ o ({/ /w} (n — 2n)02E, ()2 ) dr

= — |§’|_2cjk§j§k / / e_Tlg/Psgn (2n)On Er(xy, — 2n)On Er(2n)dzpdr.
0 —00

Here we have used (9, F;)(0) = 0. So (4.9) is rewritten in the form

1€/ 72 (™) - Ree) / / e 1 g0 (2)00 Er(2n — 20)0n Er (20)dzndr
0 —00

FIE e — ) / eI, By (),
0

which is regarded as an odd function of x,, € R. We take the Fourier transform with
2
respect to x,,, divide the resulting function by i&,e~*» and then apply (4.8), to obtain

€'l 1
1§17 + & 117 + &

This proves (4.5) and the proof of Theorem 3.5 is now complete.

(€ — ) [— € L

5. Proof of Proposition 3.4. Let u be a strong solution given in Theorem 3.3.
We write the nonlinear term of (IE) as

( /“2 //2) IAPY . (u @ u)(s)ds

By (3.7) and the boundedness of A= PV, the second term is estimated in LI as

t

t
<cC / (t—5)"2[|u(s)|3,ds < C / (t—s5)"F(1+s)7 ") ds = o172 73 (170))
t/2

t/2
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as t — 0o. Therefore, in view of Theorem 2.3, we need only estimate the function
t/2
w(t) = — / e"=DAPY . (u®u)(s)ds
0

= wi(t) + wa(t) = (wi (), wi (1)) + (wy(t), wy (¢))

where u @ u = (w/u*)}, _, and
(5.1)

t/2
wi(t) = _/0 Ue B[V . (uu™) — 8- (V- (uu))](s)ds
t/2
wi(t) = —/0 e~ IBUT - (uu') + SV - (uu™))](s)ds — Swi(t)
t)2
wi(t) = —/ Ue™ =989, N (9;0r(w/uF)) — S - (V' N(9;0% (uwu"))](s)ds
0

t/2
wh(t) =— /0 e =BV N (0,01 (u? u*)) + 50, N (80 (u? u*))] (s)ds — Swh (t).

Here and in what follows, g = N f will denote the solution of the Neumann problem
—Ag=f in D", Onglr = 0.

Observe that since u = 0 on 9D, we have

(5.2) PV - (u®u) = 9;(uu) + VN(9;0k (uiu®))

by using the summation convention. This explains why the operator N appears in
(5.1). We note that if @, is the fundamental solution of —A, then N f equals the
restriction to D™ of the function @, * fi, with f. the even extension of f with respect
to x, :

f@ ) (x5, > 0)
f(@, —z,) (zn, <0).

The lemma below plays the fundamental role in proving (3.14) and (3.15).

Nf:an*|D”EQn*f*|Dnu f*(xlaxn):{

LEMMA 5.1. Let x € D™, y € R", t > 0, and consider the function
K(x,y,t) = tinTHKO(xf%,yf%),
where K°(&,n) is smooth and satisfies
IVE,E )l < Cgm
for allm=0,1,2,..., allp € R™ and for some 1 < g < co. Then
(5.3) 1PV K (o, t)llg < Cqont™ 2 o 20700 0 m=0,1,2,...,

for all y € R™. Moreover, if we set
/2
L(z,t) = / K(x,y,t — s)(u® u)(y, s)dyds,
0

t)2
I*(a,t) = / K (2,5t — 8)(u® u)* (4, s)dyds,
0



NAVIER-STOKES FLOWS IN THE HALF-SPACE 141

with u the strong solutions given in Theorem 3.3, then

(54)  lim t%+%<1—3>‘ L(t) — 2K (- Ot// s)dyds|| =0
" q
and
5.5 lim 27202 || (1), = 0.
q

t—o0

Proof. We here prove only (5.4), since (5.5) is proved similarly and (5.3) is directly
verified. We write

t/2
L(nt) = 2K(:c,0,t)/0 /n(u®u)(y,s)dyds

t/2
+ /0 /[K(:z:, y,t —8) — K(2,0,8)](u ® u).(y, s)dyds

th// )y, s)dyds — K th/J s)dyds

t/2

+ /0 /[K(:v,y,t —8)— K(z,0,t — s)](u ®@u).(y, s)dyds
/2

+ /0 /[K(:v,O,t —8) — K (,0,0)](u ® w). (y, )dyds

E2K(x,0,t)// (u®u)(y, s)dyds + Iy + I + I5.
O n

We casily see that lim t2t30-D ||, = 0. Since t —s > t/2if 0 < s < t/2,

application of Minkowski’s inequality for integrals and a change of variables gives

n

1 t/2 1
Il < et 8070 [ ROyt = 5)78) = KOG 0) (9 s

/2
/ /Sﬁt y,s)dyds = Ct~ 3 2(1_7)/ (s

By the assumption on K°, the function

(Y, 8) = [KOC,y(t = 5)72) = KO, 0)lg u.(y, 5

satisfies 0 < ¢4 (y, ) < Clux(y, s)|>. Furthermore, tlim ¢t(y,s) = 0. Indeed, from

)

IH
N
m\a

1

1
KOx,y(t—s)77) = K (z,0) = y(t — )72 - / (VoK) (@, y(t — s)"20)dp
0
and the assumption on K, we obtain

1 1
iy, ) < [yl(t = )77 sup [ VoK (-, 2) g un(y, )1 < Clyl(t = )72 |ua(y, )] — 0
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as t — oo, for each fixed y and s. Since |u.(y, s)|? in integrable in y € R™ for each

fixed s, the dominated convergence theorem gives
Jm 1, (s) = lim /wt(yﬁ)dy =0.
Since 1;(s) < Cllu(s)||3, the bounded convergence theorem yields

T
lim / Pi(s)ds =0 for each fixed T' > 0.
0

t—o0

Now, given an ¢ > 0, choose T > 0 so that [, [|u(s)||3ds < . For t > 2T, we have
t/2 T S T
/ Pi(s)ds < / Pi(s)ds + C/ |u(s)|3ds < / P (s)ds + Ce.
0 0 T 0

t/2
Hence, limsup/ P(s)ds < Ce, and this proves tlim t%Jr?(l*%)HIqu = 0. To
0 — 00

t—o0
estimate I3, note that K(x,0,t) — K(2,0,t —s) = — fol $(0:K)(x,0,t— s6)df, and so,
for 0 <s<t/2,

1
K (,0,t) — K(-,0,t — s)||q < c/ st—s0) 3 30-0ag < Cst—2 303,
0
Since ||u(s)||3 < C(1 +s)~'=% and n > 2, it follows that

_é_ﬁ(l_l) t/2 2 _é_ﬁ(l_l) t/2 _n
Is5]]q < Ct 272V "a sllu(s)]|zds < Ct™ 272" a (1+s) 2ds
0 0

t
<orEED et [es) s
0

We thus conclude that tlim t%+%(17%)|‘13||q = 0. This proves Lemma 5.1.

Expansion of w;(t). We first deal with w}(¢) in (5.1). Direct calculation gives

n—1 .t/2 ) )
> [ Uy (i) - )

Jj=1

n—-1 t/2 ‘
=30 [ @B =) = @3Ficu)a = 0l s,

These integrals are of the form I* treated in Lemma 5.1, and so o(tféfg(lfq)) as

t — co. We next estimate
t/2
L=- / Ue==9B[9, (u"u™) — S - 0, (u™u)|(s)ds = I11 + La.
0
Since [0y, (u™u™)]* = O, (Ju™]?)s and [O, (u"u)]* = Oy (u"u’)«, we easily see that
/2
fn==U [ [ @B = )" )y, )y,
0

t)2
Iy = U/o /(BnFt_s)(x —y) - (")« (y, s)dyds.
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Lemma 5.1 implies

tlirgo t2te=9 I, + 2U(8nEt)(-)/ / |u"|?(y, s)dyds|| =0,
n q

Jim 27500 111, — 2U (9, F,)( / / s)dyds| =0,
n q

and therefore,

lim tzt20-9)
t—o0

‘w?(t) +200,800) [ [ . dpas

—2U (0, F3)( // uu')(y, s)dyds

We next deal with w)(¢) in (5.1). Consider first the integral

:O.

t/2
J= —/ e DBV - (wu') + SV - (uu™))(s)ds
0

n—1 .¢/2 ‘ ‘
= — Z/ e*(tfs)B[aj(uju/) + Saj(ugun)](s)ds

— Jo

t)2
_ / e (9B, (u™u') + S8, (u"u™))(s)ds
0

=J + Js.

Direct calculation gives

n—1 t/2 ‘
t/2
/ (95 Fi—s) (@ = y) (w?u")" (y, 5)dyds

and

t/2
- / (OnEos)(x — ) (u™e )y, 5)dyds

t/2
- / (OnFr—)(@ — ) (w™u™). (y, 5)dyds.

Thus, Lemma 5.1 implies lim t2+30=9 |71l = 0 and

t* +5(1-%)

Jo + 2(0,E1)( / / u"u')(y, s)dyds

20,600 [ [ . s)dys

—

e

143
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‘ 1)+ 2(0,F) (- // u™u')(y, s)dyds

+2(0,F)(0) - SU0,E)) | / "y, )dyds

+ 25U (0, F3)( / / s)dyds

PROPOSITION 5.2. The function (w}(t), w}(t)) given in (5.1) satisfies

Therefore,

— 0.
q

We have thus proved

lim ¢z +t30-9)

t—o0

b )+ 200,50 | °°/ Py, )dyds

—2U (0 F3)( / / s)dyds
wh )+ 20,800) [ [ ). s)duds

+20(0aF)() — SU@uE)()] / Oo/ " (g, )dyds

+ 25U (0, Fy)( / / s)dyds

Expansion of ws(t). Let @, be the fundamental solution of —A. We first
consider

=0
q

and

lim ¢2+35(=3)

t—o0

=0

q

for all1 < g < oc.

Z / Ue= =8[9, N (0;0, (u'u*))](s)ds

J,k=1

Direct calculation gives

> [T o BN o)

J,k=1

_y U/ Onet=8 Q0,00 (u' )] (s)ds

J,k=1

:_ZU/ e =92Q,,0: 0 (W) (s)ds

7,k=1

n—1 t/2
-2 Z U/ e Q04 (8, (uFu™)) 4 (s)ds
k=1 “0
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/2
- U/ Dt =2Q,[02 (u"u™)]. (s)ds
0

n—1 t/2 .
=— Z U/ On et =92(0;0,Qn) (u ") (s)ds
0

Jik=1

n—1 t/2
-2 Z U/ Dne 2 (0.0, Qy) (uFu™)* (s)ds
k=1 70

/2
-U et I202Q,, (uu™), (s)ds.
0

The kernel function
Ej(z,t) = [(OnEt) * (0;0kQn)) ()

of the operator 9,,e'® (0;0xQn) has the Fourier transform

ifnl?ljjﬁetlaz = ini&;ig; /Oo e~ (rHOIEl g
0

and so
Ejk(.%', t) = / 8n8j8kET+t(x)dT.
0

We thus obtain

-1 t/2 4
Ki==2, U/ Ejp( =y, t — s)(u!u").(y, s)dyds
Gk=1 0

n—1 t/2
-2 Z U/ Epn(z —y,t — s)(u*u™)* (y, s)dyds
0

k=1
/2
v / / Eon(@ — y,t — 8) (") (y, s)dyds,
0

and Lemma 5.1 gives

t—oo

(5.6) pk=t
+2UE,m(-,t)/0 /n(u"u”)(y,s)dyds

q

We next consider

t/2 _
Ky = _/ e” 7B 50, [N(9;0,(wu))] (s)ds
0

o/
= —/ 2e(t_s)ASBn[Qn(8j8k(ujuk))]*(s)ds
0

n—1 0o
lim ¢2+5070) )y 20 Ejk('at)/ / (w/u*)(y, s)dyds
O n

=0.
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t/2 ‘
_— / (OnFr ) (@ — 1)Qu (D300 (7). (3, 5)dyds

t/2 ‘
== 3 [ @uF )~ )@@ ). s

—22/ (OnFr) (& — ) (Ok0n Q) (uFu™)* (y, 5)dyds

/2
- / (OnFr)(z — ) (02Qn) (™). (y, )dyds.

Denoting

Fe(,t) = [0, F, + (9;00Q0)) (x (/ 0,0; 6kET+th> xS = / 0,0; 0 Fr 41dr,

we can apply Lemma 5.1 to Fji(x — y,t) to obtain

. l
lim 2+
t—o0

Ky +2 Z Fi (-, // (u! u®)(y, s)dyds

7,k=1

+2F (-t // s)dyds

(5.7)
=0.

q

Consider next the function
t/2 _
K= U/ e~ (=B S V'[N (8;0, (W u))](s)ds
0
t/2 _
= U/ V' - e 9B GIN(8;0, ()] (s)ds
0

t/2
= V' e (=988Q,, (9,0 (uu")). (s)ds

t/2 ‘
=U Z / V' e 98 8(9;0,Q,) (W ub). (s)ds
0
+U V' e 9BS8(92Q,) (umu™).(s)ds

/2
+2U Z / V' e 985(8,0,Q,) (uFu™)* (s)ds.
0
The kernel function of the operator V’ - e_tBS(ajaan) is written as

V' [Fi(z — z) — Fr(z — 2)](0;0:Qn)(z —y)dz = I + I»

2n >0
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where z € D", y € R", and 2 = (2/, —2z,) for 2 = (2/, 2z,,). Direct calculation gives
I = —/ V' Fi(x — 2)(0;0:Qn) (2 — y)d=.
2, <0
Hence

L+1, = V' Fi(z — 2)(0;0:Qn) (2 — y)dz

zn >0

-V e = 90000 i
= /OO/ V' Fy(x — 2)(0;0pEr) (2 — y)dzdr
0 Jz,>0

—/ / V' Fy(x — 2)(0;0kE;) (2 — y)dzdr
0 Jz,<0

= Hi (z,y,t) + H(z,y,1).

By scaling argument, we see that Hﬁ are of the form ¢~ "% K° (xt_% , yt_%). To find
more concrete expressions, recall that

Fi(z—2)= W_%Et(,fn — zn)/ n_%V'E,,H(;E' —2")dn
0
and so
V' Fy(x —z) =72 Ey(x, — zn)/ NN Ey (2 — 2)dn.
0

Let j <nand k < n. Since A'E, 1 +14(2') = 0 Epyrq4(2'), and since E-(2,) — §(zn)
as 7 — 0, integration by parts gives

/// N 2N OOk Eyirii(a — )
o Jo Jo

X Ey(xn — 2n)Er (2 — Yn)dzpdndr

[N

H (x,y,t) =7

[N

:ﬂ'_

/ / W_%afajakEnnLTth(zl - y/)
0o Jo
X (/ E(xy — 20)Er (2, — yn)dzn) drdn
0
/ / U_%ajakEnJr‘rth(x/ -y)
0 Jo

y ( /O " Bulon — 2) (022 (2 — yn)dzn> drdn

(S

= —7T_

—0;Ff (x = y)Y (yn)

(SIS

=7

/ / n_%ajakEn-i-r-i-t(xl_yl)Et(xn)(anET)(_y")dndT
o Jo



148 Y. FUJIGAKI AND T. MIYAKAWA

%/ / / “20;00Epsr (2’ — )

X (OnEt)(Xn — 2n) (On Er)(2n — Yn)dzndndr
—0;Ff (x — )Y (yn)
= MlJr('rvya t) + M2+('r7ya t) - athk(I - y)Y(yn)a

where Y is the Heaviside function. Similarly,

Hip (o, y,1) = n 3 / / 0,00 Ey 42’ — o) Eu(100) (00 ) () ddr

/ / / “20;00 By rii(a’ — 1)

X (OnE) (X0 — 2n)(OnEr)(2n + Yn)dzndndr

m\»—A

+O;FF (= 9)Y (yn)
= My (z,y,t) + My (x,y,t) + 0, FF(x — )Y (yn).

The functions M;5 have the form t=" KOzt~ 2,yt~2) and My = M, + M, satisfies

1+m+2¢ 1
et p (-

||85Vm Mo(y, )|l < Cqomt (l<g<oo, £,m=0,1,...).

Furthermore, since (uw/u*).(9) = (u/u*).(y),
t/2 .
— [ [0 e =) = P = DY ) ). ()
t/2 _
== [ oFE e~ s ) ). (s
0

t/2 ‘
== [ ort o - i)y
0

1

Therefore, by Lemma 5.1 this term behaves in L9 as o(t_2_%(l_é)).
When j < n, we have

1

H (55317 §/‘/‘/ 26AE1H_1§((E—Z)E (Z—y)
Zn>0
X By(xy, — 2n) (OnFEr) (20 — Yn)dzdndr

= %/ / / 2‘9J‘AlErz+r+t(30/—yl) x

X By(xy, — 2n) (OnEr) (20 — Yn)dzndndr.

This observation implies that Hjj;(:lc7 y,t) have the form t~"% KO(xt=2,yt~2), and

1+m+2£ n (1_7)

||6fVnyHjn( g < Cyomt™ (I<g<oo,j<n, {,m=0,1,...).
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Therefore, the contribution of H, (x,y,t—s), j < n, is 0(1%7%7%(1 )) by Lemma 5.1,
*

since these functions are integrated against the measure (u/u™)*(y, s)dyds.
To treat the function H,, = H, + H,. . observe that

nn?

H';LF (I y7 %/ / / 2A/E77+T+t(x/ — y/)

X Ey(x, — zn)(aflET)(zn — Yn)dzpdTdn

b [ A B (e’ = )0, B i

%/ / / %AIEn+r+t($'—y')

X (On Bt )(xn — 20)(OnE7) (20 — yn)dzndrdn

= N{ (z,y,t) + N5 (z,y,1)

/ / / 2 AIEv;+r+t(flU/ -y

X Ey(x, — zn)(ﬁiET)(zn + yn)dzpdndT

and

N\)—l

H,,(z,y,t)

ot [ N B’ ) Bl 0, B )i

%/ / / TN Ey (2 — )

X (OnE)(n — 20)(OnEr) (20 + yn)dzndndr
=Ny (z,y,t) + Ny (z,y,1).

The functions N have the form t_"THKO(:Et_%,yt_%) and Ny = N, + N, satisfies

1 2¢
+77;+ 7%(171)

||6fVnyN2(-,y,t)||q < Cyemt” (I<g<oo, {,m=0,1,...).

The functions M; = M;" + M; and N; = N;" + N, make no contribution. Indeed,
we have

LEMMA 5.3. For fizedt >0, x € D" and 0 < s < t, we have

/Ml(x,y, t—s)(u"u")(y, s)dy = /Nl(:zz, y,t—s)(u"u")(y, s)dy = 0.

Proof. For simplicity we write ¢ — s = 7. It suffices to prove

/ IME (2,5, 7) (umu™)a (g, ) dy < oo, / INE (2, g, 7) (a0 ™)y, 5) dy < oo,
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The result then follows via Fubini’s theorem, since M;= and N are odd in y,, while
(u™u™), is even in y,. We estimate only N ; the others are estimated similarly.
Direct calculation gives

oo oo
Ny (2, 7)| < O / / eV (o 1 1 7y E dyde
0 0

n+

1 oo oo 1 1 2 n+1
:T_T/ / N 2o eV /(o 4+ 1) "7 dndo
0 0

o) 1 0
ot [ ([ e
0 0 1

Observe first that

_ntl
€2

/ U_le_yi/cm(a +n+ 1)_%“da < / o e (n+ 1)5_%“610' =C(n+1)
1 1

irrespective of the size of |y,|. Secondly, if |y,| > 1, then

1 1
/ff*le*yi/”"(aﬂLnﬂLl)’"TﬂdaS/ o eV (g 4+ 1) do
0 0

o0
< Crs(n—kl)‘i*%l/ otV g
0

=C7r°(n+ 1)5*%1.

Therefore,

R TﬁnTH) whenever |y,| > 1.

INY (2, 7)| < O (7"
When |y,| < 1, we see that

1 1
o lemvn/eTo (o +n+1 7%“(10' <(p+1 -t o levn/emo g
n =N s
0 0

and

1 o 1/er 0o
/ Uﬁlﬁ’yi/CT”dU:/ (lemtd¢= </ +/ > (Tlem¢d¢ < C(|log yal+7).
0 y2/eT y2 /eT 1/er

Hence,
|N (2, y,7)| < CT*nTH(l + 7+ |logynl|) whenever |y, | < 1.

Since (u"u™)s is in L? for all 1 < ¢ < oo, and since |logy,| is in an arbitrary LP in
lyn| < 1, we conclude the desired assertion. The proof of Lemma 5.3 is complete.
We can now apply Lemma 5.1 to My + Ns to conclude that

n—1 o
lim 23070 1)y —20 Y ij(-,t)/ / wutdyds
O n

t—o0

(5.8) k=1

—2UH,m(~,t)// |u"|?dyds|| =0,
O n

q
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where the functions Hj(z,t) are those listed in (3.13).
Finally, consider

t/2
Ki== [ e (@ N @50 s
0

=- / - Ve IPIN (001 (w!ub))] (5)ds
0

n—1 t/2 )
- / Ve (9B (9,8,00) (wu*). (s)ds
0

jk=1

n—1 .t/2 )
23 / Ve -98(9,0,00)(u"u? ) (s)ds
j=1"0

t/2
—/ Ve t9B(52Q,,) (u"u").(s)ds.
0

These integrals are treated in the same way as those of K3 by using the kernel functions

Gjr(z,y,t) = / / V'Ey(x — 2)(0;0kE;) (2 — y)dzdr
0 z2n >0

—/ V'Ei(x — 2)(0;0rF;)(2 — y)dzdr,
0 Jz,<0

and we can apply Lemma 5.1 to obtain, with G (z,t) as listed in (3.13),

n—1 0o
lim 2 +50-0) iy 42 Y ij(-,t)/ / riluFdyds
O n

t—o0

(5.9) k=1
+2G,m(-,t)// (" dyds
0 n

Combining (5.6) —(5.9), Proposition 5.2 and Theorem 2.3 proves Proposition 3.4 (i).
To establish Proposition 3.4 (ii), we again invoke the splitting

t/ t
(5.10) — </0 : + [/2> e~ (t=9)Apy . (u ® u)(s)ds

To deal with the integral over [t/2,t] we need another idea, since in this case u € L*?
only for 1 < ¢ < n/(n — 2) and we know nothing about the explicit decay rates of
lw(t)]|2q except when ¢ = 1. Therefore, we first describe how to deal with the the
integral over [t/2,t]. In doing so, we replace u in (5.10) by the approximate solutions
un which are obtained as in [1, 15] by solving

=0.
q

t
(5.11) un(t) = e ay — /0 e~ =)APY . (Tn @ uy)(s)ds,

ay =(I+N"TA)Ela,  ay =T+ N"TA)"Eluy,
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where [c] is the greatest integer in ¢ € R. Proposition 2.2 implies

_n+2
1

e~ an]lz < [le"*all2 < C(1 + 1) uniformly in N,

and so the spectral method as developed in [1, 7,16, 25] yields

_nt2
4

(5.12) [an ()2 < [lun(@®)|l2 < C(1+1t) uniformly in N.

We shall apply the same spectral method to deduce the desired convergence result :

(5.13)  lim 2 F3070)

t—o0

=0 (I1<q=<2)

t
/ e~ U=)AP(TUy - Vuy)(s)ds
t/2

q

which has to be uniform in N. To this end, we define

un(t, ) = — /t e"DAP(uy - Vuy)(s)ds = un(t) — e~ Auy(r)
for 0 < 7 <t. Since
oy + Avy = —P(un - Vuy)  (t > 1), un(T) =0,
and since (uy - Voy,vyn) = 0, the standard energy method gives
Allon |3 + 2 A% vy |2 = —2(un - Vun,vn) = —2(uy - VuX, vy) = 2(uy - Voy, uQ)

with u® (t) = e~ Aun(7) = un(t) — vy (t). Proposition 2.1 implies

n+2

[uQ ()]l < Ct — 1) lun(r)]|2 < Clt —7)~ T (L +7)" "5
and (5.12) implies |[un(t)]2 < C(t —7)~"3", with both C' > 0 independent of N.
Thus,
ellon |3 + 2l AZon |3 < Cllun |2l A2 vn|2][uf ]l

n+2

< Ol Aoy |a(t — 1)~ (1 4+ 1)~
< [ Aboy |3+ O —m) "1+ 1),
and therefore
Allonl2+ | AZon|2 < Ct—7) " L1 + 7)1 3.

We apply |Azoy |2 > o(|jon |2 = | Epun]|2), with {E,},>0 the spectral measure asso-
ciated with the positive self-adjoint operator A in Li, to get

w13 + ellun |13 < ellEponll3 + C(t =)™ H 1 +7)71 5.

n+2 n+2

But, [|[Eyon |3 < Co™% ([! [unllallunl2ds)® < Co™ (! |lun|3ds)? as shown in [1],
and so

t 2

n42 oy _1_n
Allon 2 + olluw |2 < Co'T ™2 </ ||uN||§ds) +Ct—7)" M1+ 7) s,
T
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Here we set ¢ = m/(t — 7), with large m > 0 and multiply both sides by (¢ — 7).
Then

t 2
ou(e — )" o] = Clo = 2% [ unlas) + G- nm R,

Fixing m > n + 1 and then integrating the above inequality over [7,t], we see that

e 3 < 0~ [(s =yt ([ ||uN||§da)2 ds

+CA+7) 2t —1)"
<Ct-7)"' i ot —7) "4+ 1) 7 E

Here we have used (5.12). Fixing 7 = ¢/2, we obtain

with C' > 0 independent of N, and so

2
3n

t
/ e*(t*S)AP(ﬂN “Vuy)(s)ds|| <Ct™ 1%
t

/2

2

tnT+2 <Ot 7 =0 uniformly in N

2

t
/ e~ DAP(Ty - Vuy)(s)ds
/2

as t — o0o. On the other hand, as shown in the proof of Theorem 3.1, we know that

1

t
lon (B)llg < C/ (t = )72 2070 lun(s)|[3ds.

Let 1 < g<n';then 1/2+n(1 —1/q)/2 <1, and so by (5.12)

7

_%(1_%)(1 +5) 1" %ds

Nl

fon(®lly <€ [ ¢

(t+71)/2 t Lo L .
=C / +/ (t—s) 272070 (1 +5)7 175 ds
T (t+71)/2

t
<Ot —7)"2730-9) / (1+5) " %ds+C(1+7)" "3 (t—1)

T

w3

(1-1)

Nj=

e e e e S

Here we fix 7 = t/2 to get

t
/ e~ 94PN - Vuy)(s)ds
/2

t
/ e AP Uy - Vuy)(s)ds
t)2

and therefore

n

+za-b) <Ct 2 —0 uniformly in N

q



154 Y. FUJIGAKI AND T. MIYAKAWA

as t — oo, whenever 1 < g < n/. The case of n’ < ¢ < 2 is now treated via
interpolation, and this proves (5.13).
It remains to deduce the uniform (in V) asymptotic expansion for the function

t/2
wn(t) = —/ e"EDAPY . (Ux @ un)(s)ds,
0

starting from (5.1) with u ® u replaced by ux ® uy. To do so, observe the follow-
ing: Firstly, (@yu)« is in L™/ ("=2) when n > 3, due to the Sobolev inequality
N ll2n/(n—2) < Cllun|lzn/m—2) < Cl|Vun|lz ; and (u"u™). is in an arbitrary L9,
1 < g < 0o, when n = 2, since in this case u is also a unique strong solution. Since
|log z,,| is in an arbitrary LP in |z,| < 1, 1 < p < oo, the proof of Lemma 5.3 applies
to our present case with no change. Secondly, the cut-off argument as given in [15]
applies to our case and ensures that if n = 3,4, then for each € > 0 and T > 0, there
exists M = M. r > 0 satisfying

T
/ / lun (y, 8)|*dyds < e for all N.
0 Jly|=M
It thus follows from (5.12) that for each € > 0 there is a constant M’ > 0 satisfying

(5.14) / / lun (y, s)|*dyds < & for all N.
0 Jly|=M’

Applying the standard compactness argument then implies that when n = 3,4, there
is a subsequence, denoted also {uy}, such that

(5.15) Nlim [[Tn () — u(t)]|2 = J\}im llun (t) — u(t)]|2 =0 for a.e. t > 0,
and so
(5.16) J\}E)noo [un(t)]2 = ngnoo [lun(®)]|2 = [Ju(t)]2 for a.e. t > 0.

It should be emphasized that (5.14) —(5.16) are not yet proved when n > 5, even in
the case of Navier-Stokes flows in R™; see [8]. From (5.12), (5.14)—(5.16) and the
dominated convergence theorem, we obtain

g [ ) wsavds = [ @i )w.s)dyds.
—oJo Jpn o Jpn

Therefore, if Lemma 5.1 holds uniformly in N with v ® u replaced by Ty ® uy, then
in view of Theorem 2.3, the proof of Proposition 3.4 (ii) will be complete.

It thus suffices to establish the above-mentioned uniform version of Lemma 5.1.
To do so, we need only show that the functions

t/2
IQ,N - / /[K(ZE, Y, t— S) - K({E, Oa t— S)](EN ® uN)*(yv S)dde
0
satisfy

(5.17) lim t27 20|, x|, =0  uniformly in N

t—o0
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for all 1 < g < 0o. As in the proof of Lemma 5.1, we have

/2
| L2nlq < Ct*éff(l’i)/ /cpt,N(y,S)dyd&
0
with C' > 0 independent of N, where
_1 _
e (Y, s) = [K0C,y(t —s)72) = K°(, 0)[lo] (@ @ un)(y, 5)|-

1

Since ||[KY(,,y(t — s)72) — K°(-,0)||; < C, by assumption, we see from (5.14) that
given an € > 0, there is a constant M > 0 such that

t/2
/ / orn(y, s)dyds < for all N and ¢
y|>M

and so

t—o0

t/2
(5.18) lim sup/ / oeN(y,s)dyds < e uniformly in N.
I>M

On the other hand, if T > 0, |y| < M and s € [0,T], then the proof of Lemma 5.1
shows

_1 —
e (y,s) < lyl(t = )72 sup [ VoK (-, 2)l|l @y @ un)s(y, 5)]

<CM(t—T)"2|(Tn @ un)s(y, s)|

for t > T'; so we see from (5.12) that, as ¢t — oo,
(5.19)

// ey, s)dyds < CM(t — T // (@ ® uw)a(y, )| dyds
ly| <M ly| <M
ch(t—T)*%/ luw ()||2ds < C'M(t —T)~% — 0
0

uniformly in N. Here we choose T' > 0 satisfying [ [|un(s)||3ds < e for all N, which
is possible by (5.12), to see that if ¢ > 27", then

t/2 T o
/ / e (Y, 8)dyds < / / e (y,8)dyds + C / un(s)||2ds
0 ly| <M 0 Jly|l<M T

T
< // pi.n (Y, s)dyds + Ce
0 J]y|<M
with C' > 0 independent of N. This, together with (5.19), implies

t/2
(5.20) lim sup/ / we.N(y, s)dyds < Ce uniformly in N.
lyl<M

t—o0

Since £ > 0 was arbitrary, combining (5.18) and (5.20) gives

t)2
lim /cpt)N(y, s)dyds = 0 uniformly in N.

t—oo
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This proves (5.17), and so the desired uniform version of Lemma 5.1 is obtained.

By the above argument and Theorem 2.3, the proof of Proposition 3.4 (ii) is
complete.

Remark. In dealing with weak solutions over the half-space, we have employed
(5.2) for representing the projection P, which involves the Green’s function N of
the homogeneous Neumann problem for the Poisson equation. This representation is
valid for a strong solution u, since u is smooth up to the boundary and so satisfies
u- Vu"|r = 0. However, for a weak solution u, we do not know in general if the
boundary value u - Vu™|p exists even in some weak sense. Therefore, we cannot
directly apply (5.2) to weak solutions. To avoid this difficulty, we have employed
in this paper the approximate solutions {uy} as introduced in [1,15] for which (5.2)
holds with u®w replaced by uy ® ux. However, when n > 5, we do not know whether
(a subsequence of ) {uy} satisfies (5.14)—(5.16), although it is readily verified that (a
subsequence of) {uy} converges to a weak solution in some weaker sense. For this
reason, we are forced to restrict our consideration to the case when n < 4.
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