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GALOISIAN OBSTRUCTIONS TO INTEGRABILITY OF

HAMILTONIAN SYSTEMS∗

JUAN J. MORALES-RUIZ† AND JEAN PIERRE RAMIS‡

Abstract. An inconvenience of all the known galoisian formulations of Ziglin’s non-integrability
theory is the Fuchsian condition at the singular points of the variational equations. We avoid this
restriction. Moreover we prove that a necessary condition for meromorphic complete integrability
(in Liouville sense) is that the identity component of the Galois group of the variational equation
(in the complex domain) must be abelian. We test the efficacy of these new approaches on some
examples. We will give some non academic applications in two following papers.

1. Introduction. The aim of this paper is to investigate the connection between
two different integrability concepts: the (complete) integrability of Hamiltonian sys-
tems and the solvability of the linear differential equations (in the sense of the dif-
ferential Galois theory). This connection is given by the linearized equation along a
particular solution of the Hamiltonian system.

Now we will explain the historical motivation of our work.
During the last years the search for non-integrability criteria for Hamiltonian

systems based upon a study of the behaviour of the solutions in the complex domain
has acquired more and more relevance.

In 1982 Ziglin ([74]) proved a non-integrability theorem using the constrains im-
posed on the monodromy group of the normal variational equations along some inte-
gral curve by the existence of some first integrals. This is a result about branching
of solutions: the monodromy group express the ramification of the solutions of the
normal variational equation in the complex domain.

We consider a complex analytic symplectic manifold M of dimension 2n and a
holomorphic Hamiltonian system XH defined over it. Let Γ be the Riemann surface
corresponding to an integral curve z = z(t) (which is not an equilibrium point) of the
vector field XH . Then we can write the variational equations (VE) along Γ,

η̇ =
∂XH

∂x
(z(t))η.

Using the linear first integral dH(z(t)) of the VE it is possible to reduce this variational
equation (i.e. to rule out one degree of freedom) and to obtain the so called normal
variational equation (NVE) that, in some suitable coordinates, we can write

ξ̇ = JS(t)ξ,

where, as usual,

J =

(
0 I
−I 0

)

is the square matrix of the symplectic form. (Its dimension is 2(n− 1).)
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In general if, including the Hamiltonian, there are k analytical first integrals
independent over Γ and in involution, then, in a similar way, we can reduce the
number of degrees of freedom of the VE by k. The resulting equation, which admits
n− k degrees of freedom, is also called the normal variational equation (NVE) ([5]).
Then we have the following result ([74]).

Theorem 1 (Ziglin). Suppose that the Hamiltonian system admits n − k addi-
tional analytical first integrals, independent over a neighborhood of Γ (but not neces-
sarily on Γ itself) We assume moreover that the monodromy group of the NVE contain
a non-resonant transformation g. Then any other element of the monodromy group
of the NVE sends eigendirections of g into eigendirections of g.

We recall that a linear transformation g ∈ Sp(2n,C) (the monodromy group is
contained in the symplectic group) is resonant if there exists integers r1, ..., rn such
that λr1

1 · · ·λrn
n = 1 with r1 · · · rn �= 0 (where we denoted by λi, λ−1

i the eigenvalues
of g).

There are some historical antecedents of Ziglin’s Theorem. Poincaré gave a non-
integrability criterion, based on the monodromy matrix of the VE along a periodic
(real) integral curve: if there are k first integrals of the Hamiltonian system, inde-
pendent over the integral curve, then k characteristic exponents must be zero. And,
if these first integrals are moreover in involution, then necessarily 2k characteristic
exponents must be zero ([56], pg 192-198). Furthermore, in Poincaré’s work we can
also find the relation between the linear first integrals of the variational equation and
the solutions of this differential equation ([56], pg. 168) In fact, Poincaré results are
intimately related to the reduction process from the VE to the NVE.

In 1888 S. Kowalevski obtained a new case of integrability of the rigid body system
with a fixed point, imposing the condition that the general solution is a meromorphic
function of the (complex) time. In fact, as part of her method, she proved that
(except for some particular solutions) the only cases in which the general solution is
a meromorphic function of the time are the Euler, Lagrange and Kowalevski’s cases
([34]). Lyapounov generalized the Kowalevski result and proved that (except for some
particular solutions) the general solution is single-valued only in the above mentioned
three cases. His method relies on the analysis of the variational equations along a
known solution ([39, 37]).

In 1963 Arnold and Krylov analyzed sufficient conditions for the existence of
a single valued (but not complex analytical!) first integral of a linear differential
equation. And, under some conditions, they proved the uniform distribution of values
of the monodromy group on the corresponding invariant. Their proof is based upon
the properties of the closure of the monodromy group considered as contained in a
linear Lie group ([2]). We remark that this is not so far from the fact that the Galois
group of the linear differential equation is the Zariski adherence of the monodromy
group (see below the sections devoted to the differential Galois theory).

Ziglin himself, in a second paper, applied his theorem to the rigid body and ob-
tain that, except for the three above mentioned cases, this system is not completely
integrable. He also studied the problem of the existence of an additional partial first
integral and eventually included the Goryachev-Chaplygin case. Finally he applied
his method to the Hénon-Heiles system and to a particular Yang-Mills field. For
this last system, Ziglin proved the non-existence of a local meromorphic first integral
independent of the Hamiltonian in any neighborhood of the hyperbolic equilibrium
point ([75]). In the present paper we also obtain the local non-integrability of some
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Hamiltonian systems in a neighborhood of an equilibrium point. But in our situa-
tion the equilibrium points can be degenerate (see below the section 6 devoted to
applications).

In 1985 Ito applied the Ziglin Theorem to the non-integrability of a generaliza-
tion of the Hénon-Heiles system ([27]). From this moment until today many papers
appeared about this subject. We shall comment briefly some of them.

Yoshida published a series of papers about the application of Ziglin theorem to
some homogeneous two degrees of freedom potentials with a invariant plane. For such
potentials he can project the normal variational equation over the Riemann sphere
and he get a hypergeometric equation ([71, 72]. Later Churchill and Rod interpreted
geometrically Yoshida results as a reduction by discrete symmetries of the associated
holomorphic connection ([12], see also [6, 14]). There are also some papers oriented
towards the applications [24, 73, 26, 65]. In a forthcoming paper, using the main
results of the present article, we will improve Yoshida’s results [49].

The differential Galois approach of Ziglin Theory appeared for the first time, in
an independent way, in [14] and [47]. The papers [51], [5], [15] and [52] followed. Two
applications of the theory (developed in [14]) to non-academic examples are [35, 59].
A common limitation of these works is the restriction to fuchsian variational equations
(their singularities must be regular singular). Here we overcome this difficulty. Our
basic idea is very simple: we get rid of the monodromy group and we work directly with
the differential Galois group. Another problem, inherent to Ziglin original approach,
is the separation between two types of first integrals: the first integrals useful in order
to make the reduction and the others. (Of course if we assume the involutivity and
independence of all the integrals, then from a theoretical point of view this distinction
is no longer relevant.) In fact if some integrals are independent over Γ, then the
differential Galois theory itself allows us to clarify the process of reduction (cf. 4.3,
4.4 below).

The majority of non-integrability criteria known to date do not take any account
of the involutivity hypothesis: only the independence of the first integrals is used. So,
if one excepts a Poincaré’s result quoted above, we exhibit more or less for the first
time an obstruction to the complete integrability in Liouville sense (taking account
not only of the number of independent first integrals, like in the works of Ziglin and
his followers, but also of their involutivity).

We can express simply our guiding idea when we began to think to this problem:
if the initial Hamiltonian system XH is completely integrable (in Liouville sense clas-
sical in mechanics) then the VE must also be integrable (but in the different sense
of the differential Galois Theory, that is the corresponding Picard-Vessiot extension
must be a Liouvillian extension, or equivalently the identity component of the cor-
responding differential Galois group must be a solvable algebraic group). In fact we
eventually obtained a more precise result: in the complete integrability case the iden-
tity component of the differential Galois group of the VE must be abelian. Our proof
is based on an infinitesimal method: we analyze the structure of the Lie algebra of
the Galois group. This approach is clearly allowed by the galoisian formulation of
Ziglin’s theory: the differential Galois group is an algebraic group, and therefore a Lie
group. In Ziglin’s initial formulation the (monodromy) group is not a Lie group and
it is impossible to use an infinitesimal method. We remark that the differential Galois
group contains the monodromy group and therefore the Zariski closure of this mon-
odromy group. But, in the irregular (i.e. non fuchsian) case, the differential Galois
group can be larger than this Zariski closure. We stress the fact that in any search
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for non-integrability criteria the larger is the differential Galois group the better is
the situation.

We will apply the above non-integrability result to the family of two degrees of
freedom Hamiltonian potentials

U(x1, x2) =
1

3
x3

1 +
1

2
(a+ bx1)x

2
2, a ∈ C∗, b ∈ C,

U(x1, x2) =
1

2
xn

1 +
1

2
(axn−4

1 + bxn−3
1 + cxn−2

1 )x2
2, n ∈ N, n > 3.

In two forthcoming papers [49, 50] we will apply our non-integrability result to
various non academic classical situations (homogeneous potentials, N-body problems,
cosmological model...), getting not only new simple proofs of known results but also
many new results. The reader may check that in all these applications it is easy to
conclude using a unified and systematic approach:

–1. Select a particular solution.
–2. Write the VE and afterwards the NVE.
–3. Check if the identity component of the differential Galois group of the NVE

is abelian.
As we will see, the step 2 is easy (in section 4 we will give an algorithm for

obtaining the NVE from the VE). Step 3 appears quite problematic in general, but
in many particular cases, as it will be seen in our applications, efficient algorithms do
exist. (The prototype is the Kovacic’s algorithm for second order equations.) In all
the applications that the authors know, the step 1 (which is shared by all the classical
proofs of non integrability) is achieved by the existence of a completely integrable
subsystem (typically, by the existence of an invariant plane). Of course this is in
some sense unsatisfactory from a philosophical point of view: if a system is “as far
as possible” from integrability, then each integral curve will be pathological and our
method does not work. However in such cases the classical methods fail for the same
reason.

The paper is organized as it follows.
In sections 2 and 3 we recall the basic tools that we need (meromorphic con-

nections, symplectic connections, tensor constructions, elementary differential Galois
theory, Stokes phenomena,...) Most are well known, however we need some comple-
ments that are detailed in three appendices. (These appendices are more abstract
and perhaps technically more difficult than the main body of the paper.)

In section 4 we recall the construction of the VE and we describe the reduction
process and the resulting NVE. This section contains an elementary but important
new result that is essential in the applications: if the identity component of the
differential Galois group of the VE is abelian then the identity component of the
differential Galois group of the NVE is also abelian (see Proposition 6 (ii) below).

Our central results appear in section 5. The first is Theorem 6. It is a purely al-
gebraic result whose proof relies on symplectic algebra (Poisson algebras) and musical
isomorphisms. It is used as an essential tool in the proof of our main results: The-
orems 7, 8, 9 (and their corollaries). These last theorems are variations (in different
situations) of the central result already described: the non abelianity of the identity
component of the differential Galois group of the VE (or the NVE) is a criterion for
the non complete integrability (in Liouville sense).

Section 6 is devoted to some examples.
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2. Linear Differential Equations and Connections.

2.1. Meromorphic Connections. Linear connections are the intrinsic version
of systems of linear differential equations. Moreover with connections it is possible to
work with fiber bundles which are not necessarily trivial. A good reference for this
section is [66] (see also [17], [18], [29], [43]).

Let Γ be a connected Riemann surface. We denote by OΓ its sheaf of holomorphic
functions, by ΩΓ its sheaf of holomorphic 1-forms (corresponding to the canonical
bundle) and by XΓ its sheaf of holomorphic vector fields. (We will identify vector
fields with derivations on OΓ.) We have a structure of sheaf of Lie-algebras on XΓ.
There exist clearly natural structures of OΓ-modules on respectively ΩΓ and XΓ.
There exists a natural map (contraction)

ΩΓ ⊗OΓ
XΓ → OΓ.

ω ⊗ v →< ω, v >

Let V be a holomorphic vector bundle of rank m on Γ. We denote by OV its
sheaf of holomorphic sections. Then a holomorphic connection is by definition a map

∇ : OV → ΩΓ ⊗OΓ
OV ,

satisfying the Leibniz rule

∇(v + w) = ∇v +∇w

∇fv = df ⊗ v + f∇v.

(Where v, w are holomorphic sections of the fiber bundle V and f is a holomorphic
function.)

By definition a section v of the fiber bundle V is horizontal for the connection ∇
if ∇v = 0.

If the connection ∇ is fixed, then to each holomorphic vector field X over Γ, we
can associate the covariant derivative along X

∇X : OV → OV .

∇X : v →< ∇v, X > .

It is clearly a C-linear map. If we denote by EndC(OV ) the sheaf of spaces of
C-linear endomorphisms of the sheaf of complex vector spaces OV , then we get a map

∇ : XΓ → EndC(OV ),

X �→ ∇X ,

such that

∇X(v + w) = ∇Xv +∇Xw,

∇X(fv) = X(f)v + f∇Xv, f ∈ OΓ.

As, in general, in that what follows the field X will be fixed, we will write ∇
instead of ∇X .

We are going to compute ∇ in local coordinates. Let X be a holomorphic vector
field over an open subset U of the Riemann surface Γ. Restricting U if necessary, we
can suppose that there exists a holomorphic local coordinate t over U such that

X =
d

dt
.
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Let e = {e1, ..., em} be a holomorphic frame of U , i.e. the data of m holomorphic
sections of V over U , such that e1(p), ..., em(p) ∈ Vp are linearly independent at every
point p ∈ U . Then we can set

∇ej = −
m∑

i=1

aijei,

being (aij) a square matrix of order m whose entries are holomorphic functions over
U . We write ∇e = −Ae.

The matrix A = (aij) is by definition “the” connection matrix and it determines
completely the connection: if v is a holomorphic section over U , then we can write it
in coordinates

v =

m∑
i=1

ξiei,

where the ξi’s are holomorphic functions over U , and we have

∇v =

m∑
i=1

(
dξi

dt
−

m∑
j=1

aijξj)ei,

i.e., the connection ∇ is represented in the local coordinate t and the frame e by the
linear differential operator

∇ := ∇ d
dt
=

d

dt
−A.

Hence, we can associate to the solutions ξ ∈ Om
U of the linear differential system

dξi

dt
=

m∑
j=1

aijξj , i = 1, ..., m,

the horizontal sections v of the connection

∇v = 0.

More precisely the map

ξ �→
m∑

i=1

ξiei

induces an isomorphism of m-dimensional complex vector spaces between the space
of solutions and the space of horizontal sections.

In fact we are interested not only in differential equations (or systems) with holo-
morphic coefficients, but also in differential equations (or systems) with meromorphic
coefficients, therefore we need to extend the above concept of holomorphic connection
in order to deal with poles and consequently to introduce meromorphic connections.
We shall follow the section 4 of [66] (a more detailed analysis in the context of free
coherent sheaves can be found in [41])

Let Γ a connected Riemann surface and V a holomorphic vector bundle on Γ. In
practically all our applications the situation will be as follows. Let Γ ⊂ Γ be an open



GALOISIAN OBSTRUCTIONS TO NON-INTEGRABILITY 39

subset such that S = Γ − Γ is a discrete subset (the singular set). We will consider
meromorphic sections of the bundle V , and in general we will limit ourselves to sections
whose restriction to Γ is holomorphic. Then at any point s ∈ S their components in
coordinates with respect to a holomorphic local frame are meromorphic functions in
a neighborhood Us, which are holomorphic on Us − {s}, with a pole at s. Using a
local holomorphic coordinate t (vanishing at s) we can identify these functions with
elements of the field C{t}[t−1] (that is the field C{t}[t−1] with the field ks of germs
at s of meromorphic functions).

We denote byMΓ the sheaf of meromorphic functions over Γ, byM1
Γ
=MΓ⊗O

Γ

ΩΓ the sheaf of meromorphic 1-forms and by LΓ = MΓ ⊗O
Γ
XΓ its sheaf of mero-

morphic vector fields. We have a structure of a sheaf of Lie algebras on LΓ. There
exist clearly natural structures of sheaves of MΓ-vector spaces on respectively M1

Γ
and LΓ. There exists a natural map (contraction)

M1
Γ
⊗M

Γ
LΓ →MΓ.

μ⊗ v →< μ, v >

Let V be a holomorphic vector bundle of rank m on Γ. We denote by MV its
sheaf of meromorphic sections. Then a meromorphic connection on V is by definition
a map

∇ :MV →M1
Γ
⊗M

Γ
MV ,

satisfying the Leibniz rule

∇(v + w) = ∇v +∇w

∇fv = df ⊗ v + f∇v,

where v, w are holomorphic sections the fiber bundle V and f is a meromorphic
function.

If the meromorphic connection ∇ is fixed, then to each meromorphic vector field
X over Γ, we can associate the covariant derivative along X

∇X :MV →MV .

∇X : v �→< ∇v, X > .

It is clearly a C-linear map. Then if we denote by EndC(MV ) the sheaf of
C-linear endomorphisms of the sheafMV , then we get a map

∇ : LΓ → EndC(MV ),

X �→ ∇X ,

such that

∇X(v + w) = ∇Xv +∇Xw,

∇X(fv) = X(f)v + f∇Xv, f ∈ MΓ.

Let ∇ be a meromorphic connection over Γ. We will say that it is holomorphic
at a point p ∈ Γ if, for every germ at p of a holomorphic vector field X the space
of germs at p of holomorphic sections of the fiber bundle V is invariant under the
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covariant derivative ∇X . Later we will consider connections which are meromorphic
on Γ and holomorphic on Γ. They can have poles on the singular set S.

If we want to compute in local coordinates in a neighborhood of a singular point
s ∈ S, then we choose a holomorphic coordinate t at s (vanishing at s) and we write
our given vector field X = f(t) d

dt , where f ∈ ks (in general we cannot write X as
d
dt , because the vector field X may vanish or admit a pole at the point s, as we will
see later: cf.section 3). Then using a holomorphic frame e of V as above, we get a
differential system

∇ = f(t)
d

dt
−A(t).

We can introduce the meromorphically equivalent differential system

d

dt
−B(t),

where B = f−1A is a meromorphic matrix over U .
We denote the field of (global) meromorphic functions over Γ by kΓ. It is impor-

tant to notice that every holomorphic fiber bundle over a connected Riemann surface
Γ is meromorphically trivialisable over Γ (i.e. globally, cf. Appendix A). Therefore its
space of global meromorphic sections is isomorphic to some km

Γ
. We can in particular

choose a non trivial meromorphic vector field X over Γ. It will define a derivation
δ over the field kΓ and we will get a differential field (kΓ, δ). If V is a holomorphic

vector bundle over Γ and ifMV ≈ km
Γ
is its kΓ-vector space of meromorphic sections,

then the covariant derivative ∇X induces a C-linear endomorphism of the spaceMV

and therefore it can be interpreted as a C-linear endomorphism of the space km
Γ
. We

can choose as a “local coordinate” t over Γ a non trivial global meromorphic function
over Γ (it will be a true local coordinate–i.e. a local biholomorphism–but perhaps
over a discrete subset). We can write X = f(t) d

dt , where f ∈ kΓ. Then we can

choose a global meromorphic frame of V over Γ, that is a set e = {e1, . . . , em} of
meromorphic sections of V inducing a true holomorphic frame over a non trivial open
subset (necessarily dense). Finally, doing as above, we can interpret our connection
as a global meromorphic differential system

∇ = f(t)
d

dt
−A(t).

or equivalently

d

dt
−B(t),

where B = f−1A is a global meromorphic matrix (whose entries belongs to kΓ).
In the preceding process it is in general necessary to introduce new poles. We

will keep our notations, always denoting by S the new singular set and by Γ the new
regular set (i.e. the set S can be bigger than the set of poles of our connection).

We will also need meromorphic connections on meromorphic bundles over a con-

nected Riemann surface Γ
′
. It is easy to adapt the preceding definitions using Ap-

pendix A. We leave the details to the reader. In our applications the more general
situation will be the following: ∇ will be a meromorphic connection on a meromorphic

bundle over Γ
′
. By restriction we will get a meromorphic connection on a holomorphic
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bundle over an open dense subset Γ ⊂ Γ
′
, and by a new restriction a holomorphic

connection on a holomorphic bundle over an open dense subset Γ ⊂ Γ. The sets Γ−Γ
and Γ

′−Γ will be discrete (and in general finite) subsets and they will correspond to
the introduction of respectively equilibrium points and points at infinity.

2.2. Tensor Constructions. In this section we fix a connected Riemann surface
Γ, and a non trivial meromorphic vector field X over Γ. We interpret this field as a
derivation on the field of global meromorphic functions kΓ = M(Γ) over Γ. As we
explained in the preceding subsection, we can consider a meromorphic vector bundle
as a vector space over kΓ.

From a given meromorphic connection ∇ defined on the vector bundle V , we can
obtain an infinite number of induced meromorphic connections ([17, 18, 29, 43, 66]) by
natural geometric processes. The idea is to extend naturally the connection to the ten-
sor levels, imposing that the Leibniz rule is satisfied by the tensor products (∇(u⊗v) =
∇u⊗v+v⊗∇v) and that the action on a direct sum is the evident one (i.e. ∇(U⊕V ) =
∇U ⊕∇V ). So, we can construct connections: ∇∗, ⊗k∇, ∧k∇, Sk∇, acting re-
spectively on the bundles V ∗, ⊗kV, ∧kV, SkV . By definition ⊗0V is the field
of meromorphic functions and we endow it with the connection X (interpreted as
a derivation on this field). With all these constructions we can built various direct
sums and we can iterate the process... So, for example, ∧3(∇∗ ⊕ S2∇) is an induced
connection. If a subbundle is invariant by a connection, this connection is by defi-
nition a subconnection. We can also introduce subconnections and quotients in our
machinery.

We observe the similarity of the above definitions with the derivations in differ-
ential geometry (Lie derivative, etc...). This is not a coincidence; in section 3 we will
consider a connection as a Lie derivative.

In a natural way we can generalize the above in order to consider constructions
using a family of given connections. For instance, let∇1, ∇2 two meromorphic connec-
tions over the vector bundles V1, V2 respectively, then the tensor product ∇1 ⊗∇2 is
defined by the Leibniz rule as above,∇1⊗∇2(u⊗v) = ∇1u⊗v+v⊗∇2v, where v ∈ V1,
u ∈ V2. In an analogous way we define the direct sum of connections,...Finally we get
the tensor category of the meromorphic connections over Γ. The homomorphisms of
this category are defined in the following way. A homomorphism φ between ∇1, ∇2

is a homomorphism of the underlying vector spaces (over the field kΓ) φ : V1 → V2,
such that φ∇1 = ∇2φ. (For more details and formal definitions which are not needed
here the interested reader can consult [18]).

Now, we will compute the connection matrices in some examples.
The dual connection ∇∗ is defined from the Leibnitz rule by

X < α, v >=< ∇∗α, v > + < α,∇v >,

where v ∈ V , α ∈ V ∗, <, > being the duality. If e and e∗ are dual frames in V and
V ∗, respectively, then we have

< ∇∗e∗, e >=
d

dt
< e∗, e > + < e∗, eA >=< e∗At, e >,

being A the connection matrix of ∇ in the frame e, i.e., ∇e = −Ae. Hence, we have
obtained nothing else that the adjoint differential equation: the adjoint differential
equation of

dξ

dt
= Aξ
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is by definition

dη

dt
= −Atη.

We observe that, in order that α =
∑m

i=1 ηie
∗
i be a linear first integral of

∇v = 0,

it is necessary and sufficient that

∇∗α = 0.

This is a well known property of the adjoint. In a similar way, it is possible to prove
that the horizontal sections of Sk∇∗ are the homogeneous polynomial first integrals
of the linear equation defined by the initial connection on V .

It is usual to write ∇ instead of ∇∗, ⊗k∇, etc..., if the vector bundles on which
these connections act are clear enough and we will follow this convention.

The connection ∧m∇ (dimV =m) is defined by

∇(v1 ∧ ... ∧ vm) =

m∑
i=1

v1 ∧ ... ∧∇vi ∧ ... ∧ vm.

Then ∇(e1∧...∧em) = tr(A) e1∧...∧em. And we have the differential equation for the
determinant of a fundamental matrix of (3) ( v1∧ ...∧vm = det(v1, ..., vm)e1∧ ...∧em).

2.3. Symplectic Connections. Symplectic manifolds. We are mainly in-
terested in the following particular vector bundles and connections. A holomorphic
symplectic vector bundle over a complex manifold Σ is a vector bundle V such that
there exists a holomorphic section Ω of ∧2V ∗ over Σ such that its restrictions to the
fibers of V are non degenerate antisymmetric 2-forms. (Let m = 2n be the rank of
V .) It is equivalent to say that the vector bundle V admits the symplectic group
G = Sp(2n;C) as a structure group in the sense of Appendix C (we leave the details
to the reader).

By the appendix A, a symplectic vector bundle V over a connected Riemann
surface is symplectically meromorphically trivial. As above we denote by kΓ the field

of meromorphic functions over Γ. We denote by E the kΓ-vector space of global
meromorphic sections of V . The form Ω induces a kΓ-bilinear antisymetric map

Ω; E ⊗ E → kΓ

(v, w) �→ Ω(v, w).

If v, w are holomorphic sections of V in a neighborhood of a point p ∈ Γ, then
Ω(v, w)(p) = Ω(v(p), w(p)) ∈ C. Consequently the kΓ-bilinear map

Ω : E ⊗ E → kΓ

is non degenerate.
Finally, for many applications, we can identify the symplectic bundle V with the

symplectic vector space E over the field kΓ. In this situation all the purely algebraic
results on symplectic vector spaces over the numerical fields R or C remain also true
here ([3]). In particular, there are symplectic bases (i.e., canonical frames given by
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global meromorphic sections), and with respect to a symplectic base Ω is represented
by the canonical form

J =

(
0 I
−I 0

)

Furthermore, changes of symplectic bases are given by elements of the symplectic
group Sp(n, kΓ) ⊂ GL(2n, kΓ).

By definition we will say that a (holomorphic or more generally meromorphic)
connection ∇ over the symplectic bundle V (or (∇, V,Ω) in a more formal way) is
symplectic if Ω is a horizontal section of ∧2∇∗, i.e., if it satisfies ∇Ω = 0 (for a related
definition see [5]). Then, it is easy to see that, after a choice of coordinate, if we
compute the connection matrix A of ∇ in a symplectic frame e, then it satisfies

AtJ + JA = 0

(To show this it is sufficient to remark that 0 = ∇Ω = ∇(e∗ ⊗ Je∗t)). This condition
is equivalent to the existence of a meromorphic symmetric matrix S such that A =
JS, and the matrix A belongs to the Lie Algebra of the symplectic Lie Group with
coefficients in the field kΓ. Then the equation

∇v = 0

is the intrinsic expression of the linear Hamiltonian system

ξ̇ = JSξ,

being ξ = (ξ1, ..., ξ2n)
t the coordinates of v in the symplectic base.

Conversely if the matrix of the connection ∇ computed in a symplectic frame is
symplectic, then ∇Ω = 0 and this connection is symplectic. Therefore our definition
of a symplectic connection is equivalent to the definition of a connection with structure
group G = Sp(2n;C) that we give in Appendix A.

All the above constructions remain valid if we start with a local meromorphic
connection on the vector space V over the field C{t}[t−1] with the suitable dictionary:
d
dt instead X ,...

We recall that a complex analytic symplectic manifold is a complex analytic man-
ifold M , of complex dimension 2n, endowed with a closed regular (i.e. everywhere
non degenerate) holomorphic 2-form Ω. This form is a holomorphic section of the
bundle Λ2T ∗M , therefore it is equivalent to say that the tangent bundle TM admits
a structure of holomorphic symplectic bundle.

To a holomorphic (resp. meromorphic) vector field X over M , we can associate
a holomorphic 1-form α, using the formula

α(Y ) = Ω(Y, X).

We get the musical isomorphisms of holomorphic fiber bundles


 : TM → T ∗M


 : X �→ α

and

� : T ∗M → TM.
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If H is a given holomorphic function over M (the Hamiltonian), then we get a
holomorphic vector field (the associated Hamiltonian vector field) XH = �(dH).

In fact, for some applications (cf. the introduction of the points at infinity below),
it is necessary to allow meromorphic Hamiltonians functions (then the corresponding
Hamiltonian vector field will be of course also meromorphic). But it can also be
necessary to allow degenerated points or poles for the canonical form Ω. Then we
will consider a complex connected manifold M ′ of complex dimension 2n, endowed
with a closed meromorphic 2-form Ω. We will suppose that Ω is holomorphic and
regular over a non void open subset M ⊂ M ′. Then we can choose M such that
M ′−M is an analytic (non necessarily regular) hypersurface M∞ ⊂ M ′. The form Ω
is a meromorphic section of the bundle Λ2T ∗M , therefore it is equivalent to say that
the tangent bundle TM admits a structure of meromorphic symplectic bundle. The
manifold (M,Ω‖M ) is clearly a symplectic manifold. We will call M∞ the hypersurface
at infinity.

Example. Let M ′ = P 1(C)×P 1(C), M = C2, M∞ = {∞}×P 1(C)∪P 1(C)×
{∞}. We denote (x, y) ∈ C2 and by x′, y′ the coordinates at infinity over respectively
the first and second factor P 1(C) of M ′. Then we set Ω = dx∧dy over M . It extends

uniquely to a meromorphic form overM ′ and we have Ω = dx′∧dy′

x′2y′2 over a neighborhood

of {∞} × {∞}.
We go back to our general situation.
To a holomorphic (resp. meromorphic) vector field X over M ′, we can associate

a meromorphic 1-form α, using the formula

α(Y ) = Ω(Y, X).

By restriction to M we get the usual musical map 
. This map is an isomorphism
over M . Writing the application 
 in coordinates in a neighbourhood of a point at
infinity, we see that 
 admits an inverse, this inverse is holomorphic over M but can
have poles over M∞.

We get the musical isomorphisms of meromorphic fiber bundles


 : TM → T ∗M


 : X �→ α

and

� : T ∗M → TM.

3. Picard-Vessiot Theory. The Galois differential theory for linear differential
equations is named the Picard-Vessiot Theory. We shall recall the basic definitions
and results, using some different approaches to this theory ([28, 29, 32, 43, 62]). As
we will see below all of them will be useful in our paper.

3.1. Classical approach. A differential field is a field with a derivative (or
derivation) ∂ =′, i.e., an additive mapping that satisfies the Leibniz rule. Examples are
M(Γ) (meromorphic functions over a connected Riemann surface Γ) with a (non triv-
ial) meromorphic tangent vector field X as derivation, in particular C(z) =M(P1)
with d

dz or z d
dz as derivation, C{x}[x−1] (convergent Laurent series), or C[[x]][x−1]

(formal Laurent series) with x d
dx as derivation. We observe that there are some in-

clusions between the above differential fields.
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We can define differential subfields, differential extensions in a direct way, impos-
ing that the inclusions must commute with the derivations. Analogously a differential
automorphism of K is an automorphism that commutes with the derivation. The
field of constants of K is by definition the kernel of the derivation. In all the above
examples it is the complex field C. From now on we will suppose that it is always the
case.

Let

ξ′ = Aξ, A ∈Mat(m, K).(3.1)

We shall proceed to associate to the differential system (3.1) a so called Picard-
Vessiot extension of K. A Picard-Vessiot extension L of K associated to (3.1) is an
extension L of K, such that

(a) It is differentiably generated over K by the entries uij∈L of a fundamental
matrix U of (3.1). (A fundamental matrix solution U is a matrix whose set of columns
u1, ..., um ∈ Lm is a fundamental system of solutions of the equation (3.1), that is a
system linearly independent over the field of constants C.)

(b) The fields K and L = K < U > have the same constants.
The existence and unicity (up to K-isomorphisms) of a Picard-Vessiot extension

is due to Kolchin. In the analytical case: K =M(Γ) (where Γ is a connected Riemann
surface), the existence of a Picard-Vessiot extension follows from the (analytic) Cauchy
existence theorem for linear differential equations. More precisely we get a different
Picard-Vessiot extension for each non singular point p ∈ Γ. A homotopy class of
continuous paths between two non singular points p, p′ (avoiding singular points)
induces an isomorphism between the corresponding Picard-Vessiot extensions.

As in the classical Galois theory we define the Galois group G := GalK(L) :=
Gal(L/K) of the differential system (3.1) as the group of all the (differential) au-
tomorphism of L which leave fixed the elements of K. This group is isomorphic to
an algebraic linear group over C, i. e., to a subgroup of GL(m,C) defined by some
polynomial equations (in m2 variables) over C. Also we will say that the differen-
tial extension M/K is normal if any element in M \ K is moved by a differential
automorphism of M which leaves fixed the elements of K.

It is possible to extend the Galois correspondence between groups and extensions
to this theory:

Theorem 2. Let L/K be a Picard-Vessiot extension associated to a linear dif-
ferential equation. Then there is a 1 − 1 correspondence between the intermediate
differential fields K ⊂ M ⊂ L and the algebraic subgroups H ⊂ G := GalK(L),
such that H = GalM (L) and M = KH (the subfield of L fixed by H). Furthermore,
the normal extensions M/K correspond to the normal subgroups H ⊂ GalK(L) and
G/H = GalK(M).

As a corollary if we consider the algebraic closure K (of K in L), then GalK(K) =
G/G0, where G0 = GalK(L) is the identity component (using the Zariski topology)
of the Galois group G (which corresponds to the purely transcendental part of the
Picard-Vessiot extension).

Another consequence of the theorem is that if Λ ⊂ Γ is a connected Riemann
surface contained and open in the connected Riemann surface Γ and L is a Picard-
Vessiot extension of M(Γ), then GalM(Λ)(L) ⊂ GalM(Γ)(L). Similarly the local

Galois groupGalC{x}[x−1](L) := Galks
(L) at a (singular) point s ∈ Γ−Γ is a subgroup

of the global Galois group GalM(Γ)(L) (as in the subsection 2.1, we identify the germs
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of meromorphic functions at a singular point s with Laurent series centered at this
point).

We will say that a linear differential equation is (Picard-Vessiot) solvable if we
can obtain a corresponding Picard-Vessiot extension and, hence, the general solution,
by adjunction to K of integrals, exponential of integrals or algebraic functions of
elements of K (the usual terminology is that the Picard-Vessiot extension is a Liouville
one). Then, it can be proved that the equation is solvable if and only if the identity
component G0 is a solvable group. In particular, if the identity component is abelian,
then the equation is solvable.

Furthermore, the relation between the monodromy and the Galois group (in the
analytic case) is as follows. The monodromy group is contained in the Galois group
and if the equation is of Fuchsian class (i.e., only has regular singular singularities),
then the Galois group is dense in the monodromy group (Zariski topology). In this
case we will say that the Galois group is topologically generated by the monodromy
group. In the general situation, the second author found a generalization of the
above and, for example, he proved that the Stokes matrices associated to an irregular
singularity belong to the (local) Galois Group (see subsection 3.3).

As in the examples along this paper the irreducible equations that we shall meet
will be of second order and symplectic ones, we recall here the classification of the
algebraic subgroups of SL(2,C). From [33], page 7 (or [28], page 32), it is possible to
prove:

Proposition 1. Any algebraic subgroup G of SL(2,C) is conjugate to one of
the following types:

1. Finite, G0 = {1}, where 1 =

(
1 0
0 1

)
.

2. G = G0 =

{(
1 0
μ 1

)
, μ ∈ C

}
.

3. G =

{(
λ 0
μ λ−1

)
, λ is a root of unity, μ ∈ C

}
,

G0 =

{(
1 0
μ 1

)
, μ ∈ C

}
.

4. G = G0 =

{(
λ 0
0 λ−1

)
, λ ∈ C∗

}
.

5. G =

{(
λ 0
0 λ−1

)
,

(
0 −β−1

β 0

)
λ, β ∈ C∗

}
,

G0 =

{(
λ 0
0 λ−1

)
, λ ∈ C∗

}
.

6. G = G0 =

{(
λ 0
μ λ−1

)
, λ ∈ C∗, μ ∈ C

}
.

7. G = G0 = SL(2,C).

We remark that the identity component G0 is abelian in the cases (1)–(5) and is
solvable in the cases (1)–(6).

An useful criterion for unimodularity is the following. The second order equation
(with coefficients p and q in a differential field K)

ξ′′ + pξ′ + qξ = 0,(3.2)
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has a Galois group contained in SL(2,C) if, and only if, p = nd/d′, n ∈ Z, d ∈ K. To
show this we note that for all σ in the Galois group, the Wronskian W ∈ K if, and
only if, W = σ(W ) = det(σ)W , which is equivalent to det(σ) = 1. We get the result
by the Abel formula W ′ + pW = 0.

We finish this subsection with some results about abelian extensions.
We recall that a connected commutative algebraic group (over the field C) is the

direct product of its unipotent radical and a maximal torus. Therefore it has the
form Gp

a × Gq
m, being Ga ≈ (C,+), Gm ≈ (C∗, )̇, the additive and multiplicative

unidimensional groups. We have the following results [40].(Abelian Extensions, p.
83-84.)

Proposition 2. Let K be a differential field with an algebraically closed field
of constants C (characteristic zero). Let K ⊂ L be a Picard-Vessiot extension. We
suppose that Gal(L/K) = H1 ×H2 is a direct product of algebraic subgroups Hi. Let
Li = LHi ⊂ L the corresponding subfields. Then L1 ⊗K L2 is an integral domain
whose fraction field is isomorphic to L.

Proposition 3. Let K be a differential field with an algebraically closed field
of constants C (characteristic zero). Let K ⊂ L be a Picard-Vessiot extension with
connected commutative differential Galois group. Then there exists finite families ai’s,
bj’s, ai, bj ∈ L, such that a′

i ∈ K and b′j/bj ∈ K.

3.2. The Tannakian approach. We present now the Galois theory from an
intrinsic perspective, using connections ([17, 29, 43]). Let (V,∇) be, as in section
2, a meromorphic connection over a fiber bundle of rank m. Then, we consider the
horizontal sections Sol∇ := Solp0

∇ of this connection at a fixed not singular point
p0 ∈ Γ (we recall that they correspond to the solutions of a corresponding linear
equation). By the general existence theory of linear differential equations Sol∇ is a
vector space of dimension m overC (if we consider the solutions in a simply connected
domain containing the point p0). Then the mapping

(V,∇) −→ Sol∇

is called a fiber functor (it is a functor between two tensor categories: from the
category of meromorphic connections with poles in a set S, with p0 /∈ S, to the
category of complex vector spaces).

Now, as in section 2, from a given connection we construct the family of tensor
constructions: (V,∇), (V ∗,∇∗),... To this family we add the subconnections of the el-
ements of the family. (We recall that a subconnection of a construction (C(V ), C(∇))
is an object (W, C(∇)|W ), being W a subbundle of C(V ), which is invariant by C(∇).)
The next step is to consider the corresponding spaces of solutions (i.e. horizontal sec-
tions), when one applies the functor Sol, for all the elements of this extended family.
We have C(Sol∇) = Sol(C(∇)). Then the Tannakian Galois group of the initial
connection (V,∇), Gal∇, is defined as the subgroup of GL(Sol∇) ≈ GL(m, C), that
leaves invariant the spaces corresponding to all the subconnections of all the con-
structions C(V ) (that is all the elements of the extended family). We remark that
GL(Sol∇) acts on any construction by the usual pullback on the tensors levels. The
key point is that the above Tannakian Galois group is isomorphic (as an algebraic
group) to the ordinary Galois group G of the corresponding linear equation. This ap-
proach to the Picard-Vessiot theory is called the Tannakian point of view ([17, 29, 43]).
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It is based upon Chevalley’s interpretation of algebraic groups as subgroups of the
linear group stabilizing a line in some construction ([8, 64]).

Example. Let (V,∇,Ω) a symplectic connection with rank V = 2n and X
a holomorphic vector field over Γ. We denote by ∂ the differential of the field of
meromorphic functions M(Γ) corresponding to X . We consider the construction
(M(Γ)⊕∧2V ∗, ∂⊕∧2∇∗). The line subbundle generated by 1+Ω is invariant, because
∇Ω = 0 and, for f ∈ MΓ(Γ), ∇(f(1 + Ω)) = X(f)(1 + Ω) (Ω is a horizontal section
of the connection ∧2∇∗). Hence, the corresponding construction C(1 + Ω0) that we
get when we apply the fiber functor Sol is invariant by the Galois group. Therefore,
the Galois group is contained in the symplectic group Sp(Sol(V )) ≈ Sp(n,C).

More generally, a linear algebraic group G′ being given, if a connection ∇ admits
G′ as structure group, then its differential Galois group G = Gal ∇ is (isomorphic
to) a subgroup of G′. This result is due to Kolchin, who introduced the notion of
G-extensions [32]. In Appendix C we will give a very simple Tannakian proof of this
result.

3.3. Stokes Multipliers. The objective now is to state a theorem of Ramis
(the density theorem) which relates the local Picard-Vessiot theory at an irregular
singular point with the Stokes multipliers at this point ([58, 43, 46, 9]). For sake
of simplicity, we will only explain the main concepts, in order to understand the
theorem for the particular case of a second order differential equation (or equivalently
of a system of dimension two): in this case the very delicate situation of multiplicity of
levels of summation (multisummability) cannot happen. The reader can find a good
introduction in [46] and the complete proof is in [44, 9].

We start with the local case and we will consider that the singular point is at
infinity, x0 =∞. Furthermore, we will denote by K̂ := C[[x−1]][x], K := C{x−1}[x],
respectively the field of formal and convergent Laurent series respectively. Then our
objective is to calculate the Galois group of the equation

d

dx

(
ξ1

ξ2

)
= A

(
ξ1

ξ2

)
, A ∈ Mat(2, K).(3.3)

We also assume that the Newton polygon of the above equation has only one
integer slope k ∈ N∗. This is called the non ramified case and the general case can
be reduced to this one by a simple argument using a ramification. By the Newton
polygon of (3.3) we mean the Newton polygon of any equivalent second order scalar
differential equation in z = 1

x , i.e., the Newton polygon of a differential polynomial

P [D] = pD2 + qD + r (the equation is P [D]ξ = 0), being D = d
dz , p ∈ C[z], q, r ∈

C{z}, p(0) = q(0) = 0. By the Fuchs theory, it is not difficult to see that the point
z0 = ∞ is an irregular singular point if, and only if, in the Newton polygon there is
a side with a non zero slope.

We know from the classical formal theory (Huhukara-Turrittin, Wasow [67]), that
the system (3.3) admits a formal fundamental matrix solution Û of (3.3), such that

Û = ĤxLeQ, L ∈M(2,C),

where Q = diag(q1, q2), q1, q2 ∈ C[x], LQ = QL, and Ĥ is a formal matrix (with
entries in K̂).

Then the unique positive slope k of the Newton polygon of the system (3.3) is
k = degree(q1 − q2).
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It is interesting to observe that if q1 = q2 = 0, then we are in the regular singular
situation: the singular point is a regular singular one and the formal matrix Ĥ is
convergent; moreover if H is its sum, then U = HxLeQ is an actual fundamental
matrix solution. But, if q1 or q2 �= 0, then the formal matrix Ĥ is in general divergent,
and the relation between formal and actual solutions is more delicate to understand.

In order to state the Ramis density theorem we need some terminology: we need
to define the exponential torus, the formal monodromy and the Stokes multipliers.

The exponential torus of (3.3) is an algebraic subgroup of the differential Galois
group. It is defined (up to an isomorphism) as the differential Galois group of the
Picard-Vessiot extension

K̂ < eq1 , eq2 > /K̂.

We see that this group is the Galois group of the trivial equation (that we interpret
as defined over K̂):

dξi

dx
=

dqi

dx
ξi, i = 1, 2.

This exponential torus is (isomorphic to) C∗ or (C∗)2 if, respectively, the rank of the
Z-module MQ ⊂ C[1/x] generated by {q1, q2} is one or two. In the first case, the
action of C∗ is defined by

λ : eqi = enis �→ λnienis, , λ ∈ C∗, Zs = MQ,

and, in the second case by

λi : e
qi �→ λie

qi , i = 1, 2.

(By definition this action is constant on the coefficient field K̂.)
The formal monodromy is the transformation M̂ ∈ GL(2,C), such that

Û �→ ÛM̂ ,

when we make formally the circuit

x �→ e2πix.

The formal monodromy and the exponential torus are clearly formal invariants.
They are in the formal differential Galois group (ie, over K̂) and generate topologically
(in the Zariski sense) this group.

A sector at infinity is characterized by d, α, where α is the “vertex” angle and d
the bisecting line, and its “radius”. We will denote such a sector Sd(α).

To the system (3.3), we associate its singular directions. By definition, they are
the maximal decay (half) lines for the functions eq1−q2 or eq2−q1 . Following Stokes,
it would be nice to call them “Stokes lines”. Unfortunately many people call Stokes
lines the boundaries of the sectors Sd(π/k), where d is a singular direction. Here we
will adopt this second definition.

We know from the classical asymptotic theory (Birkhoff, Wasow [67]) that, for
any open angular sector Σ at∞ of vertex angle ≤ π/k, there exists an actual analytic
matrix solution U = HxLeQ of the system (3.3) on Σ, such that the analytic matrix
H admits the formal matrix Ĥ as an asymptotic expansion:

H ∼ Ĥ.
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This is a version of the “fundamental existence theorem”.
We will denote

U ∼ Û .

The problem is that such a U is in general not unique and that the correspondence
Û �→ U is not very good from an algebro-differential viewpoint. It is possible to
overcome this difficulty, using Ramis k-summability theory ([43], [44]).

For a given k > 0 and a given direction d we say that the formal series f̂ =∑
n≥0 anx−n ∈ C[[1/x]] is k-summable in the direction d if there exists a germ at

infinity of open sector Σ bisected by d, with vertex angle greater than π/k and a
holomorphic function f on Σ, satisfying inequalities:

xn | f(x)−
n−1∑
p=0

apx
−p |< CW (n!)1/kAn

W ,

for every x ∈W , n ∈ N, on every “proper” subsector W ⊂ Σ and for some constants
CW , AW .

The function f is then unique and is called the k-sum of f̂ in the direction d.
These definitions easily extend to Laurent series. The correspondence f̂ �→ f is
an injective homomorphism of differential algebras. The k-sum f admits f̂ as an
asymptotic expansion on Σ. For f̂ ∈ K, the k-sum is of course the usual sum. Also,
we can extend the above definition to a matrix of formal series Ĥ = (ĥij), by imposing
that each of its elements must be k-summable.

The following result is the key of the definition of the Stokes multipliers.

Theorem 3. ([58]). Let (3.3) be a differential system as above. With notations
as before, the matrix Ĥ is k-summable in every non singular direction d and if H
denotes the k-sum of Ĥ in the direction d, then U = HxLeQ is an actual solution of
(3.3) on a sector Σ = Sd(π/k) := {t : |x| > a, argx ∈ (d − π/2k, d+ π/2k)} and we
have U ∼ Û on Σ.

Roughly speaking, the k-summability gives a “canonical” version of the funda-
mental existence theorem on sectors bisected by non singular directions. The corre-
spondence Û �→ U is good: they satisfy the same algebraic-differential relations over
K.

It is clear that by an analytic extension it is possible to continue the analytic
solution U , which is the k-sum of Û , over sectors Sd(α), with α > π/k. The problem
is that, in such a new sector, this solution is in general no longer asymptotic to Û .
The lines that bound the sectors where the asymptotic relation (3.3) remains valid
are called the Stokes rays.

When we move the direction of k-summation d between two singular lines, the k-
sums U glue together by analytic continuation. But when d cross a singular direction
ds, there is in general a “jump” for U . This corresponds to the Stokes phenomenon.
More precisely, let ds be a singular direction and let ds

+ = ds+ ε (resp. ds
− = α− ε)

where ε > 0 be neighboring non singular directions of α. The k-sums U+ (resp. U−)
of the formal fundamental solution Û in the directions ds

+ (resp. ds
−) glue together

in actual holomorphic fundamental solutions U+ (resp. U−). We have U− = U+Stods

where Stods
∈ Gl(2;C). By definition Stods

is the Stokes matrix (or Stokes multiplier)
associated to the singular direction ds. The K-isomorphism of differential fields

K < U+ >→ K < U− >
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defined by Stods
is a Galois isomorphism and therefore Stods

belongs to the differential
Galois group.

It is possible to see that these Stokes matrices Stods
are unipotent, i.e., of the

form (
1 λ
0 1

)
,

or (
1 0
μ 1

)
.

In particular, they belong to SL(2, C).
In an analogous (but more delicate) way, we may describe the exponential torus,

the formal monodromy and the Stokes matrices for a local system of differential
equations of arbitrary dimension m

dξ

dx
= Aξ, A ∈Mat(m, K)(3.4)

(see [44, 9]).
Then, we can state the Ramis density theorem.
Theorem 4 ([58, 44, 9]). . The Galois group of (3.4) is topologically generated

by the exponential torus, the formal monodromy and the Stokes matrices.

We note that among these topological generators the main source of non solvabil-
ity are the Stokes multipliers. For example, it is not difficult to prove that the Zariski
closure of the group generated by two matrices

(
1 λ
0 1

)
,

(
1 0
μ 1

)
,

where the complex numbers λ, μ are both different from zero, is SL(2, C) ([11]).

3.4. Coverings and Differential Galois Groups. In some applications it is
useful to replace the original differential equation over a compact connected Riemann
surface by a new differential equation over the Riemann sphere P1 (i.e., with rational
coefficients) by a change of the independent variable (i.e. the original equation is a
pull-back of the new one). This new equation over P1 is called the algebraic form of
the equation. In a more general way we will therefore consider the effect of a finite
ramified covering on the Galois group of a differential equation. In Appendix B the
following theorem is proved

Theorem 5. Let X be a connected Riemann surface. Let (X ′, f, X) be a finite
ramified covering of X by a connected Riemann surface X ′. Let ∇ be a meromorphic
connection over X. We set ∇′ = f∗∇. Then we have a natural injective homomor-
phism

Gal (∇′)→ Gal (∇)
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of differential Galois groups which induces an isomorphism between their Lie algebras.

We observe that, in terms of differential Galois groups, this theorem means that
the identity component of the differential Galois group is invariant by the covering.

The algebraic version of the above theorem is due to N. Katz ([29]). This result is
also proved in [5] (proposition 4.7) in the particular case of a fuchsian connection (see
also [12, 14, 16, 6]). It is the mapping version for the so-called (in the cited references)
method of reduction by discrete symmetries. Therefore this method is also valid in
our more general setting. It is important to notice that, if one of the connections in
the proposition is symplectic, then the identity components of the Galois groups of
both connections are symplectic too.

Example. The algebraic form of the Lamé Equation is ([57, 70])

d2η

dx2
+

f ′(x)
2f(x)

dη

dx
− Ax+B

f(x)
η = 0,(3.5)

where f(x) = 4x3 − g2x − g3, where A, B, g2 and g3 are parameters such that the
“discriminant” 27g2

3−g3
2 is non-zero. This equation is a Fuchsian differential equation

with four singular points over the Riemann sphere (i.e. a Heun’s equation).
With the well known change x = P(t), we get the Weierstrass form of the Lamé’s

equation

d2η

dt2
− (AP(t) +B)η = 0,(3.6)

being P the elliptic Weierstrass function with invariants g2, g3. Classically the equa-
tion is written with the parameter n instead of A, being A = n(n + 1). This new
equation is defined over a torus Π (a genus one Riemann surface) with only one singu-
lar point at the origin. Let 2w1, 2w3 the real and imaginary periods of the Weierstrass
function P and g1, g2 their corresponding monodromies in the above equation. If g∗
represents the monodromy around the singular point, then g∗ = [g1,g2] ([70, 57]).

By the above theorem we see that the identity component of the Galois group is
preserved by the covering Π→ P1, t �→ x.

In reference [57], chapter IX, the relation between the monodromy groups of the
equations (3.5) and (3.6) is studied. From a modern point of view it is studied in [16].

3.5. Examples. In this section we illustrate Picard-Vessiot Theory with sev-
eral examples. In the applications we need to know if the identity component of
the associated differential Galois group is abelian, and we therefore emphasize this
property.

Example 1. The hypergeometric (or Riemann) equation is the more general
second order linear differential equation with three regular singular singularities. We
can write it in one of its reduced forms as

d2ξ

dx2
+

c− (a+ b+ 1)

x(x − 1)

dξ

dx
− ab

x(x − 1)
ξ = 0,(3.7)

where a, b, c are complex parameters. The singular points are 0, 1,∞, being the ex-
ponent differences λ = 1− c, ν = c− a− b and μ = b− a respectively.

In [30] Kimura gives the necessary and sufficient conditions on λ, ν and μ in
order to have solvability for (3.7) (they must satisfy the Tables of Schwartz and
Hukuhara-Ohasi). Except for one case in which one of the parameters is an arbitrary
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complex number and the others two are half-integers, the others values in these tables
are discrete. In particular, if these conditions are not satisfied, then the identity
component of the Galois group is not abelian.

Example 2 ([43]). The Bessel equation is

x2 d2ξ

dx2
+ x

dξ

dx
+ (x2 − n2)ξ = 0,(3.8)

with n a complex parameter. This equation is a particular confluent hypergeometric
equation (after a limit process two of the singular points in a variant of the hyperge-
ometric equation will coincide). It is one of the simplest equations with non-trivial
Stokes phenomena, and for this reason is quite useful for illustrating the ideas intro-
duced in subsection 3.3.

First, we observe that the Galois group of (3.8) is “contained” in SL(2,C), since
1/x is a logarithmic derivative (see subsection 3.1). Our Bessel equation is an equation
with two singular points, 0, ∞, the first one being regular and the second one irregular.
We are interested mainly in the point at infinity.

There are several ways to compute the matrices Q and L of section 3.3. For
example, we can follow the general constructive method of the Huhukara-Turrittin
theory ([67, 7]). First, we make a formal transformation

(
ξ
ξ′

)
= P̂

(
u1

u2

)
,

where P ∈ Mat(2, K̂) (K̂ := C[[x−1]][x]), which diagonalizes formally the equation.
The solution is precisely the formal solution in equation (1), and is found step by step
in a recursive way ([67, 7]). We get q1 = ix = −q2 and L = −1/2I. The exponential
torus is C∗ and the formal mononodromy M̂ = −I.

The Stokes rays are R+ and R−, and the singular lines iR+, iR−. Hence, we
have two Stokes multipliers (one for each singular line),

St1 =

(
1 μ
0 1

)
,

St2 =

(
1 0
λ 1

)
.

But, for this equation the global theory (coefficients in C(x)) and the local one
(coefficients in K = C{{x−1}}[x]) are essentially the same. (The actual monodromy
M0 around 0 and around ∞ are the same, therefore the differential Galois group at
the origin can be interpreted as a subgroup of the differential Galois group at infinity).
It is possible to compute the actual monodromy M0 in the classical basis at the origin
(which is of course different from the basis at infinity that we introduced in the above
computations). We get M0 = diag(e2πin, e−2πin) .

It is easy to relate the actual monodromy and the formal monodromy at infinity
using the Stokes multipliers:

M0 = St1M̂St2.

Now, as the trace is an invariant, we get

trM0 = 2cos(2πn) = −λμ− 2, λμ = −4cos2πn.
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Hence, if the complex number n does not belong to Z+1/2, then the Bessel equation
is not solvable. In fact, this necessary condition for solvability is also sufficient. By
the classical theory (see, for example, [36]) it is well known that the Bessel functions
for n ∈ Z+ 1/2 are expressed by elementary functions: the Picard-Vessiot extension
is obtained by exponential of integrals of elements of C(x).

Example 3. One of the forms of the general confluent hypergeometric equation
is the Whittaker equation ([70])

d2ξ

dz2
− (

1

4
− κ

z
+
4μ2 − 1

4z2
)ξ = 0,(3.9)

with parameters κ and μ. The singular points are z = 0 (regular) and z = ∞
(irregular).

As in the case of the Bessel equation we have two singular lines associated to
the irregular point for (3.9). For the computation of the Galois group the following
proposition is useful ([43], subsection 3.3))

Proposition 4.

There is a fundamental system of solutions such that if α, β are the two complex
numbers corresponding to the two singular lines, with corresponding Stokes matrices

(
1 α
0 1

)
,

(
1 0
β 1

)
,

then
(i) α = 0 if and only if, either κ− μ ∈ 1

2 +N or κ+ μ ∈ 1
2 +N.

(ii) β = 0 if and only if −κ− μ ∈ 1
2 +N or −κ+ μ ∈ 1

2 +N.
Furthermore (with respect to the same fundamental system of solutions) the group

generated by the formal monodromy and the exponential torus is given by the multi-
plicative group{(

δ 0
0 δ−1

)
: δ ∈ C∗

}
.

As a consequence, we get an abelianness criterion expressed in terms of the pa-
rameters p := κ+ μ− 1

2 and q := κ− μ− 1
2 .

Corollary 1. The identity component G0 of (3.9) is abelian if and only if (p, q)
belong to (N×−N∗)∪ (−N∗ ×N) (i.e., p, q are integers, one of them being positive
and the other one negative).

We observe that the abelian case (G0 abelian) for the Whittaker equation is only
possible when the two Stokes multipliers vanish and this corresponds to the diagonal
case (4) of the classification given by Proposition 1 (the Whittaker equation is a
symplectic one). If only one of the Stokes multipliers vanishes, then we are in case (6)
of this classification, and we have solvability but the identity component of the Galois
group is not abelian. If the two Stokes multipliers are different from zero, then we fall
in case (7) with a Galois group isomorphic to SL(2,C), as we remarked in subsection
3.3.

If in the Bessel equation (3.8) we make the change of dependent variable ξ =
x−1/2ψ and of independent variable x = z/2i, we get a Whittaker equation
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d2ξ

dz2
− (

1

4
+
4n2 − 1

4z2
)η = 0,(3.10)

with parameters κ = 0 and μ = n. As in the above change we only introduce
algebraic functions, the identity component of the Galois group of the Bessel equation
is preserved.

Example 4. One of the more simple non-trivial linear differential equations is
the Airy equation

d2ξ

dz2
− zξ = 0.(3.11)

It is clear that if (3.11) is considered over Γ = C (ie, the coefficient field is the
field of meromorphic functions over the finite complex plane) it is solvable, since the
general solution is entire and, in particular, meromorphic over C and then the Galois
group is trivial.

But if we consider (3.11) over the Riemann sphere, the situation is very different:
the equation (3.11) has Galois group SL(2,C) provided the field of coefficients isC(z),
see [28, 33, 4]. More general: any equation like (3.11) but with any odd polynomial
instead of the polynomial z has also SL(2,C) as Galois group [33]. The analytical
reason for that is the complicated behaviour given by the Stokes matrices at z =∞.

We observe that all the examples in this section are equations over the Riemann
sphere (with coefficients in C(z)) and then it is also possible to apply the Kovacic
algorithm ([33, 20]).

4. Variational Equations.

4.1. Singular curves. Let us now come back to Hamiltonian systems. Let
X := XH be the holomorphic Hamiltonian system defined on an analytic complex
symplectic manifold M of dimension 2n (the phase space) by a Hamiltonian func-
tion H . Before going to formal constructions, we shall make some comments about
the essential underlying ideas. If x = φ(t) is a germ of integral curve (but not an
equilibrium point) then one consider the corresponding connected complete complex
phase curve i(Γ) in the phase space. We will denote by Γ the corresponding abstract
Riemann surface. By an abuse of terminology we will say that Γ is an integral curve
(from now on by an integral curve we will in general mean this abstract curve). On
the integral curve Γ we can use the complex time t (which is defined up to a additive
complex constant) as a local parameter (uniformizing coordinate). However it is es-
sential to think Γ as an abstract Riemann surface over which we can use other local
parametrizations. The only distinctive fact of a temporal parametrization is that it
allows us to express the Hamiltonian field in the simplest way: X = d/dt (here, using
a pull back, we interpret X as a holomorphic vector field on Γ). When necessary
we will carefully distinguish between the abstract Riemann surface Γ and the phase
curve i(Γ) ⊂ M which is the image of Γ by an immersion i. This immersion induces
a bijection Γ→ i(Γ). (Be careful i is not in general an embedding.)

It can happen that the complex time is a global parametrization of Γ. This is
frequent in the applications (cf. the example 2 below). More precisely we have an
analytic covering ψ : C→ Γ, t �→ ψ(t). But it is important to notice that in general in
such a situation it is a infinitely sheeted covering (i.e. the function ψ is transcendental).
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We will see later that in our theory it is not important to distinguish the curves up to
a finite covering (and we will use this convention repeatedly in the applications), but
it will be strictly forbidden to replace a curve by one of its infinitely sheeted coverings.
Therefore in the preceding situation it is important to carefully distinguish between
the integral curve Γ and the complex time line C.

In the following, the variational equation over Γ is locally a system of linear equa-
tions with holomorphic coefficients or in an abstract way a holomorphic (symplectic)
connection ∇ over Γ. (We get it by pull back from the variational equation over the
phase curve i(Γ) which is classically associated to our Hamiltonian system.)

The following step is to introduce the possibility to add singular points in order
to obtain a meromorphic (symplectic) connection on some extended Riemann surface
Γ. It seems natural to add the equilibrium points of X that belong to the closure
in the phase space M of the phase curve i(Γ) (i.e. the possible limits points of the
phase curve i(Γ) when the time is made infinite). The problem is that the resultant
extended set is not, in general, an analytic smooth curve. We will limit ourselves to
the following case: we will suppose that the set of equilibrium points in the closure of
i(Γ) is discrete (or if it is not the case that we add only a discrete subset) and that the
extended curve Γ is “locally” an analytic complex subset of dimension one of M . We
allow singularities on Γ, and in general the equilibrium points we added will precisely
be such singularities. As it is well-known from algebraic and analytic geometry we
can desingularize this curve and obtain a ”good” Riemann surface Γ̄. This Riemann
surface is abstract and of course it is not contained in the phase space M . The
holomorphic connection ∇ over Γ which represents the VE extends on a meromorphic
connection over Γ̄. The poles of this connection are the“above” equilibrium points
and correspond to branches of the curve Γ at the corresponding equilibrium point.

The reader unfamiliar with (algebraic or analytic) singular curves and their non
singular models can find some information in [31, 54, 69] (in particular [54] Theorem
4.1.11 is valid in our case if we replace the finite set of singular points by our discrete
set and the compact analytic curve by our, in general, non compact curve).

In some problems it is interesting to add points at infinity to Γ or to Γ̄. We add now
to the symplectic manifold (M, ω) an hypersurface at infinityM∞: M ′ = M∪M∞. We
suppose that M ′ is a complex manifold and that ω admits a meromorphic extension
over M ′. Then it is natural to add to the curve Γ the points of M∞ that belong to
the closure in the extended phase space M ′ of this curve. The resultant extended
set is not, in general, an analytic smooth curve. As before, we will limit ourselves
to the following case: we will suppose that the set of points at infinity in the closure
of Γ is discrete (or if it is not the case that we add only a discrete subset) and that
the extended curve Γ′ is “locally” an analytic complex subset of dimension one of M ′.
Then, as before, we can desingularize this curve and obtain a Riemann surface Γ̄′. The
meromorphic connection∇ over Γ̄ which represents the VE extends on a meromorphic
connection over Γ̄. The poles of this connection correspond to the equilibrium points
or to the points at infinity.

After these preliminaries we start with the formal definitions. Let x = φ(t) (where
t is a complex parameter, not necessarily the time) be a germ of regular holomorphic
parametrized curve in the phase space (i.e. φ is given in local coordinates by a
convergent Taylor expansion in a neighborhood of t = 0 with φ′(0) �= 0). We have
locally a homomorphism between an open disk centered in t = 0 and its image by
φ. We consider two such elements φ1, φ2 as equivalent if there exists a germ of
holomorphic function ρ at the origin such that ρ(0) = 0, ρ′(0) �= 0 and φ2 = φ1 ◦ ρ
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(change of parametrization). We denote C by the set of germs of curves over the phase
space up to the above equivalence.

It is possible to endow the set C with a natural topology. If a germ φ belongs to
C, and is defined by a holomorphic function φ(t) for t varying in an open disk U ⊂ C,
U , then for any point t0 in U , we define φt0 ∈ C as φt0(t) := φ(t + t0). The sets
U(φ) := {φt0} are a basis for the open sets in C.

Given a germ φ ∈ C, the Riemann surface Γ that it defines is, by definition, the
abstract Riemann surface defined by its connected component i(Γ). For more details
see [31], chapter 7 (in this reference the analysis is made in the context of plane curves,
but it remains clearly valid without changes in our situation) or the classical H. Weyl
monograph [69], page 61.

So, if we have the germ of an integral curve which passes by a point x0, x =
φx0

(t) with the initial condition φx0
(0) = x0, the Riemann surface which it defines

is precisely Γ. We can identify Γ with the corresponding (connected) phase curve
in the phase space i(Γ) and we get over Γ the Hamiltonian field X (d/dt in the
temporal parametrization). (More precisely this Hamiltonian field is the pull-back of
the Hamiltonian field over M by the immersion i : Γ→ M .) At the points of the set
Γ− Γ, the vector field X is by definition zero (as they correspond to the equilibrium
points belonging to the closure of i(Γ) in the phase space M).

Example. We illustrate the above considerations with an example that will
become important in the applications. Let the one degree of freedom system which is
defined by the following analytical Hamiltonian (over C2 or over an open set of C2)

H(x, y) =
1

2
y2 +

1

2
ϕ(x).

If one considers the energy level zero, we obtain an analytic subset defined by the
equation P (x, y) = y2 + ϕ(x) = 0. We assume that this set C is connected (if this is
not the case we select one of its connected components). Then C is an analytic curve.
Its singular points are exactly the equilibrium points E := {(0, x) : ϕ(x) = ϕ′(x) = 0}.
So, the curve C = Γ is equal to the disjoint union of Γ (or more precisely i(Γ)) and
E. And we obtain Γ as the corresponding non singular model of Γ.

In order to perform some explicit computations, we will analyze some simple
particular cases:

1) Let ϕ(x) = 2
3x3. The curve C is now

P (x, y) = y2 +
2

3
x3.

And

C = Γ = Γ ∪ {(0, 0)}, E = {(0, 0)}.

We note that Γ admits a temporal parametrization

(x, y) = (−6t−2, 12t−3).

We can desingularize the point (0, 0), as usual, by using Puiseux series ([31], chapter
6), indeed we obtain only one branch (x, y) = (−6t̃2, 12t̃3). We write t̃ instead of
t because this parameter is not the time (t̃ = 1/t), this is so because the temporal
parametrization of Γ is rational.
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Now we can calculate the Hamiltonian vector field X on Γ. As X = yd/dx, on Γ,
X = d/dt (if we use the temporal parametrization), and

y(t̃)

x′(t̃)
d

dt̃
= −t̃2

d

dt̃
,

at the singular point s in Γ− Γ.

2) Let ϕ(x) = x2(1−x). The curve Γ contains a homoclinic orbit i(Γ), and the origin
as an equilibrium point. We can parametrize globally the Riemann surface Γ using
the time parametrization

(x(t), y(t)) = (
2

1 + cosht
,− 2sinht

(1 + cosht)2
).

We remark that, despite its transcendental appearance (cf. the above equations), the
Riemann surface Γ is algebraic: it is only a problem related to the selected para-
metrization.. (Our global time parametrization is not one to one: it is an infinitely
sheeted covering.) Applying Puiseux algorithm we obtain (in fact, in the algorithm,
we only need the first Newton polygon) two branches and hence two points s1, s2

belonging to Γ− Γ above the origin in Γ,

(x, y) = (t̃, t̃+ h.o.t.),

(x, y) = (t̃,−t̃+ h.o.t.).

We can express the field X as (t̃+ ...)d/dt̃ or (−t̃+ ...)d/dt̃, respectively.

3) We observe that in example 1) the equilibrium point is degenerated and the field
X has a zero of multiplicity two at the corresponding point above it in Γ. However,
in the example 2) the equilibrium point is non degenerate and the field X has a
simple zero at the two corresponding points of Γ. This is not casual. In fact, let
ϕ(x) = xn + O(xn+1) (with n ≤ 2) be the expansion of ϕ at the origin, then, by
a simple inspection of Newton polygon we get the following facts. If n is odd, we
get only one point belonging to Γ − Γ, (x, y) = (t̃2, t̃n + h.o.t.), and the field X has
a zero of order n − 1 at this point. If n is even, we get two points above (0, 0) in
Γ− Γ, (x, y) = (t̃, t̃n/2), (x, y) = (t̃,−t̃n/2) and the field X has a zero of order n/2 at
each one. Of course, the above results do not depend upon the parametrization. This
simple fact is fundamental as we shall see later in the applications.

4.2. Meromorphic connection associated to the variational equation.

Once we have defined Γ and the derivation X , we shall define the holomorphic con-
nection associated to the variational equation (VE) over Γ. More generally if we add
some stationary points (resp. some stationary points and some points at infinity), we
shall define the meromorphic connection associated to the variational equation (VE)
over Γ̄ (resp. Γ̄′).

Let TΓ be the restriction to Γ (or more precisely to i(Γ)) of the tangent bundle TM

to the phase space M . It is a symplectic holomorphic vector bundle. (More formally
the fiber bundle TΓ is the pull back of TM by the immersion i : Γ→M .)

The holomorphic connection which defines the variational equation along Γ comes
by pull-back from the restriction to i(Γ) of the Lie derivative with respect to the field
X :

∇v := LXY|Γ,
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being Y any (holomorphic) vector field extension of the section v of the bundle Ti(Γ).
The fact that the connection ∇ is symplectic follows from the definition of a

Hamiltonian vector field: the symplectic form is preserved by the flow.
Using locally a time parametrization t on Γ and local canonical coordinates

(x1, ..., x2n) on M , we have the usual definition of the variational equation (VE)
along the phase curve [45] (IV A.2).

We write the Hamiltonian system ẋ = J ∂H
∂x . We choose a initial value τ for the

time t. Let φ(t, τ, ζ) be the unique solution of the Hamiltonian system defined by the

initial value ζ ∈M : φ(τ, τ, ζ) = ζ. Let Z(t, τ, ζ) = ∂φ(t,τ,ζ)
∂ζ be the Jacobian of φ with

respect to the initial condition ζ. Then Ż = JSZ, where S(t, τ, ζ) = ∂2H
∂x2 (φ(t, τ, ζ)) =

JHess H(φ(t, τ, ζ)) (Hess H being the Hessian of the Hamiltonian function H). The
equation

Ż = JHess HZ

is the variational equation. It is clearly a linear Hamiltonian system. The matrix func-
tion Z satisfies Z(τ, τ, ζ) = I, therefore it is a fundamental solution of the variational
equation.

We can express our connection ∇ in a holomorphic frame (e1, . . . , e2n). We get
a differential system. Choosing the coordinate frame ei =

∂
∂xi

associated to some
coordinates x1, ..., x2n, we get the differential system

dξ

dt
= A(t)ξ,

where

A(t) =
∂X

∂x
(x1(t), ..., x2n(t)) = JHess H(x1(t), ..., x2n(t)),

where ∂X
∂x is the jacobian matrix of X in coordinates (this is a direct consequence from

the expression of the Lie bracket [
∑

Xi∂/∂xi, ∂xj ]). Hence we obtain the differential
system which defines the VE in its usual form

Now we add to i(Γ) a discrete set of stationary points (where by definition the
field XH vanishes). We suppose that Γ is obtained by local closure at the added
points of i(Γ) in the phase space M and that Γ is “locally” an analytic curve in M .
We denote by Γ̄ → Γ a desingularization of the curve Γ. We will consider Γ as an
open subset of Γ̄. By restriction of the tangent bundle TM , we get an holomorphic
bundle TΓ over Γ and by pull-back an holomorphic bundle TΓ̄ over Γ̄.

At a point stationary point a above we cannot use the temporal parametrisation
on Γ̄ . Then we choose an uniformizing variable u at a ∈ Γ̄ (u(a) = 0), and we write
the immersion i: u �→ i(u). We get X(i(u)) = f(u)d/du (u �= 0) with f(0) = 0 (by
definition the Hamiltonian field X vanishes at i(0)). Using u as a local coordinate on
i(Γ), we can write X = d/dt = f(u)d/du. Then the pull-back by i of the VE in a
punctured neighbourhood of a is

dξ

du
=

1

f(u)

∂X

∂x
(i(u)).

It is a holomorphic differential system over a punctured neighbourhood of a in Γ̄. It
can clearly be interpreted as a meromorphic differential system over a neighbourhood
of a.
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Such local constructions over Γ̄ glue together and we get a meromorphic connec-
tion over Γ̄. It defines the VE over Γ̄.

When we add some points at infinity we can perform a similar construction over
Γ̄′. The only difference is that the Hamiltonian field X = XH can have a pole at a
point at infinity (due to the possible singularities at infinity of the symplectic form).
Then the function f(u) is now in general meromorphic.

4.3. Reduction to the normal variational equations. The problem of the
reduction of a linear system of equations goes back to the D’Alembert reduction of
the order of a linear differential equation when we know a particular solution.

In the Hamiltonian case, as we shall see, the mechanism which explains the re-
duction is the existence of invariant unidimensional horizontal sections (of (V,∇) or
(V ∗,∇∗)) in involution.

All the bundles and connections considered in this section are meromorphic. In
the process of reduction we may need to add some new singular points to the reduced
connection, and in this case we will consider these new singularities as singular points
of the initial VE (i.e., as points of Γ − Γ). With this in mind, all the bundles and

connections will be defined over the same fixed connected Riemann surface Γ
′
or Γ

(with the same “singular set”). Also, as usual, we will identify a bundle with its (sheaf
of) sections.

Let V be a symplectic vector bundle of rank 2n. Locally we can define a symplectic
form Ω which defines the symplectic structure of V . If v1, ..., vk are globalmeromorphic
sections of V linearly independent over Γ (v1 ∧ ... ∧ vk ∈

∧k V is different from zero
on Γ) and in involution (i.e. Ω(vi, vj) = 0, i, j = 1, ..., k), then we can obtain some
subbundles of V in the following way (we remark that, by definition, the sections

v1, ..., vk have their coefficients in the field of meromorphic functions over Γ or Γ
′
,

being holomorphic over Γ).
Let F be the rank k (meromorphic) subbundle of V generated by v1, ..., vk. We

get F⊥( ⊥ with respect to the symplectic structure) as a subbundle of V . We have
clearly F ⊂ F⊥. The normal bundle N := F⊥/F is a rank 2(n−k) symplectic bundle
which admits locally the symplectic form ΩN defined by the projection of Ω. It is
easy to see that this form is well defined and non-degenerate over Γ. (See also [5, 38],
meromorphic vector bundles do not appear in these references but the constructions
are similar.)

Using Lemma 2 below, we can suppose that the form Ω is globally defined (and
that it is meromorphic over Γ and holomorphic and non degenerate over Γ). We will
implicitly made these hypothesis in what follows.

The following proposition (with the same notation as above) is essentially a con-
sequence of Propositions 1.11 and 1.6 of [5] (with small changes in the notation and
taking account of the fact that we work here with meromorphic connections instead
of holomorphic connections).

Proposition 5. Let (∇, V,Ω) a symplectic connection and v1, ..., vk an involutive
set of linearly independent global horizontal sections of ∇. Then by restriction we
have the subconnections (∇F = 0, F ), (∇F⊥ , F⊥) and a symplectic connection on the
normal bundle (∇N , N,∇N ).

Proof. It is obvious that the bundle F is invariant by ∇. The invariance of F⊥

by ∇ follows from the formula

Ω(∇w, v) = X(Ω(w, v))− Ω(w,∇v) − (∇Ω)(w, v),



GALOISIAN OBSTRUCTIONS TO NON-INTEGRABILITY 61

and from the fact that ∇ is a symplectic connection.
We define the connection ∇N on N := F⊥/F from the action of ∇ on the repre-

sentatives in F⊥ of the classes in N . Of course it is well defined (∇F = 0) and it is a
symplectic connection.

The connection ∇N is called the reduced connection and the corresponding linear
differential equation the (reduced) normal equation.

We remark that although the proof of the above proposition is technically similar
to these of the propositions in [5], the philosophy here is different. Here the con-
nections ∇, ∇N have the same singularities in Γ − Γ; in particular, the differential
fields of coefficients of the corresponding linear differential equations are the same
(the meromorphic functions over Γ).

Our objective now is to investigate the relation between the Galois group of the
initial equation Gal ∇ and the Galois group of the reduced equation Gal ∇N . We will
use two different methods. The first is based upon explicit classical computations.
The results such obtained are sufficient for the applications. (More precisely for these
applications it is sufficient to know that if the identity component of Gal ∇ is abelian,
then the identity component of Gal ∇N is also abelian.) The second method is based
upon Tannakian arguments. It will allow us to give a more precise relation between
the two differential Galois groups. This last relation seems interesting by itself, even
if it is not necessary for what will follows.

Let (∇, V,Ω) be a symplectic connection. Then we have the musical isomorphism
defined by Ω


 : (∇, V,Ω) −→ (∇∗, V ∗, {, }).
We set � := 
−1. The symplectic form (section) is transported to the Poisson bracket,

{α, β} = Ω(�(α), �(β)).

(In some references it is said that V ∗ with the Poisson bracket is a Poisson vector
bundle, see for instance [38].)

Let now α ∈ V ∗, v ∈ V two sections. Then α0 := α(p0), v0 := v(p0) are
elements belonging to the fibres at p0 ∈ Γ, that using Cauchy’s existence theorem
we can identify with elements belonging respectively to the vector spaces of germs of
solutions at p0: E∗ = Sol∇∗, E = Sol∇.

Lemma 1. Let (V,∇,Ω) be a symplectic connection and let α, v := 
−1α global
sections of respectively the bundles V ∗ and V . Then the following conditions are
equivalent

(i) α is a (linear) first integral of the linear equation defined by ∇.
(ii) α is a horizontal section of ∇∗ (i.e., a solution of the
adjoint differential equation).
(iii) v is a horizontal section of ∇.
(iv) α0 is invariant by the Galois group Gal ∇.
(v) v0 is invariant by the Galois group Gal ∇.

Proof. The equivalence between (i) and (ii) follows from

X(< α, w >) =< ∇α, w > + < α,∇w >,

being X the holomorphic vector field on the Riemann surface Γ, such that ∇ := ∇X .
The equivalence between (ii) and (iii) follows from

0 = X(Ω(v, v)) = X(< α, v >) =< ∇α, v > + < α,∇v > .
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Now if α is a horizontal section of ∇∗, (MΓ(1 + α), δ ⊕ ∇∗) is a rank one sub-
connection of (MΓ ⊕ V ∗, δ ⊕ ∇∗). Then (as in the final example of Section 4) the
complex construction corresponding by the fiber functor Sol, that is the complex line
C(1 + α0) is (pointwise) invariant by the Galois group. So we get (iv). That (ii) is a
necessary condition for (iv) is clear from the fact that α0 is a local horizontal section
at a point p0 ∈ Γ that, by assumption, can be extended to a global section α. From
the unicity in Cauchy’s theorem it is necessarily a horizontal section.

The equivalence between (iii) and (v) is obtained in a similar way: we only need
to write V instead V ∗ (another way for finishing the proof is to prove the equivalence
between (iv) and (v) using the fact that the musical isomorphism 
0 between the
vector spaces (E,Ω0) and (E

∗, {, }0) induces a bijection between the invariants of the
Galois group in E and E∗).

Let α1, ..., αk (αi being a section of V ∗) be an involutive set of (global) indepen-
dent (i.e., generating a rank k subbundle) first integrals of the symplectic connection
(∇, V,Ω). By the above lemma we obtain an involutive set v1, ..., vk of independent
(global) horizontal sections of (∇, V,Ω). If as above, F is the rank k subbundle of
horizontal sections generated by v1, ..., vk, we can construct the subbundles and con-
nections (∇F , F ), (∇F⊥ , F⊥) and (∇N , N = F⊥/F,ΩN ) (in general we will write
simply ∇N ). (We remark that it is easy to prove that

F⊥ = {w ∈ V :< αi, w >= 0, i = 1, ..., k}

( [5])).
From the (meromorphic) triviality of the symplectic vector bundles (see appendix

B) and the properties of the symplectic bases (the global meromorphic sections are
a symplectic vector space over the field of global meromorphic functions K =M(Γ)
over Γ) we have

Lemma 2. There exist a global (meromorphic) symplectic canonical frame which
contains the given linearly independent and involutive horizontal sections v1, ..., vk.

Let JS be the matrix of ∇ in a canonical frame (S is a symmetric matrix). We
define a symplectic change of variables using some new canonical frame which contains
the given linearly independent and involutive horizontal sections v1, ..., vk.

We denote the matrix of the symplectic change of variables by

P = (D1 D2 C1 C2),

where C2 = (ξt
1, ..., ξ

t
k), and the 2n-dimensional columns vectors ξi, i = 1, ..., k, are

the coordinates of vi in the original canonical frame. Then we have ([45]):

P−1 =

⎛
⎜⎜⎝
−Ct

1J
−Ct

2J
Dt

1J
Dt

2J

⎞
⎟⎟⎠

AP − Ṗ = JSP − Ṗ = (JSD1 − Ḋ1 JSD2 − Ḋ2 JSC1 − Ċ1 0),

since C2 is a fundamental matrix solution of the original linear equation. Hence the
matrix of the transformed equation is

P [JS] : = P−1(JSP − Ṗ )
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=

⎛
⎜⎜⎝

Ct
1(SD1 + JḊ1) G Ct

1(SC1 + JĊ1) 0

Ct
2(SD1 + JḊ1) Ct

2(SD2 + JḊ2) Ct
2(SC1 + JĊ1) 0

−Dt
1(SD1 + JḊ1) F −Dt

1(SC1 + JĊ1) 0
M H E 0

⎞
⎟⎟⎠ ,

where E, F , G, M and H are some matrices. The matrix P [JS] is necessarily infini-
tesimally symplectic, i.e., of the form JS1 with S1 symmetric (see, for instance, [45],
page 36,37). Hence Ct

2(SDi+JḊi) (i = 1, 2) and Ct
2(SC1+JĊ1) are zero, E = −Gt,

M = F t, Ct
1(SD1+JḊ1) = (Ct

1S−Ċt
1J)D1 and H , Ct

1(SC1+JĊ1), −Dt
1(SD1+JḊ1)

are symmetric.
Reordering the new canonical frame, the matrix of the connection ∇ becomes

P [JS] =

⎛
⎜⎜⎝

Ct
1(SD1 + JḊ1) Ct

1(SC1 + JĊ1) G 0

−Dt
1(SD1 + JḊ1) (−Dt

1S − Ḋt
1J)C1 F 0

0 0 0 0
F t −Gt H 0

⎞
⎟⎟⎠ .

Then the transformed differential equation η̇ = P [JS]η in the variable η =
(α, β, γ, δ) is

α̇ = Ct
1(SD1 + JḊ1)α+ Ct

1(SC1 + JĊ1)β +Gγ,

β̇ = −Dt
1(SD1 + JḊ1)α+ (−Dt

1S − Ḋt
1J)C1β + Fγ,

γ̇ = 0,

δ̇ = F tα−Gtβ +Hγ.

The matrix of the reduced equation is
(

Ct
1(SD1 + JḊ1) Ct

1(SC1 + JĊ1)

−Dt
1(SD1 + JḊ1) (−Dt

1S − Ḋt
1J)C1

)
.

Then we get the Picard-Vessiot extension L/K of ∇ from two successive exten-
sions

K ⊂ LN ⊂ L,

where LN/K is the Picard-Vessiot extension of the (normal) reduced equation (i.e.,of
∇N ) and L/LN is an extension composed by two successive extensions L/L1 and
L1/LN by integrals.

Now, using the Galois correspondence, we get

Gal(LN/K) = Gal(L/K)/Gal(L/LN).

It is well known that extensions by integrals are normal purely transcendental exten-
sions. Their Galois groups are additive abelian groups isomorphic to some Gr

a ( [28]).
Therefore Gal(L/LN) is Zariski connected and we get the inclusion of Gal(L/LN) in
the identity component Gal∇0 (Gal(L/LN) is the group H that will appear below in
the Tannakian reduction: see the next subsection).

Finally, for n = k we can solve the initial system by quadratures. This is proved
in [45]. Our computations on the matrix JS are a generalization of the computations
in this reference (we in fact kept the same notations).

If now we have the variational equation (VE) over an integral curve Γ of a holomor-
phic Hamiltonian system XH and if f1 = H, f2, ..., fk is an involutive set of holomor-
phic and independent first integrals of XH , then (see Section 5) we get an involutive
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set α1 = dH, α2, ..., αk of independent first integrals of the (VE) and we can apply the
results of this section. The (normal) reduced equation such obtained is then called
the normal variational equation (NVE).

Proposition 6. Let α1, ..., αk ∈ V ∗ be an involutive set of independent (global)
first integrals of (∇, V,Ω). Let ∇N be the reduced connection defined by the above set.
Then we have

(i) The linear differential equation corresponding to the connection
(∇, V,Ω) is solvable if and only if the reduced equation
corresponding to (∇N , N,ΩN ) is solvable.
(ii) If the identity component of Gal∇ is abelian then
the identity component of Gal∇N is also abelian.

Proof. Using the preceding results and the differential Galois correspondence, the
equivalence (i) follows from the general group theoretic facts that any subgroup and
any quotient group of a solvable group is solvable and that conversely, if a normal
subgroup and the corresponding quotient group are solvable then the original group
is also solvable. Claim (ii) is evident.

Claim (ii) in the preceding proposition is essential for the applications.

Example. Now, as an example, we shall apply the above considerations to the
variational equations of a two degree of freedom Hamiltonian system along an integral
curve Γ. We want to obtain the (NVE) from the (VE) when the Hamiltonian is a
natural mechanical system, H = T +U , T = 1

2 (y
2
1 + y2

2), U = U(x1, x2) (potential).

Then α = dH (over Γ) is a linear first integral (i.e., an element of V ∗). We
know that this is equivalent to the fact that ż = (y1, y2,−U1,−U2) ∈ V (where we
used subindexes for the derivatives of the potential) is a known solution. There are
many possibilities for the choice of the symplectic change P (which is defined by a
symplectic frame admitting ż as one of its elements). We can suppose that y1 and
y2 are not identically zero (if this is not the case the NVE is obtained without any
computation from the VE), then we can select a very simple solution

P =

⎛
⎜⎜⎝

0 0 0 y1

− y2

y1
0 0 y2

0 − 1
y1

1 −U1
U2

y1
0 − y1

y2
−U2

⎞
⎟⎟⎠ .

Applying the formula obtained above, the matrix of the NVE is

( −U1/y1 1 + (y1/y2)
2

y2U12/y1 U1/y1

)
.

We observe that, as expected, it belongs to the symplectic Lie algebra sp(1, K) =
sl(2, K)).

4.4. Reduction from the Tannakian point of view. We will give now a new
proof of Proposition 6 using Tannakian arguments. In fact we will get a slightly more
precise result. This improvement has an independent interest even if it is not used
later in this paper.

We recall that a group G is metaabelian if its derived group G′ is abelian. In
particular, a metaabelian group is solvable.
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The relation between the initial Galois group and the reduced Galois group is
given by the following result

Proposition 7. Let α1, ..., αk ∈ V ∗ be an involutive set of independent(global)
first integrals of (∇, V,Ω). Let ∇N be the reduced connection defined by the above set.
Then

(Gal∇N )0 ≈ Gal∇0/H,

where Gal∇0 and (Gal∇N )0 are respectively the identity components of the Galois
groups of ∇ and ∇N , and H a closed normal metaabelian subgroup of Gal∇0.

Proof. With the above notations, at the level of connections we have the natural
morphisms

(V,∇)←↩ (F⊥,∇F⊥)→ (N = F⊥/F,∇N ),

(being the first the inclusion and the second the projection) and the isomorphism


 : (∇, V,Ω) −→ (∇∗, V ∗, {, }).

By applying the fiber functor we get the corresponding morphisms and isomor-
phism

(E,Ω)←↩ (F⊥
0 ,ΩF⊥

0

)→ (N0 = F⊥
0 /F0,ΩN0

)


0 : (E,Ω) −→ (V ∗
0 , {, }),

where E = Sol∇, F0 = Sol∇F , etc... In order to simplify the notation, we will write
Ω and {, } instead of Ω0, {, }0.

Let F0
∗, {, } be the involutive subalgebra generated by α1, ..., αk. Then we obtain

the morphisms

(E∗, {, })←↩ (F ∗
0
⊥, {, }F∗

0

⊥)→ (N∗
0 := F0

∗⊥/F0
∗, {, }N∗

0
),

where orthogonality ⊥ is now defined by the Poisson bracket.
We have natural morphisms of algebraic groups

Gal ∇→ Gal ∇F⊥ → Gal ∇N .

By composition, we get a surjective morphism φ : Gal ∇→ Gal ∇N .
We get also the corresponding morphisms of Lie algebras

Lie∇→ Lie∇F⊥ → Lie∇N

and the surjective morphism

π : Lie∇→ Lie∇N .

We will see later in Section 5 that the Lie algebra Lie∇ is isomorphic to a Lie
subalgebra of S2E∗, {, }) and that modulo this isomorphism, the action of β ∈ Lie∇
on E∗ is given by

{β, .} : δ �→ {β, δ}.
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Then it is easy to describe the natural morphisms

Lie∇→ Lie∇F⊥ → Lie∇N

by restriction and projection of {β, } (we observe that {β, α} = 0, for any β ∈ Lie∇,
α ∈ F ∗

0 or in a shorter way {Lie∇, F ∗
0 } = 0 ) and Lie∇N is considered also as a Lie

subalgebra of (S2N∗, {, }), modulo a musical isomorphism.
Using the morphism of Lie algebras

π : Lie∇→ Lie∇N

we get an isomorphism

Lie∇N ≈ Lie∇/Kerπ.

We set Ker π := H. Then β ∈ H if and only if {β, F ∗
0
⊥} ⊂ F ∗

0 . As {E∗, E∗} ⊂ C,
by the Jacobi identity

{{β, δ}, α} = {β, {δ, α}} − {δ, {β, α}},

(with β ∈ Lie∇, δ ∈ E∗, α ∈ F ∗
0 ), we get the inclusion {Lie∇, E∗} ⊂ F ∗

0
⊥. Applying

again the Jacobi identity in the form

{{β, β′}, δ} = {β, {β′, δ}} − {β′, {β, δ}},

with β,β′ ∈ H and δ ∈ E∗ (we note that this identity is simply the expression of the
action of the commutator [A, B] as AB −BA in the usual linear representation), one
obtain {{β, β′}, δ} ∈ F ∗

0 . So, as the algebra H annihilate F ∗
0 we get that the derived

algebra H′ is abelian, i.e., H is metaabelian and, in particular, solvable.
We set H = Ker φ. The group H is an algebraic subgroup of Gal ∇. Using the

results of the preceding subsection we can interpret H as a differential Galois group
and we recall that this group is Zariski connected. Its Lie algebra is H, therefore H
is metaabelian.

From the classical Picard-Vessiot theory we get

Corollary 2. We have the following statements
(i) The linear differential equation corresponding to the connection
(∇, V,Ω) is solvable if and only if the reduced equation
corresponding to (∇N , N,ΩN ) is solvable.
(ii) If the identity component of Gal∇ is abelian then both,
the identity component of Gal∇N and the group H, are also abelian.

Proof. (i) follows from the general group theoretic fact that any subgroup and any
quotient group of a solvable group is solvable and conversely, if a normal subgroup
and the corresponding quotient group are solvable then the original group is solvable.
Claim (ii) is a direct consequence of the above proposition.

In the above corollary (i) express the meaning of the reduction: we can solve (in
the Galois differential sense) the linear equation corresponding to ∇ when we know
the solutions of the linear equation corresponding to ∇N .

5. Non integrability.
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5.1. Algebraic preliminaries. Let V be a symplectic complex space. We set
dimCV = 2n. We choose a symplectic basis {e1, . . . , en; ε1, . . . , εn} and we denote
by (x1, . . . xn; y1, . . . , yn) the coordinates of v ∈ E in this basis. If < v, v′ > is the
symplectic product of v, v′ ∈ E, then

< v, v′ >=

n∑
i=1

xiy
′
i − x′

iyi.

We set

C[V ] =
⊕
k≥0

SkV ∗.

We endow C[V ] with the ordinary multiplication. We get the commutative C-
algebra of polynomials on V . We denote by C(V ) the field of fractions of C[V ]. Using
the Poisson product, we endow C(V ) with a structure of non commutative C-algebra,
the Poisson structure.

Using coordinates we can compute the Poisson product of f, g ∈ C(V ):

{f, g} =
n∑

i=1

∂f

∂yi

∂g

∂xi
− ∂f

∂xi

∂g

∂yi
.

The two products on C(V ) are related by the Leibniz rule

{fg, h} = f{g, h}+ g{f, h}.
Let A ⊂ C(V ) be a complex vector subspace. If it is stable by the Poisson

product, then A is a Poisson subalgebra of C(V ). The field of fractions of A is also a
Poisson subalgebra of C(V ).

Let A be a subset of C(V ). If, for each pair f, g ∈ A, we have {f, g} = 0, we will
say that A is an involutive subset. Then the complex vector subspace generated by A
is also involutive and is a Poisson subalgebra. Using the Leibniz rule we verify that
the subalgebra (for the ordinary product) generated by A is involutive and is also a
Poisson subalgebra.

A subset of an involutive subset is clearly also an involutive subset.
Let A be a subset of C(V ). We define the orthogonal A⊥ of A in C(V ) by

A⊥ = {f ∈ C(V )|{f, g} = 0 for every g ∈ A}.
The biorthogonal of A is A⊥⊥ = (A⊥)⊥.

Using the Leibniz rule and the Jacobi identity we verify immediately that A⊥ is
a subalgebra and a Poisson subalgebra of C(V ). Therefore A⊥⊥ is also a subalgebra
and a Poisson subalgebra of C(V ).

Let A be a subset of C[V ]. It is involutive if and only if we have the inclusion
A ⊂ A⊥. Moreover, if A is involutive, we have the inclusions

A ⊂ A⊥⊥ ⊂ A⊥

and A⊥⊥ is an involutive subalgebra of C(V ).
Let A be a subalgebra of C(V ) (for the ordinary product). We will say that

f ∈ C(V ) is algebraic over A if there exists a non trivial polynomial P ∈ A[Z] such
that P (f) = 0. The algebraic closure Ā of A in C(V ) is by definition the set of the
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f ∈ C(V ) which are algebraic over A. The algebraic closure Ā of A in C(V ) is a
subfield (it is the algebraic closure of the field of fractions of A).

The following result and its corollary are essential in our paper.

Proposition 8. Let A ⊂ C(V ) be an involutive subalgebra (that is a subalgebra
for the ordinary product which is also an involutive subset). Let Ā ⊂ C[V ] be the
algebraic closure of A in C(V ). Then we have inclusions

A ⊂ Ā ⊂ A⊥⊥ ⊂ A⊥

and Ā is an involutive subalgebra of C(V ).

Let β ∈ Ā. Let P ∈ A[Z] be a minimal polynomial for β.
We choose β′ ∈ A⊥. From P (β) = 0, we get {P (β), β′} = 0. Using β ∈ Ā and the

Leibniz rule we see easily that the operator {., β′} is a A-linear derivation on A[β],
therefore

{P (β), β′} = ∂P

∂Z
(β){β, β′} = 0.

As the polynomial P is minimal, we have ∂P
∂Z (β) �= 0 and therefore {β, β′} = 0. This

yields Ā ⊂ A⊥⊥. As A⊥⊥ is involutive, the subalgebra Ā is also involutive.

Corollary 3. Let V be a symplectic complex space. We set dimCV = 2n. Let
A ⊂ C(V ) be a subalgebra (for the ordinary product) which is generated by a finite
involutive subset α = (α1, . . . , αn). We suppose that the n elements α1, . . . , αn are
algebraically independent. Then

(i) A is an involutive subalgebra,
(ii) A⊥ is an involutive subalgebra,
(iii) Ā = A⊥ = A⊥⊥.

Claim (i) is evident.
Let f ∈ A⊥. It is orthogonal to α ⊂ A. The n elements α1, . . . , αn are alge-

braically independent and in involution, therefore f and α1, . . . , αn are algebraically
dependent; we admit this claim and we will prove it later: cf. Corollary 4 below. Then
f ∈ Ā. We get an inclusion A⊥ ⊂ Ā. Using the proposition, we get also the inclusions
Ā ⊂ A⊥⊥ ⊂ A⊥. Therefore Ā = A⊥ = A⊥⊥. The subalgebra A⊥⊥ is involutive.
Claim (ii) follows.

We set as usual

J =

(
0 In

−In 0

)
,

where In is the (n, n) identity matrix.
We have J t = −J = J−1.
A (2n, 2n) matrix M is symplectic if and only if

M tJM = J.

A (2n, 2n) matrix M is in the Lie algebra of the Lie group of symplectic matrices
if and only if

M tJ + JM = 0.
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This is equivalent to (JM)t = JM , that is to the fact that the matrix JM is sym-
metric.

The symplectic structure on the symplectic space V gives the musical isomorphism


 : V → V ∗.

If X is the column vectors of the coordinates of v ∈ V in the chosen symplectic
basis, then the column vector of the coordinates of 
(v) in the dual basis is JX .

Using the contraction V ∗ ⊗ V → C between the first and the third factor in
V ∗ ⊗ V ⊗ V , we get an homomorphism

V ∗ ⊗ V → End(V ).

It is well known that it is an isomorphism and in general we will identify V ∗⊗ V and
End(V ) modulo this isomorphism.

We set ψ = idV ∗ ⊗ (1
2 
). The map ψ : V ∗ ⊗ V → V ∗ ⊗ V ∗ is an isomorphism.

We can interpret ψ as an isomorphism End(V )→ V ∗⊗V ∗. An element u ∈ End(V )
belongs to the Lie algebra sp(V ) if and only if ψ(u) is invariant by the symmetry

V ∗ ⊗ V ∗ → V ∗ ⊗ V ∗

v ⊗ w �→ w ⊗ v.

Then ψ(u) defines an element of S2V ∗ and ψ induces an isomorphism

φ : sp(V )→ S2V ∗.

If we use as before the chosen symplectic basis of V and the dual basis of V ∗ and
if we denote respectively by M and M ′ the matrices of u ∈ sp(V ) and the matrix of
the quadratic form corresponding to φ(u) ∈ S2E∗, then

M ′ =
1

2
JM.

We define an operation of the Lie algebra End(V ) on V ∗ by w �→ −ut(w). Using
this operation and the natural operation of End(V ) on V , we get an operation of
End(V ) on V ∗ ⊗ V :

w ⊗ v �→ −ut(w) ⊗ v + w ⊗ u(v).

If we identify V ∗ ⊗ V with End(V ), then the corresponding operator is [u, .].

Lemma 3. (i) Modulo the isomorphism φ : sp(V ) → S2V ∗, the operation of
sp(V ) on V ∗ defined above corresponds to the action of S2V ∗ on V ∗ by the Poisson
product.

(ii) Modulo the isomorphisms φ : sp(V ) → S2V ∗ and 
 : V → V ∗, the natural
operation of sp(V ) on V corresponds to the action of S2V ∗ on V ∗ by the Poisson
product.

We use the chosen canonical basis on V and the dual basis on V ∗. Let M be the
matrix of u ∈ sp(V ). Then M ′ = 1

2JM is a symmetric matrix. It is the matrix of
the quadratic form corresponding to φ(u). We denote by X (resp. X ′) the column
vector of the coordinates of v ∈ V ∗ (resp. v′ ∈ V ∗) in the dual basis. We set
Xt = (x; y), X ′t = (x′; y′). We set f(x; y) = XtM ′X and g(x; y) = X ′tX . We
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denote M ′ = 1
2

(
A B
Bt D

)
. The matrices A and D are symmetric. Then 2f(x; y) =

xtAx+ ytDy + xtBy + ytBtx and g(x; y) = x′tx+ y′ty = xtx′ + yty′.
We have

{f, g}(x; y) = xt(−Ay′ +Bx′) + yt(−Bty′ +Dx′).

Then {f, g}(x; y) = XtX” = X”tX , where X” = M”X ′, with M” =

(
B −A
D −Bt

)
.

We have M = −2JM ′ =
(−Bt −D

A B

)
and −M t =

(
B −A
D −Bt

)
. We have

finally M” = −M t. That ends the proof of claim (i).
Claim (ii) follows from the equality

− J

(
B −A
D −Bt

)
J =

(−Bt −D
A B

)

− JM”J = M.

Lemma 4. Let φ : sp(V ) → S2V ∗ be the isomorphism of complex vector spaces
defined by ψ = idV ∗ ⊗ 1

2 
. If sp(V ) is endowed with its Lie algebra structure and if
S2V ∗ is endowed with its Poisson algebra structure, then φ is an isomorphism of Lie
algebras.

We can define a Poisson action of S2V ∗ on V ∗ ⊗ V ∗: {f, g ⊗ h} = {f, g} ⊗ h +
g ⊗ {f, h}.

Using the preceding lemma we see that the action of sp(V ) on V ∗⊗V defined above
corresponds with the Poisson action of S2V ∗ on V ∗ ⊗ V ∗ modulo the isomorphisms
φ : sp(V )→ S2V ∗ and idV ∗ ⊗ 1

2 
 : V ∗⊗V → V ∗⊗V ∗. (In claim (ii) of the preceding
lemma, we can replace the isomorphism 
 by the isomorphism 1

2 
.) The isomorphism
idV ∗⊗ 1

2 
 : V ∗⊗V → V ∗⊗V ∗ induces the isomorphism φ and the action of u ∈ sp(V )
on sp(V ) is v �→ [u, v]. That ends the proof of the lemma.

Let u ∈ sp(V ). Using the action of u on V ∗ that we have defined above we get
an action on C[V ]. We denote f �→ u.f this action.

Let G ⊂ sp(V ) be a Lie subalgebra.
We recall that f ∈ C[V ] is an invariant of G if u.f = 0 for every u ∈ G.
Theorem 6. Let V be a symplectic complex space. We set dimCV = 2n. Let

G ⊂ sp(V ) be a Lie subalgebra. Let α = (α1, . . . , αn) be a finite involutive subset.
We suppose that the n elements α1, . . . , αn are algebraically independent. We suppose
that α1, . . . , αn are invariants of G. Then the Lie algebra G is abelian.

Using a preceding lemma we see that u.f = 0 is equivalent to {φ(u), f} = 0.
We denote by A the subalgebra generated by α. This algebra is involutive, A⊥ is
involutive (cf. corollary) and φ(G) ⊂ A⊥. As φ(G) is a Poisson algebra isomorphic to
the Lie algebra G, the result follows.

Let U ⊂ Cn be a connected open subset. We denote by O(U) the C-algebra of
holomorphic functions on U . We denote byM(U) the field of meromorphic functions
on U , that is the fraction field of O(U). Let f1, . . . , fm ∈ M(U). We will say that
they are functionally dependent if there exists a non trivial relation

∑m
i=1 gidfi = 0

with g1, . . . , gm ∈ M(U) (g1, . . . , gm �= 0), that is if the meromorphic differential
forms df1, . . . , dfm are linearly dependent upon the fieldM(U).
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It is easy to prove the following result.

Lemma 5. Let U ⊂ Cn be a connected open subset. Let f1, . . . , fm ∈M(U). The
following conditions are equivalent:

(i) f1, . . . , fm are functionally independent;
(ii) there exists an open connected dense subset V ⊂ U such that f1, . . . , fm ∈

O(V ) and rankC df1(x), . . . , dfm(x) = m for every x ∈ V ;
(iii) there exists a point x ∈ U such that f1, . . . , fm are holomorphic at x and

such that rankC (df1(x), . . . , dfm(x)) = m.

Proposition 9. In C(V ) ≈ C(x1, . . . , xn) functional (over some open set U of
V ) and algebraic dependence (over C) are equivalent

This result is well-known and it is proved (for instance) in [5], Proposition 1.16,
p. 12. We will give the proof for completeness.

For proving the Proposition 9, we recall the following result ([5]), Proposition
1.15, p. 11).

Proposition 10. Let L ⊂ K be a field extension of 0-characteristic fields. Then
any derivation on L extends to a derivation on K.

Let f1, . . . , fm ∈ C(x1, . . . , xn). If P (f1, . . . , fm) = 0 for some polynomial P ∈
C[Z1, . . . , Zm], then dP (f1, . . . , fm) =

∑
∂

∂Zi
P (f1, . . . , fm)dfi = 0, therefore f1, . . .,

fm are functionally dependent.
Conversely, if the fi’s are algebraically independent then C(f) = C(f1, . . . , fm) is

a transcendental extension of degree m of C and the differential operators ∂/∂fi are
well defined on C(f). We have ∂

∂fi
fj = δij . We have a field extension C(f) ⊂

C(x1, . . . , xn), therefore the differential operators ∂/∂fi extend to derivations Di

on C(x1, . . . , xn). We have clearly Difj = δij . We define the vector fields Xi =∑
j=1,...,n Di(xj)∂/∂xj (i = 1, . . . , m). For every g ∈ C(x1, . . . , xn) we have (dg, Xi)=

Dig. Let g1, . . . , gm ∈ C(x1, . . . , xn) such that
∑

i=1,...,m gidfi = 0. If we contract this
relation with the vector field Xk, we get gk = 0. Therefore the fi’s are functionally
independent.

Proposition 11. Let V be a symplectic complex space. We set dimCV =
2n. Let C(V ) be the field of rational functions on V . Let f1, . . . , fn+1 ∈ C(V ) ≈
C(x1, . . . , x2n) be in involution. Then the functions f1, ..., fn, fn+1 are functionally
dependent over an open domain U ⊂ V .

This proposition is well-known in the real (differentiable) case. In the complex
case the same proof works well. We shall give the proof for completeness.

We can interpret 
 as an isomorphism between the holomorphic fiber bundles TV
(tangent bundle) and T ∗V (cotangent bundle). We denote by � the inverse isomor-
phism.

If we assume that the functions f1, ..., fn, fn+1 are functionally independent, then
they are regular and rank(df1, ..., dfn+1) = n+ 1, on a dense open domain U .

TheC-linear forms df1(x), . . . , dfn+1(x) ∈ TxV ∗ are linearly independent for every
x ∈ U . Let x0 ∈ U . We set fi(x0) = ci ∈ C. The subset Σ = {f1 = c1, . . . , fn+1 =
cn+1} ⊂ U is an analytic (smooth) submanifold of complex dimension n − 1. The
vector fields Yi = �dfi (i = 1, . . . n+ 1) are tangent to Σ (dfi(Yj) = {fi, fj} = 0) and
linearly independent over the complex field at each point of V . (The linear map �
induces an isomorphism between TxV ∗ and TxV .) This implies dim Σ ≥ n + 1 and
we get a contradiction.
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Corollary 4. Let V be a symplectic complex space. We set dimCV = 2n. Let
f1, . . . , fn+1 ∈ C(V ) ≈ C(x1, . . . , x2n) in involution. Then

(i) f1, . . . , fn+1 are algebraically dependent
(ii) if, moreover f1, . . . , fn are algebraically independent, then fn+1 is algebraic

over the C-algebra generated by f1, . . . , fn.

The functions f1, . . . , fn+1 are functionally dependent (on some open subset),
therefore they are algebraically dependent (over the complex field C).

If the functions f1, . . . , fn are algebraically independent, then we get a rela-
tion P (f1, . . . , fn+1) = Amfm

n+1 + . . . + A0 = 0, where P ∈ C[F1, . . . , Fn+1] and
A0, . . . , Am ∈ C[F1, . . . , Fn] ≈ C[f1, . . . , fn] ( being done the last isomorphism by the
algebraic independence of f1, . . . , fn) with m > 0.

With this result we can end the proof of Corollary 3 and therefore the proof of
Theorem 6.

5.2. Main result. Let E be a complex vector space of dimension m ≥ 1. As
above we denote by C[E] the C-algebra of polynomial functions on E, and by C(E)
the field of rational functions on E (i.e. the quotient field of C[E]).

Let G ⊂ GL(E) be an algebraic subgroup. We define a left action of G on C[E]
or C(E) by (g, f) = g.f = f ◦ g−1 (g ∈ G , f ∈ C(E)). (It corresponds clearly to
the usual action of G on the constructions over E.) Let G be the Lie algebra of G.
If u ∈ G ⊂ End(E), we define its action on V ∗ by −tu and its action on E∗ ⊗ E∗ by
−tu⊗ 1− 1⊗t u. Its natural action f �→ u • f on C[E] (isomorphic to the symmetric
tensor algebra S∗(E∗)) or on C(E) follows using evident formulas.

We define by C[E]G (resp C(E)G) the C-algebra of G-invariant elements of C[E]
(resp C(E)) (i.e. those f ∈ C[E] (resp. C(E)) such that g.f = f , for all g ∈ G). If
f ∈ C(V )G, then u • f = 0 for all u ∈ G.

We can clearly identify C with a subfield of C(E)G. As in [14, 5], for r ≥ 1, we
will say that an algebraic groupG is r-Ziglin if transdegCC(E)G ≥ r. We will say that
an algebraic group G is r-involutive Ziglin if there exists r algebraically independent
elements f1, . . . , fr ∈ C(E)G in involution.

We can state now our main results.
In order to facilitate the main applications to non academic problems, we will

give three versions of this main result and add some corollaries for local situations.
(Each statement will generalize the preceding.)

Let Γ be the abstract Riemann surface defined by a non stationary connected
integral curve i(Γ) of an analytic Hamiltonian system XH with n degrees of freedom
on a symplectic complex manifold M .

Theorem 7. If there are n meromorphic first integrals of XH which are in
involution and independent over a neighbourhood of the curve i(Γ) (not necessarily
on Γ itself), then the Galois group of the VE over Γ is n-involutive Ziglin. This
Galois group is the Zariski closure of the monodromy group. Furthermore, the identity
component of the Galois group of the VE over Γ is abelian.

The following result is a consequence of a theorem of Ziglin ([74] Theorem 2,
Remark 1). As an exercise, we give here a different proof. In fact Ziglin’s result is
stronger: he does not need involutivity hypothesis. We will come back to Ziglin’s
theorem later.

Corollary 5. We suppose that there are n meromorphic first integrals of XH

which are in involution and independent over a neighbourhood of the curve i(Γ) (not
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necessarily on Γ itself). Let g, g′ be elements of the monodromy group. We suppose
that they are non resonant. Then g must commute with g′.

Proof. Let G′ be the Zariski closure in the Galois group G of the subgroup
generated by g and g′. Let H (resp. H ′) be the Zariski closure of the subgroup
generated by g (resp. g′). Because g and g′ are non resonant, the groupsH and H ′ are
maximal torus in the symplectic group, i.e., they are conjugate to the multiplicative
group of dimension n

T := {diag(λ1, ..., λn, λ−1
1 , ..., λ−1

n , λi ∈ C∗, i = 1, ..., n}.

( see [5], proposition 2.13)
Therefore they are Zariski-connected. It follows that G′ ⊂ G0. Applying theorem

7 we see that G′ is abelian, therefore g and g′ commute.
We add now to the curve i(Γ) a discrete set of stationary points. We get a singular

curve Γ ⊂M . Let Γ̄ be a non singular model of Γ.

Theorem 8. If there are n first integrals of XH which are meromorphic and in
involution over a neighbourhood of the curve Γ and independent in a neighbourhood
of Γ (not necessarily on Γ itself), then the Galois group of the meromorphic VE over
Γ̄ is n-involutive Ziglin. Furthermore, the identity component of the Galois group of
the VE over Γ̄ is abelian.

We add now to the symplectic manifold (M, ω) a hypersurface at infinity M∞
(M ′ = M ∪ M∞) and to the curve i(Γ) a discrete set of stationary points and a
discrete set of points at infinity. We get a singular curve Γ′ ⊂ M ′. (We assume as
before that ω admits a meromorphic extension over M ′.) Let Γ̄′ be a non singular
model of Γ′.

Theorem 9. If there are n first integrals of XH which are meromorphic and in
involution over a neighbourhood of the curve Γ′ in M ′ (in particular meromorphic at
infinity) and independent in a neighbourhood of Γ (not necessarily on Γ itself), then
the Galois group of the meromorphic VE over Γ̄′ is n-involutive Ziglin. Furthermore,
the identity component of the Galois group of the VE over Γ̄′ is abelian.

Be careful: when we are in the third case we can consider three different Galois
groups corresponding to the variational equations over three (in general different)
Riemann surfaces (Γ, Γ̄ and Γ̄′). (Each group contains the preceding.) But our
abelian criterion is less and less precise (the set of allowed first integrals is smaller at
each step...). Unfortunately it is in general difficult to compute the differential Galois
group. (If the Riemann surface is open it is a transcendental problem.) The best
situation is when, in the second (resp. the third case), the Riemann surface Γ̄ (resp.
Γ̄′) is compact (and therefore algebraic). Then the connection is defined over a finite
extension of the rational functions field C(z) and there exists an algebraic algorithm
to decide if the identity component of the differential Galois group is solvable and
more precisely there exists a procedure to find a basis for the space of Liouvillian
solutions ([63, 42]). So in that situation we get the existence of a purely algebraic
criterion (unfortunately not yet effective...) for rational non integrability. (Notice
that, if the manifold M ′ is algebraic, then Γ̄′ is algebraic.)

It is important to notice that, if the meromorphic VE over Γ̄′ is regular singular
(i.e. of Fuchs type), then our three differential Galois groups coincide. Then, if we
are in the algebraic situation that we described above, we get an obstruction not only
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to the existence of n rational first integrals in involution, but more generally to the
existence of n first integrals meromorphic on the initial manifold M and in involution.
(An arbitrary growth at infinity is allowed.)

In fact in many practical situations, the situation is the following: the Riemann
surface Γ is an affine curve (i.e. Γ = Γ′′ − S, where Γ′′ is a compact Riemann surface
and S a finite subset), the VE (resp. the NVE) is a holomorphic connection ∇ on
a trivial holomorphic bundle over the Riemann surface Γ and can be extended as
a meromorphic connection ∇′′ on a trivial bundle over Γ′′. If moreover this last
connection ∇′′ is regular singular, then the differential Galois groups of ∇ and ∇”
coincide. Therefore we can (theoretically...) compute algebraically the differential
Galois group and we can apply Theorem 7. Of course we will have in general Γ′′ = Γ̄
or Γ̄′, but, for the applications it is not necessary to verify this fact! These remark will
be very useful for some important (non academic...) applications. We can conclude
that Theorems 8 and 9 are really interesting when we get irregular singularities at
the singular points (stationary points or points at infinity), in particular in the local
situations that we will describe now.

In the following two corollaries we will give some local versions of our results.

Locally on Γ or at a regular-singular point of Γ̄, Ziglin’s Theorem or our main
result give nothing. But, using our main result, we can get some proofs of local non-
integrability at a stationary point (or at a point at infinity) in some cases (cf. below:
6. Example 1).

Let XH be an analytic Hamiltonian system with n degrees of freedom on a sym-
plectic complex manifold M . Let a be a stationary point of XH . Let Γ be a germ of
(perhaps singular) analytic curve at a which is the union of {a} and a connected non
stationary germ of phase curve. Let Γ̄ be a germ of smooth holomorphic curve which
is a non singular model for Γ.

Corollary 6. If there are n germs at a of meromorphic first integrals of XH

which are in involution in a neighbourhood of a (in particular meromorphic at infinity)
and independent in a neighbourhood of a (not necessarily on Γ itself), then the local
Galois group of the meromorphic germ at a of VE over Γ̄ is n-involutive Ziglin.
Furthermore, the identity component of the local Galois group of the germ at a of VE
over Γ̄ is abelian.

We add now to the symplectic manifold (M, ω) an hypersurface at infinity M∞
(M ′ = M ∪M∞) and to the curve i(Γ) a point at infinity ∞ ∈ M∞. We get a germ
at ∞ of singular curve Γ′. (We suppose that ω admits a meromorphic extension at
∞.)

Corollary 7. If there are n germs at ∞ of first integrals of XH which are
meromorphic and in involution in a neighbourhood of ∞ in M ′ and independent in
a neighbourhood of ∞ (not necessarily on Γ itself), then the local Galois group of
the meromorphic germ at ∞ of VE over Γ̄′ is n-involutive Ziglin. Furthermore, the
identity component of the local Galois group of the germ of VE over Γ̄′ is abelian.

We will now prove Theorem 7. Later we will indicate how to modify the proof in
order to get theorems 8 and 9.

Let V,∇ be the holomorphic symplectic vector bundle and the connection cor-
responding to the variational equation of our Hamiltonian system along the solution
Γ. On the symmetric bundle S∗V ∗ of polynomials we can define the structure of a
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Poisson “algebra” (over the sheaf OΓ of C-algebras of holomorphic functions on Γ) in
the following way.

Let d be the differential over the fiber, i.e.

d : SkV ∗ −→ Sk−1V ∗ ⊗ V ∗,

dα =
∑ ∂α

∂ηi
⊗ ηi,

being η1, ..., η2n fiber coordinates in the bundle V ∗ (this is a special case of the differ-
ential of Spencer).

Then we obtain the mappings,

d⊗ d : SkV ∗ ⊗ SrV ∗ −→ (Sk−1V ∗ ⊗ V ∗)⊗ (Sr−1V ∗ ⊗ V ∗)

Id⊗ � : (Sk−1V ∗ ⊗ V ∗ ⊗ Sr−1V ∗)⊗ V ∗ −→ Sk−1V ∗ ⊗ V ∗ ⊗ Sr−1V ∗ ⊗ V ∗

c : Sk−1V ∗ ⊗ V ∗ ⊗ Sr−1V ∗ ⊗ V −→ Sk−1V ∗ ⊗ Sr−1V ∗

sym : Sk−1V ∗ ⊗ Sr−1V ∗ −→ Sk+r−2V ∗,

where � := 
−1, c and sim are duality by the symplectic structure (musical isomor-
phism), the contraction between V and V ∗, and the symmetric product.

The Poisson bracket

{, } : SkV ∗ ⊗ SrV ∗ −→ Sk+r−2V ∗,

is the composition of the four above maps. In a direct way we can prove that it is the
usual Poisson bracket in coordinates, if we only derivate with respect to the fiber, i.e.

{α, β} =
∑ ∂α

∂ηi

∂β

∂ξi
− ∂α

∂ξi

∂β

∂ηi
,

in a canonical frame and canonical coordinates ξ, η. We can extend by bilinearity {, }
to all the symmetric algebra S∗V ∗, and obtain a Poisson algebra (S∗V ∗, {, }) (more
precisely a O(Γ)-Poisson “algebra”).

From now on we fix a point p0 ∈ Γ. Let E0 = Solp0
∇ be the space of germs

at p0 of solutions (i.e. horizontal vectors of the connection ∇). We can associate
to a germ of solution its initial condition at p0. We get an isomorphism between
E0 and E = Vp0

= Tp0
M . The C-algebra C[E] is a complex Poisson subalgebra

of the complex Poisson algebra underlying the O(Γ)-Poisson algebra (S∗V ∗, {, }),
and the natural isomorphism E0 → E induces an isomorphism between this Poisson
algebra and the natural Poisson algebra (C[E], {, }) that we defined above (using the
symplectic structure on E = Vp0

= Tp0
M). In the following we will identify these two

algebras.

The Galois group G of the variational equation acts on C[E] and the algebra of
invariants C[E]G is also a Poisson subalgebra. Indeed since G is a symplectic group,
G commutes with the symplectic form and, for σ ∈ G, α, β ∈ C[E]G σ{α, β} =
{σα, σβ} = {α, β}.

We can now replace the holomorphic bundle S∗V ∗ (whose sections are functions
which are meromorphic on the basis and polynomial on the fiber) by the holomorphic
locally trivial bundle LV ∗ whose sections are functions which are meromorphic on
the basis and rational on the fibres. We extend easily the preceding constructions to
this bundle. The C-algebra C(E) is a complex Poisson subalgebra of the complex
Poisson algebra underlying the O(Γ)-Poisson algebra (LV ∗, {, }), and the natural
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isomorphism E0 → E induces an isomorphism between this Poisson algebra and the
natural Poisson algebra (C(E), {, }) that we defined above. In the following we will
identify these two algebras. The Galois group G of the variational equation acts on
C(E), it commutes with the Poisson product and the algebra of invariants C(E)G is
also a Poisson subalgebra.

In the following, by definition, a first integral of the variational equation (or of
the corresponding connection ∇) is a meromorphic function defined on the total space
of the bundle V , which is meromorphic over the basis and rational over the fibers (i.e.
a meromorphic section of the bundle LV ∗) and which is constant on the solutions (i.
e. horizontal sections). As the symplectic fiber bundle V is meromorphically trivial
(as a symplectic bundle), such a first integral can be interpreted as an element of
M(Γ)(η1, . . . , η2n) ((1, 0, . . . , 0), . . . , (0, . . . , 0, 1) corresponding to a global meromor-
phic symplectic frame).

Let f be a holomorphic first integral defined on a neighbourhood of the analytical
curve i(Γ). Then for any point p ∈ Γ we define the junior part [f ]p of f at p as the
first non-vanishing homogeneous Taylor polynomial of f at p with respect to some
coordinate system in the phase space. This process has an invariant meaning and
the junior part [f ]p must be considered as a homogeneous polynomial on the tangent
space TpM = Vp at p (see [5] for the details). Furthermore, the degree k ∈ N of this
polynomial is the same for any point p ∈ Γ ([5], Proposition 1.25). In this way, when
p varies in Γ, we obtain a holomorphic first integral (polynomial on the fibres) of the
variational equation defined on the bundle TΓM = V ... It is a holomorphic section
of S∗V ∗.

Let f be now a meromorphic first integral defined on a neighbourhood of the
analytic curve i(Γ). Then for any point p ∈ Γ we can naturally extend the map
f �→ [f ]p to the fraction fields and define the junior part [f ]p of the meromorphic first
integral f at p. This junior part [f ]p must be considered as a homogeneous rational
function on the tangent space TpM = Vp at p. Furthermore, the degree k ∈ Z of this
homogeneous rational function is the same for any point p ∈ Γ ([5], Proposition 1.25).
In this way, when p varies in Γ, we obtain a meromorphic first integral (rational on
the fibres and holomorphic on the basis) of the variational equation defined on the
bundle TΓM = V . It is a holomorphic section of LV ∗.

Let f , g two meromorphic first integrals in involution in a neighbourhood of the
analytic curve i(Γ). If we denote respectively by f0, g0 the junior parts of them
at p0, then these rational functions are also in involution. Indeed 0 = {f, g} =
{fk+h.o.t., gr+h.o.t.} = {fk, gr}+h.o.t., where the first term has the degree k+r−2.
The involutivity of f0 and g0 follows from this and from the definition of the junior
part ([5]).

Now we are going to recall a fundamental Lemma due by Ziglin. Let f be a
holomorphic function defined over a neighbourhood of the origin in a finite dimensional
complex vector space E. We define the junior part f0 of f at the origin ([5]). It is an
homogeneous element of the rational function field C(E).

Lemma 6 (Ziglin Lemma,[74]). Let f1, ..., fr be a set of meromorphic functions
over a neighbourhood of the origin in the complex vector space E. We suppose that
they are (functionally) independent over a punctured neighbourhood of the origin (they
are not necessarily independent at the origin itself). Then there exists polynomials
Pi ∈ C[X1, ..., Xi] such that, if gi = Pi(f1, . . . , fi), then the r rational functions
g0
1 , . . . , g

0
r ∈ C(E) are algebraically independent.
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The following result is proved in [74], [5].

Lemma 7. Let V,∇ be the holomorphic symplectic vector bundle and the con-
nection corresponding to the variational equation over Γ. Let f0 be a first integral of
the variational equation, holomorphic over the basis and rational over the fibers. Let
p ∈ Γ. Then the rational function f0

p is invariant under the action of the monodromy
group π1(M ; p).

The point p defines a representation of the differential Galois group G of the
variational equation as a closed (in Zariski sense) subgroup of GL(Vp). We will write
G ⊂ GL(Vp). Then the image ρ(π1(M ; p)) of the monodromy representation at p is a
Zariski dense subgroup of G. We get the following result.

Lemma 8. Let V,∇ be the holomorphic symplectic vector bundle and the con-
nection corresponding to the variational equation over Γ. Let f0 be a first integral of
the variational equation, holomorphic over the basis and rational over the fibers. Let
p ∈ Γ. Then the rational function f0

p is invariant under the action of the differential
Galois group of ∇.

We will need generalizations of this lemma when we will have singular points
(equilibrium points or points at infinity) and when we will consider variational equa-
tions over Γ̄ or Γ̄′. But in such cases it is in general not true that the image of the
monodromy representation is dense in the Galois group and our preceding proof no
longer works. Therefore we will give below a new proof of Lemma 8 which remains
valid, mutatis mutandis, in all cases. It is very elementary (even almost trivial...) but
central in the proof of our main results. In fact we will prove a slightly more general
result.

Lemma 9. Let V,∇ be the holomorphic symplectic vector bundle and the con-
nection corresponding to the variational equation over Γ. Let f0 be a first integral
of the variational equation, meromorphic over the basis and rational over the fibers.
Let p ∈ Γ. We suppose that f0 is holomorphic over the basis in a neighborhood of p.
Then the rational function f0

p is invariant under the action of the differential Galois
group of ∇.

We shall give two different proofs of this lemma.

First Proof. As above we choose a global meromorphic symplectic frame

(φ1, . . . , φ2n)

for the symplectic (meromorphically trivial) holomorphic bundle V over Γ. Using this
frame, we identify the field of meromorphic sections of LV ∗ withM(Γ)(η1, . . . , η2n).
We fix a point p ∈ Γ. The frame allows us to identify the fiber Vp with the space
C2n (with its canonical symplectic structure). We can suppose that (φ1, . . . , φ2n) are
holomorphic and independent at p. Then, in a neighbourhood of p, we can choose
an uniformizing variable x over the basis and write the connection ∇ as a differential
system Δη = d

dxη −A(x)η, where A is a holomorphic matrix.
Let (ζ1(x), . . . , ζ2n(x)) be the set of solutions satisfying the initial conditions

ζ1(0) = (1, 0, . . . , 0), . . . , ζ2n(0) = (0, . . . , 0, 1) at the point p (x = 0). The system
(ζ1, . . . , ζ2n) defines uniquely a Picard-Vessiot extensionM(Γ) < ζ1, . . . , ζ2n > of the
differential field M(Γ). Using this system we get a representation of the differential
Galois group G of ∇ as a subgroup of Sp(2n;C) ⊂ GL(Vp).
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Let f0 = f0(x; η1, . . . , η2n) ∈ M(Γ)(η1, . . . , η2n) be a first integral of the varia-
tional equation, meromorphic over the basis and rational over the fibers. We sup-
pose that f0 is holomorphic over the basis in a neighborhood of p. To a fixed
λ = (λ1, . . . , λ2n) ∈ C2n we associate the solution ηλ = λ1ζ1 + . . . , λ2nζ2n. In a
neighborhood of p, we have f0(x; ηλ(x)) = f0(0;λ) ∈ C. We can interpret f0(x; ηλ)
as an element of the Picard-Vessiot extensionM(Γ) < ζ1, . . . , ζ2n >. In this Picard-
Vessiot extension this element is a constant (i.e. it belongs to C), therefore it is
invariant under the action of G. When λ varies in C2n the function λ �→ f0(0;λ) is
rational: it is the expression in coordinates of the function f0

p .

Let σ∈G. Using the definition of a differential Galois group, we get σ(f0(x; ηλ)) =
f0(x;σ(ηλ)) = f0(0;λ) = f0(0;μ), where μ = σ(ηλ)(0).

Then σζ = Bζ, with B = (bij) ∈ Sp(2n;C). We have σ(
∑

i λiζi) =
∑

i,j bijλiζj .

Therefore μ = tBλ and f0(0;λ) = f0(0; tBλ). This proves the invariance of f0
p under

the action of G.

Second Proof. We sketch a second proof based upon Tannakian arguments. Let
f0 ∈ LV ∗ be a first integral of the variational equation. We first suppose that f0

is not a polynomial. Then we can write f0 = h
g , being h ∈ SkV ∗ and g ∈ SrV ∗

relatively prime symmetric tensors. If v is a solution of the variational equation
(that is ∇v = 0) then the equation Xh(f

0(v)) = 0 is equivalent to the equation
(Sk∇∗h(v))g(v) − h(v)(Sr∇∗g(v)) = 0. Consequently we get two equations

Sk∇∗h = ah,

Sr∇∗g = ag,

where a is an element of the coefficient field K of the variational equation.

We set W = SkV ∗ ⊕ SrV ∗ and ∇W = Sk∇∗ ⊕ Sr∇∗. The one-dimensional
K-vector subspace W ′ = K(h + g) of the K-vector space W is clearly stable under
the action of the connection ∇W . We denote by ∇W ′ the restriction of ∇W to W ′.
Hence we get a rank one subconnection (W ′,∇W ′) of the connection (W,∇W ) =
(SkV ∗⊕SrV ∗, Sk∇∗⊕Sr∇∗). This last connection is an object of the tensor category
of the (generalized) constructions over ∇. Then we can choose a point p ∈ Γ and
introduce the corresponding fiber functor. The space of germs at p of horizontal
sections of the subconnection (W ′,∇W ′) is a complex line in the complex space of
horizontal sections of the connection (W,∇W ). From the Tannakian definition of the
Galois group G, this complex line is invariant by G. This complex line is generated
over C by an element ϕ(hp + gp) where ϕ′ + aϕ = 0. The invariance of the rational

function f0
p =

hp

gp
by the Galois group G follows immediately. (The above proof it

is not far from some arguments used in J.A. Weil’s Thesis ([68]) for the study of
Darboux’s invariants.)

If f0 is a polynomial, we set f = f0, g = 1. The equation Xh(f
0(v)) = 0 is

equivalent to the equation (Sk∇∗f(v)) = 0. Then we can replace in the preceding
proof the connection K(h+g), Sk∇∗⊕Sr∇∗) by the connection (K(1+f), δK⊕Sk∇).
This connection is a rank one subconnection of the connection (K⊕SkV ∗, δK⊕Sk∇)
and we can conclude as above (here the complex line C(fp +1) is invariant by G and
G acts trivially on it).

Let now f1, ..., fn be a family of meromorphic first integrals of the Hamiltonian
XH in involution and independent over a neighbourhood of i(Γ) (not necessarily on
i(Γ) itself).
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If we apply Ziglin Lemma (see Lemma 6 above) at a point p ∈ Γ to our functions
f1, ..., fn, by all the arguments we gave above we get n homogeneous and independent
(algebraically and analytically) functions α10

, ..., αn0
in the algebra (C(E)G, {, }).

In other words, the abelian Lie algebra (A, {.}) of polynomials in α10
, ..., αn0

(with
complex coefficients) is a Poisson subalgebra of (C(E)G, {, }) and it is invariant by the
differential Galois group Γ of the variational equation, therefore it is annihilated by
the Lie algebra G = Lie G of the algebraic group G. Then we finishes using Theorem 6
of section 5.1. This ends the proof of Theorem 7. The proofs of Theorems 8 and 9 are
similar, with very simple modifications. The essential difference is the following. By
hypothesis the first integrals f1, . . . , fn are meromorphic over the manifold M (resp.
M ′), in particular at the stationary points (resp. at the stationary points and at the
points at infinity), therefore their junior parts f0

1 , . . . , f0
n are meromorphic sections

over Γ̄ (resp. Γ̄′) of the fiber bundle LV ∗. (Their restrictions over Γ will of course
remain holomorphic, but in general they will have poles at the singular points and at
the points at infinity.)

If between our n meromorphic integrals there are some of them which are func-
tionally independent over Γ, then using the results of section 4, we get

Corollary 8. Let f1, ..., fn be a family of meromorphic first integrals of the
Hamiltonian XH in involution and independent over a neighbourhood of i(Γ) (not
necessarily on i(Γ) itself). If moreover, for a fixed integer k ≤ n, the k first integrals
f1, ..., fk are (functionally) independent over Γ, then the Galois group of the NVE is
n − k-involutive Ziglin. Furthermore the identity component of the Galois group of
this NVE is abelian.

There are similar statements in the situation of Theorem 8 (resp. 9): i.e. when
f1, ..., fn are meromorphic in a neighborhood of Γ (resp. Γ′). We leave the details
to the reader. The proof is essentially the same for the three cases. In order to
perform the reduction, we complete f1, ..., fn into a global meromorphic symplectic
frame over Γ (resp. Γ̄ or Γ̄′) and we apply the process described above in 4.3. We get
the NVE. It can have poles, in particular at the stationary points and at the points
at infinity. The Galois group G′ of the NVE is a quotient of the Galois group G of
the VE. The identity component G0 of G is abelian, therefore the identity component
G′0 of G′ is also abelian. More precisely G0 is an extension of G′0 by an algebraic
group isomorphic to some additive group Cp. We remark that G′0 can contain a non
trivial torus isomorphic to some C∗q (cf. our examples below in section 6). So we
observe the possibility of quite a big difference between the first integrals eligible for
the normal reduction process and the others.

We remark that, as for the main Theorem, the conclusion of the corollary is the
same if we restrict the NVE to a neighbourhood of some singular point s and if the
Galois group is the local Galois group. In this way we can use our results in order to
obtain non-existence of local first integrals in any neighbourhood of an equilibrium
point or of one point at infinity.

Now we show how Ziglin’s Theorem is a direct consequence of the above corollary
when we assume the complete integrability of the system (i.e., when in the above
corollary n = 2).

Corollary 9. Let f be a meromorphic first integral of the two-degrees of free-
dom Hamiltonian system XH . We suppose that f and H are independent over a
neighbourhood of i(Γ) (not necessarily on i(Γ) itself). Moreover we assume that the
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monodromy group of the NVE contains a non-resonant transformation g. Then any
other transformation belonging to this monodromy group sends eigendirections of g
into eigendirections of g.

Proof. First, we assume that, as in the above results of this section, the set i(Γ) is
not reduced to an equilibrium point. Then dH remains different from zero over i(Γ)
and the reduction to the NVE is made using the one form dH (or in a dual way the
vector field XH).

Then the NVE is given by a symplectic connection over a two dimensional vector
space. Hence its Galois group is an algebraic group whose identity component is
abelian and we can identify this group with a subgroup of SL(2,C). In Proposition
1, we gave the classification of the algebraic subgroups of SL(2,C). Here the only
possible cases are cases 4 and 5, because for the others either the identity component of
the Galois group is not abelian else all the elements of the Galois group are resonant.
It is clear that in both cases 4 and 5 we have g ∈ G0 (we recall that the group
topologically generated by a non resonant element g is a torus, more precisely here this
torus is maximal and we have G0 ≈ C∗) and the remaining transformations belonging
to the Galois group either preserve the two eigendirections of g else permute them.

In fact, a stronger result is true: Ziglin’s general Theorem is a corollary of our
results, as was remarked by Churchill [13]. That follows from the following theorem
which generalizes the above corollary.

Theorem 10. Ziglin’s Theorem (Theorem 1) is true mutatis mutandis if we
substitute Galois group by monodromy group

For a proof, see the above reference of Churchill.
Now, as the monodromy group is contained in the Galois group, we get the

Theorem 1 as a corollary.

6. Examples. Let XH be the Hamiltonian system defined by the Hamiltonian

H = T + U := 1/2(y2
1 + y2

2) + 1/2ϕ(x1) + 1/2α(x1)x
2
2 + h.o.t.(x2),

where xi’s are coordinates and yi’s canonically conjugated momenta (i = 1, 2). We
assume that this Hamiltonian is holomorphic at the origin.

The plane {x2 = y2 = 0} is invariant and the Hamiltonian restricted to this
plane is of the type studied in the example of subsection 4.1. We write x := x1,
y := y1. Then we have the analytic integral curve y2 + ϕ(x) = 0. We assume that
ϕ(x) = xn + h.o.t., n ≥ 2. We want to study the NVE along this integral curve in a
neighbourhood of the origin (which is an equilibrium point).

The NVE is

d2ξ

dt2
+ α(x(t))ξ = 0.

As

d

dt
= (±t̂n/2 + h.o.t.)

d

dt̂

for n even, and

d

dt
= (

1

2
t̂n−1 + h.o.t.)

d

dt̂
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for n odd, we obtain for the corresponding NVE

d2ξ

dt̂2
+ (

n

2t̂
+ h.o.t.)

dξ

dt̂
+

α(x(t̂))

t̂n
ξ = 0, n even,

d2ξ

dt̂2
+ (

n− 1

t̂
+ h.o.t.)

dξ

dt̂
+
4α(x(t̂))

t̂2n−2
ξ = 0, n odd.

And if

α(x) = akxk + h.o.t., ak �= 0,

then, by the Fuchs Theorem about regular singular singularities, we get the following
result that we state as a proposition for future references.

Proposition 12. The origin (or more precisely its corresponding points in the
desingularized curve) is a regular singular point of the NVE of the above Hamiltonian
system along the integral curve y2

1 + ϕ(x1) = 0 if and only if n− k ≤ 2, being n and
k the multiplicity (as a zero) of x = 0 in ϕ and α respectively.

We remark that the above proposition relates the degeneration of the equilib-
rium points to the irregularity of the corresponding singular points of the variational
equation. Hence, the degeneration is related to the (possible) existence of Stokes
multipliers.

Now we shall apply Theorem 5 of subsection 3.4 to our Hamiltonian system

H = T + U := 1/2(y2
1 + y2

2) + 1/2ϕ(x1) + 1/2α(x1)x
2
2 + h.o.t.(x2),

(with two degrees of freedom), with the integral irreducible analytic curve defined by
y2 + ϕ(x) = 0 (as above, we drop the subindexes). Furthermore we assume that ϕ
and α are polynomials. Then Γ is a compact Riemann surface (see [31]) and the usual
change of variables x↔ t, x = x(t) (x(t) is the solution of the hyperelliptic differential
equation ẋ2 + ϕ(x) = 0) gives us a pullback of the NVE over the Riemann sphere.
The classics call it the algebraic form of the equation, [70, 57]

d2ξ

dx2
+

ϕ′(x)
2ϕ(x)

dξ

dx
− α(x)

2ϕ(x)
ξ = 0.

We will call this equation the algebraic NVE.
We observe that the singular points are the branching points of the covering (i.e.,

the roots of ϕ and the point at infinity). Concerning the equilibrium points of the
original Hamiltonian, we see that x = 0 is a singular point if n− k > 0 and that it is
irregular if n− k > 2 in complete accordance with the last proposition.

Furthermore, by Theorem 5 of subsection 3.4, the identity components of the
Galois groups of the NVE and of the algebraic NVE are isomorphic. Now if we look
at the standard transformation in order to put the algebraic NVE in the normal
invariant form

d2ξ

dx2
+ I(x)ξ = 0,

(being

I := q − 1

4
p2 − 1

2

dp

dx
,
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and

d2ξ

dx2
+ p

dξ

dx
+ qξ = 0,

the original equation, where we conserve the symbol ξ for the new variable), we only
introduce an algebroid function (exp(−1/2 ∫

p = ϕ−1/4) (a function algebraic over the
rational field). Hence, the identity components of the Galois groups of the algebraic
NVE and of its normal invariant form are also isomorphic. As a conclusion, we can
work directly with the normal form of the algebraic NVE: if the identity component
of its Galois group is not abelian, then our Hamiltonian system is not integrable (we
observe that the Galois group of the normal invariant form and the Galois group of
the initial NVE as well, are contained in SL(2,C)).

Example 1. We shall apply the theory to the very simple following family of
Hamiltonians with two degrees of freedom with three parameters,

H = T + U =
1

2
(y2

1 + y2
2) +

c

3
x3

1 +
1

2
(a+ bx1)x

2
2, , a ∈ C∗, b ∈ C.

We consider two possible cases for c �= 0 and c = 0.

a) For c �= 0, by rescaling the potential we can write the Hamiltonian function as the
two-parameter family

H = T + U =
1

2
(y2

1 + y2
2) +

1

3
x3

1 +
1

2
(a+ bx1)x

2
2, , a ∈ C∗, b ∈ C.

The corresponding Hamiltonian system admits the integral curve,

Γ : ẋ2
1 = −

2

3
x3

1, x1 = −6t−2, y1 = 12t−3, x2 = y2 = 0.

The corresponding normal variational equation is

ξ̈ + (a− 6bt−2)ξ = 0.

We observe that there are two singular points: the origin and the point at infinity
(corresponding to the initial origin). The first one is regular singular and the second
one is irregular by the above proposition. In fact, as we shall see, the NVE is a
confluent hypergeometric equation.

Doing the change of variables t = iz
2
√

a
, we get

d2ξ

dz2
− (

1

4
+ 6b

1

z2
)η = 0.

This is a family of Whittaker equations, with only one parameter. In fact, as we know
from subsection 3.5, it can be transformed into a family of Bessel equations. Then the
identity component of the Galois group of the NVE is abelian if and only if μ+1/2 is
an integer. Hence, for b �= 1

6 (k
2+k), k ∈ Z, our Hamiltonian system is not integrable:

it does not admit a global first integral, meromorphic over the initial phase space C4,
beyond the Hamiltonian. (The differential Galois groups of the NVE’s over Γ and

Γ
′
are the same, because the point at infinity of Γ

′
, which corresponds to t = 0, is

regular singular. But, be careful, the differential Galois groups of the NVE’s over Γ
and Γ are in general not the same, the identity component of the second one is always
abelian.)
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We observe that for a = 0 the above Hamiltonian is the homogeneous Hénon-
Heiles Hamiltonian. It is studied from the differential Galois point of view in [52].
The situation is quite different from the preceding one: the NVE is Fuchsian.

b) For c = 0, the Hamiltonian system admits the very elementary integral curve,

Γ : ẋ2
1 = cte, x1 = dt+ e, y1 = e, x2 = y2 = 0,

being d and e constant.
Then the NVE is given by the equation

ξ̈ + (a+ b+ edt)ξ = 0,

which, by rescaling the time, we can write as the Airy’s equation

ξ̈ − tξ = 0.

Now, we known from subsection 3.5 that the Galois group of the Airy equation
considered over C(t) is SL(2,C). Hence, by Theorem 9 - to be more precise, by the
analogous corollary to Corollary 9 corresponding to this theorem - we get the non-
integrability of the Hamiltonian system above by rational first integrals. We remark
that then the system is considered as defined over the projective space P 4

C
.

Probably the example b) is the simpler non-trivial application of our theorems,
with a NVE of Airy’s type. We are grateful to M. Audin who pointed out the existence
of this nice example in [4].

Example 2. For three degrees of freedom one has the following natural general-
ization of example 1,

H = T + U =
1

2
(y2

1 + y2
2 + y2

3) +
1

3
x3

1 +
1

2
(A+Bx1)x

2
2 +

1

2
(C +Dx1)x

2
3,

where A, C ∈ C∗, B, D ∈ C.
This Hamiltonian system admits the integral curve,

Γ : ẋ2
1 = −

2

3
x3

1, x1 = −6t−2, y1 = 12t−3, x2 = x3 = y2 = y3 = 0.

The corresponding NVE is composed of two uncoupled Whittaker equations. We
denote by G′, G′′ their differential Galois groups. It is clear that G′ and G′′ are
quotients of the Galois group G of the NVE. Hence, if one of the parameters B or D
is different of 1

6 (k
2 + k), k ∈ Z, then the identity component G0 cannot be abelian

and we get non-integrability. In the same way we can generalize this to an arbitrary
number of degrees of freedom and to some other examples (when the NVE splits into
2× 2 systems of the same kind).

Example 3. We consider now the family of two degrees of freedom Hamiltonian
systems defined as above with ϕ(x) = xn, α(x) = axn−4 + bxn−3 + cxn−2, where n
is an integer, with n > 3, and a, b, c are complex parameters, the parameter a being
different from zero.

In the same situation as above, the normal invariant form of the algebraic NVE
is

d2ξ

dx2
− ((

n(n− 1)

16
+ c)x−2 + bx−3 + ax−4)ξ = 0.



84 J. J. MORALES-RUIZ AND J. P. RAMIS

After the change of variables x = x̂
2
√

a
, we get

d2ξ

dx2
− (

1

4a
(
n(n− 1)

16
+ c)x−2 +

b

4a
x−3 +

1

4
x−4)ξ = 0

(in order to simplify the notation we write again x instead of x̂). Now, if in the
Whittaker equation

d2ξ

dz2
− (

1

4
− κ

z
+
4μ2 − 1

4z2
)η = 0,

we do the change of variables, z = 1/x, we obtain

d2ξ

dx2
− (

4μ2 − 1

4
x−2 − κx−3 +

1

4
x−4)ξ = 0.

So, the algebraic NVE is a general Whittaker equation, with

4μ =

√
c+

n(n− 4)

16
+
1

4
, κ = − b

2
√

a

.
Now, we recall that if

p := κ+ μ− 1

2
; q := κ− μ− 1

2
,

then the identity component of the Galois group of the Whittaker equation is abelian
if and only if (p, q) belongs to (N×−N∗)∪(−N∗×N) (i.e. if both p and q are integers,
one of them being positive and the other one negative). Hence this last condition is
a necessary condition for the integrability of the initial Hamiltonian system.

We make two remarks about the above Examples 1–3. The first one is that,
because of the abelianness of the monodromy group of the NVE, it is impossible
to get any non–integrability result from an analysis of the monodromy group. The
second one is that, as the NVE’s are confluent hypergeometric equations, then the
local Galois group at the irregular point and the global Galois group coincide. Then, we
have proved in fact the non-integrability of these systems in any neighbourhood of the
origin in the complex phase space. (This origin is the equilibrium point corresponding
to the irregular singular point.)

For the Example 1, we have the following numerical computations made by Carles
Simó.

If (in order to have real recurrence) in the Hamiltonian of Example 1 a), we do
the canonical change of variables x2 = ix′

2, y2 = −iy′
2, we get the new Hamiltonian

H =
1

2
(y2

1 − y2
2) +

1

3
x3

1 −
1

2
(a+ bx1)x

2
2,

where we dropped the primes.
Then Figure 1 shows a Poincaré section for x2 = 0, a = 1, b = 10, h = 0.01 (h is

the energy level) in the coordinates (x1, y1). We observe the well known transversal
homoclinical chaotic behaviour in a small neighbourhood of the origin. Apparently the
Stokes phenomena for the linearized equation corresponds to phenomena of splitting
of separatrices. It would be interesting to get a more precise analysis of this example.
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Figure 1

For some special Hamiltonians it is also possible to prove local non integrability in
a Fuchsian context as it is shown by Ziglin in the following example, that we include
for the sake of completeness.

Example 4 ([74]). We recall briefly the Ziglin analysis. The starting Hamiltonian
is

H =
1

2
(y2

1 + y2
2 + x2

1x
2
2).

By an elementary canonical transformation (a rotation, in order to put one of the
symmetric invariant planes over x2 = y2 = 0) Ziglin obtains a Hamiltonian system
with the potential (we keep the same notation for the new coordinates)

V (x1, x2) =
1

8
(x2

1 − x2
2)

2.

This is a potential of the type we studied above, with ϕ(x1) = 1/4x4
1 and α(x1) =

−1/2x2
1. Ziglin then considered the NVE along the family of integral curves x2 =

y2 = 0, using as a parameter the energy H > 0 (he did not consider the integral curve
through the origin). These variational equations are reduced to Lamé’s type and then
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he apply his theorem about the monodromy group (in fact, by the subsection 5.2, he
proves the non-abelianity of the identity component of the differential Galois Group).
So the system under study does not have an additional holomorphic first integral in
a neighbourhood of the above family of integral curves.

The key point now is that, by the (quasi-) projective structure of the Hamiltonian
(the potential is a homogeneous polynomial), if the system has a holomorphic first
integral, then each homogeneous polynomial in the expansion of this integral at the
origin must also be a first integral. In this way Ziglin proves the local non-integrability
of this system at the origin.

7. Final remarks. If we compare the methods proposed in this article with
respect to those of other authors in previous papers, we have already observed that,
in examples (1)–(3) of the above section, the monodromy group of the NVE is abelian,
hence with methods based only upon the monodromy group one cannot obtain any
non-integrability result. Furthermore, if we drop the involutivity assumption of the
first integrals, then the Galois group is not necessarily abelian. Even more in general
it is not solvable and the NVE are not Picard-Vessiot solvable too: in the reference
[15] all the 2-Ziglin algebraic subgroups of Sp(2,C) are classified. Only some of the
groups in this classification are abelian. Then the other 2-Ziglin groups correspond
to Hamiltonian systems which are not completely integrable systems in the Liouville
sense.

In [49, 50] we apply some results of this paper to various non academic problems:
Hamiltonian systems with homogeneous potentials, three body problems, homoge-
neous cosmological model,... We get very easily, in a systematic way, new proofs of
classical results and many new results.

A connection of our (algebraic) criterion of non–integrability with chaotic dynam-
ics is given in [48].

We think that it would be interesting to apply the results of this paper (and,
following a suggestion of C. Simó, some conjectural generalizations to the n-th order
variational equations [53]) to other classical Hamiltonian systems.

Acknowledgements. The authors are indebted to Carles Simó for the numeri-
cal computations on the example 1) of the section 6 and for many discussions and also
to Jacques-Arthur Weil for many remarks. The first author was partially supported
by the Spanish grant DGICYT PB94-0215, the EC grant ERBCHRXCT940460 and
the Catalan grant CIRIT 1996S0GR-00105.

Appendix A. Meromorphic Bundles. Let X be a Riemann surface. We
denote by OX and by MX the sheaves of holomorphic and meromorphic functions
over X . The sheaf of holomorphic sections V of a holomorphic vector bundle V of
rank n is a sheaf of OX -modules which is locally isomorphic to On

X . A holomorphic
vector bundle of rank n on X is also interpreted as an element of the non abelian
cohomology set H1(X ;GL(n;OX)).

Let G ⊂ GL(n; .) be an algebraic subgroup (defined on the field of complex
numbers). We set Gan = GOX

⊂ GL(n;OX) and Gme = GMX
⊂ GL(n;MX). We

will say that an holomorphic bundle on X admits G as structure group if it is defined
by an element of H1(X ;Gan).

We need meromorphic vector bundles. By definition the sheaf of meromorphic
sections of a meromorphic vector bundle of rank n is a sheaf ofMX -modules which is
locally isomorphic toMn

X . A meromorphic vector bundle of rank n over X is also in-
terpreted as an element of the non abelian cohomology setH1(X ;GL(n;MX)). If this
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element “belongs” to H1(X ;Gme), we will say that the meromorphic vector bundle
admits G as structure group. There exists an equivalent definition for a meromorphic
vector bundle over a Riemann surface X , due to P. Deligne [De], 1.14 p. 52. Such a
bundle is an equivalence class of holomorphic extensions of holomorphic bundles de-
fined on X minus a discrete subset Σ: locally, if z is a uniformizing variable vanishing
on Σ, then two extensions V1 and V2 of V are equivalent if the corresponding sheaves
of holomorphic sections satisfy

znV 1 ⊂ V 2 ⊂ z−nV 1 ⊂ i∗V

(i : X − Σ→ X being the natural inclusion).
The following result says that every meromorphic vector bundle on a Riemann

surface comes from a holomorphic vector bundle.

Lemma 10. Let X be a Riemann surface. Let G ⊂ GL(n;C) be an algebraic
subgroup defined on the field of complex numbers. Then the natural map

H1(X ;Gan)→ H1(X ;Gme)

is surjective.

The proof is easy: the set of poles of a section of Gme is discrete.

Proposition 13. Any meromorphic vector bundle over a Riemann surface X is
trivial.

Proof. Let V me be a meromorphic vector bundle over X . It comes from an
holomorphic vector bundle V an. If X is an open Riemann surface, then V an is trivial
([21] Th. 30.4). If X is a compact connected Riemann surface, then V an comes from
an algebraic vector bundle V over the non singular projective curve X . We denote
by kX the field of rational (or meromorphic..) functions over X . The field of rational
sections of the algebraic bundle V is a rank n vector space over kX ([21] Cor. 29.17),
therefore V me is a trivial meromorphic bundle.

In fact we need some similar but more precise results involving vector bundles
with the symplectic group as structure group. We will give them below.

If now X is a singular complex analytic curve, we can also define holomorphic
vector bundles and meromorphic vector bundles over X along the same lines. If
π : X̃ → X is a desingularisation map (i.e. if X̃ is a Riemann surface and π a proper
analytic map which is a finite covering ramified at worst above a discrete subset of
X), then it induces an isomorphism π∗ between the sheaves of meromorphic functions
MX and MX̃ , and therefore an isomorphism π∗ between the meromorphic vector

bundles over X and over X̃.

Theorem 11 (Grauert Theorem). Let X be a complex connected, non compact,
Riemann surface. Let F = (Y, p, X) be a locally trivial vector (resp. principal) holo-
morphic fiber bundle over X with a connected complex Lie group G as structure group.
Then F is holomorphically trivial.

Sketch of Proof. For completeness we recall here the proof. We denote by Gan

(resp. Gc) he sheaf of holomorphic (resp. continuous) functions on X with values
in G The open Riemann surface X is homotopically equivalent (by retraction) to a
finite one-dimensional complex. On such a complex a G-fiber bundle is topologically
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trivial, because G is connected. Therefore the fiber bundle F is topologically trivial.
An open Riemann surface is a Stein manifold and on such a manifold the topological
classification and the analytic classification of fiber bundles with a complex Lie group
as structure group coincide: the natural map

H1(X ;Gan)→ H1(X ;Gc)

is a bijection ([22, 10]). Therefore F is holomorphically trivial.

A complete and detailed proof is given in [61], Chapter 2.

We apply the above theorem to the symplectic group. An element of Sp(2n,C)
is a product of at most 4n − 2 symplectic transvections ([19]) (we can also use an
homomorphism between Sp(2n,C) and the product of SU(n)× vector space and the
connectedness of SU(n)). Hence

Lemma 11. The topological group Sp(2n,C) is connected.

Corollary 10. Let X be a complex connected, non compact, Riemann surface.
Let F = (Y, p, X) be a locally trivial vector (resp. principal) holomorphic fiber bundle
over X with Sp(2n,C) as structure group. Then F is holomorphically trivial.

For compact Riemann surfaces we have the following proposition.

Proposition 14. Let X be a connected compact Riemann surface. Let F =
(Y, p, X) be a locally trivial vector (resp. principal) holomorphic fiber bundle over X
with structure group Sp2n(C). Then F is meromorphically trivial.

The compact Riemann surface X is also a complex algebraic (projective) curve.
We denote by G the sheaf of regular maps from X to the algebraic complex group G.
We have a natural map

an : H1(X ;G)→ H1(X ;Gan).

The symplectic group G = Sp2n(C) satisfies condition (R) of [60] (p. 33): there
exists a rational section

GL2n(C)/G→ GL2n(C)

(cf. [60], Example c) p. 34). Therefore we can apply Proposition 20 of[60] (p. 33):
the map L is a bijection. Using an algebraic trivialization of the algebraic bundle
corresponding to F on a convenient affine subset of the curve X , we get the result.

Let M ′ be a connected complex analytic manifold of complex dimension 2n. Let
Ω be a closed meromorphic form of degree two on M ′. Let M∞ ⊂ M ′ be a closed
analytic hypersurface (i.e. analytic subset of pure complex codimension one) of M ′.
We set M = M ′ −M∞ and we suppose that Ω is holomorphic and non degenerate
over M . Then (M,Ω) is a complex symplectic manifold. We denote by T M ′ (resp.
T ∗ M ′) the tangent (resp. cotangent) bundle of M ′. It is a holomorphic bundle but
we will use only its structure of meromorphic bundle. Then, as we noticed before, the
form Ω induces a generalized musical isomorphism between the meromorphic bundle
T M ′ and the meromorphic bundle T ∗ M ′: if X1 is a meromorphic vector field on an
open set U ∈ M ′, then, for every meromorphic vector field X on U , Ω(X1, X) is a
meromorphic function on U , and

X → Ω(X1, X)
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is a kU -linear isomorphism between the kU -vector spaces of meromorphic sections of
T M ′ and T ∗ M ′ on U . (We denoted by kU the field of meromorphic functions on
U .)

Let H be a meromorphic Hamiltonian function over the manifold M ′. Let XH =
�dH be the corresponding Hamiltonian field. It is meromorphic over M ′ and its
restriction to M is holomorphic. Let i(Γ) be a connected non equilibrium phase curve
for XH over M . Let Γ′ be as before a (perhaps) singular curve which is the union
of i(Γ) and of a discrete subset of equilibrium points and points at infinity. Let

Γ
′
be a desingularization of Γ′. Let f1, ..., fm be an involutive set of first integrals

(H = f1) which are meromorphic on M ′. We suppose that there are holomorphic and
independent at some point of the phase curve i(Γ). Then the system df1 = 0, . . . dfm =
0 defines a meromorphic subbundle E of TM ′ (of rank 2n − m). The meromorphic
vector fields X1 = �df1, . . . Xm = �dfm generate a rank m meromorphic subbundle
F of E. Then F⊥ is a meromorphic subbundle. As in [5] we get a structure of
symplectic meromorphic bundle on the meromorphic bundle N = (F⊥/F ) over Γ′.
(We have only to replace holomorphic bundles by meromorphic bundles in [5].)

Finally, as in [5], we get a normal variational connection on the symplectic bundle
N = (F⊥/F ) over Γ′. Here the bundle and the connection are meromorphic. The
bundle N is symplectically meromorphically trivializable, therefore this normal vari-
ational connection can be interpreted as a meromorphic differential equation over Γ′

(the NVE).

Appendix B. Differential Galois groups and finite coverings. In this
appendix we will prove that the identity component of the differential Galois group of
a meromorphic connection on a Riemann surface does not change if we take inverse
images by a finite ramified covering. It is an analytic version of an algebraic result of
N. Katz.

Proposition 15. Let Δ be a germ of meromorphic linear system at the origin
of C. We denote by K the differential field of germs of meromorphic functions, by
G = GalK(Δ) the differential Galois group of Δ and by G0 its identity component.

Let H be the subgroup of G topologically generated (in Zariski sense) by the ex-
ponential torus and all the Stokes multipliers of Δ.

We denote by m ∈ G the actual monodromy of Δ, by M the Zariski closure in G
of the subgroup generated by m, by M0 the identity component of M and by H1 the
subgroup of G generated by H and M0.

(i) The subgroups H and H1 are Zariski closed, connected and invariant under
the adjoint action of m.

(ii) The group G is topologically generated by H and m.
(iii) The group G is algebraically generated by H1 and m, and G0 = H1.

(iv) The image of m in G/G0 generates this finite group

Proof. The actual monodromy m and the formal monodromy m̂ are equal up
to multiplication by a product of Stokes multipliers [43, 9]. The exponential torus
is (globally) invariant by the adjoint action of the formal monodromy m̂. Then our
claims follow easily from the density theorem of Ramis [43, 9], using some elementary
results about linear algebraic groups [25].

Lemma 12. Let ν ∈ N∗. Let ∇ be a germ of meromorphic connection at the
origin of the x plane C. We set x = f(t) = tν . We denote by (X, 0) (resp. (X ′, 0))
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the germ at the origin of the x (resp. t) plane. We denote by K (resp. K ′) the
differential field of germs of meromorphic functions on X (resp. X ′). We have a
natural injective homomorphism of differential Galois groups

GalK′(f∗∇)→ GalK(∇)
which induces an isomorphism between their Lie algebras.

Proof. We set G = GalK(∇) and G′ = GalK′(f∗∇).
The field inclusion K ⊂ K ′ induces a natural map

ϕ : G′ → G.

This map is clearly injective. Let m ∈ G be the actual monodromy of ∇.
Then the actual monodromy of ∇′ = f∗∇) is m′ = mν .
The connections ∇ and ∇′ have the same exponential torus and the same Stokes

multipliers (more precisely the map ϕ induces isomorphisms). We use the notations
of Proposition 15 for ∇ and similar notations for ∇′.

We have clearly H = H ′, M0 = M ′0, therefore G0 = H1 = H ′
1 = G′0.

Theorem 12. Let X be a connected Riemann surface. We denote by k its field
of meromorphic functions. We choose a differential ∂ on k. Let S = {ai}i∈I ⊂ X be
a discrete subset. Let x0 ∈ X − S. For each point ai ∈ S, we choose a germ di of
real half line starting from ai and drawn on the complex line tangent to X at ai. We
denote by M̃ the field of meromorphic functions on the universal covering ˜(X, x0) of
X pointed at x0. We identify the field k with a subfield of M̃. For i ∈ I, we denote
by Mi the field of germs at ai of meromorphic functions (i.e. of germs of functions
meromorphic on a germ of open sector at ai bisected by di). We identify the field
Ki of germs at ai of meromorphic functions with a subfield of Mi. We extend the
derivation ∂ on k to the fields M̃, Mi. We choose also continuous paths γi’s joining
x0 respectively to the di’s (that is arriving at ai tangently to di).

Let ∇ be a meromorphic connection on X with poles at most on S. We denote by
∇i the germ at ai of ∇. There exist a uniquely determined Picard-Vessiot extension
L0 (resp. Li) of the differential field (k; ∂) (resp. (Ki; ∂)) associated to ∇ (resp. ∇i)
such that k ⊂ L0 ⊂ M̃ (resp. Ki ⊂ Li ⊂ Mi). The path γi induces an isomorphism
of differential fields Zi between L0 and Li (We use Cauchy’s Theorem and analytic
extension along γi.)

We denote by G (resp. Gi) the “representation” of “the” differential Galois group
Galk ∇ (resp. GalKi

∇) associated to L0 (resp. Li). Using Zi we identify the local
Galois group Gi with a subgroup of the global Galois group G. Let Π1 be the usual
monodromy group of ∇. Then the complex linear algebraic group G is topologically
generated by the Gi’s (i ∈ I) and Π1.

Proof. This result is a trivial extension of a classical result due to Marotte [42],
Ch. II, H.30. We recall briefly the proof. We denote byH the subgroup ofG generated
by the Gi’s (i ∈ I) and Π1. Let α ∈ L0 ⊂ M̃0. It defines elements αi ∈ Li. If α is
invariant by the group H , then αi is invariant by Gi and Π1, therefore αi ∈ Ki: α is
uniform around ai and correspond to a germ of meromorphic function at ai. Finally
α is non ramified on S, uniform on X−S and meromorphic on X (with poles at most
on S). We have proved that the subfield of the Picard-Vessiot extension L0 fixed by
the subgroup H ∈ G is K. Then from the differential Galois correspondence it follows
that H is Zariski dense in G.
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Theorem 13. Let X be a connected Riemann surface. Let (X ′, f, X) be a finite
ramified covering of X by a connected Riemann surface X ′. Let ∇ be a meromorphic
connection on X. We set ∇′ = f∗∇. Then we have a natural injective homomorphism

Gal (∇′)→ Gal (∇)

of differential Galois groups which induces an isomorphism between their Lie algebras.

Proof. Let k (resp. k′) be the meromorphic functions field of X (resp. X ′). The
finite covering (X ′, f, X) is ramified over a finite set Σ ⊂ X . Let S ⊂ X be the union
of the ramification set Σ and of the set of poles of ∇. It is a discrete subset. Let
S′ = f−1(S) ⊂ X ′. It is a discrete subset. We choose a base point x′

0 ∈ X ′ − S′

and we set f(x′
0) = x0 ∈ X . Then we set G = Galk(∇) and G′ = Galk′(f∗∇), with

conventions similar to those made above in the proof of Theorem 12.
The field inclusion k ⊂ k′ induces a natural map

ϕ : G′ → G.

This map is clearly continuous and injective and we can identify G′ with a closed
subgroup of G.

We have a natural injective map π1(X
′−S′;x′

0)→ π1(X−S;x0). We can identify
π1(X

′−S′;x′
0) with a subgroup of π1(X−S;x0). The index of this subgroup is finite.

Following our conventions, we compute G (resp. G′) with the horizontal sections
of ∇ meromorphic on the universal covering pointed at x0 (resp. x′

0).
We denote by Π1 (resp. Π

′
1) the natural image of π1(X − S;x0) (resp. π1(X

′ −
S′;x′

0)) in G (resp. G′).
The global differential Galois group G (resp. G′) is topologically generated by

the local Galois groups Gi’s and Π1 (resp.G
′
i′ and Π

′
1 ).

Let R (rep. R′) be the smallest subgroup of G (rep. G′) such that it contains
the identity components of all the local differential Galois groups and such that it is
invariant by the adjoint action of the monodromy subgroup Π1 (resp Π

′
1). The group

R (respectively R′) is closed and connected.
Using Proposition 15, we see that the groupG (resp. G′) is topologically generated

by Π and R (resp. Π′ and R′).
We choose continuous paths γi joining x0 to each point ai ∈ S in X − S. After,

for each a′
i′ above ai, we choose a continuous path γ′

i′ joining x′
0 to a′

i′ in X ′−S′. We
can suppose that γ′

i′ is a path above γi followed by a path above a loop at ai.
Applying Lemma 12 and the definition of the fundamental group as a quotient of

a set of loops, we see easily that the map ϕ induces an isomorphism between R′ and
R. Therefore the natural map

π1(X − S;x0)/π1(X
′ − S′;x′

0)→ G/G′

is Zariski dense. (The group G is topologically generated by Π and R). As the first
group is finite, it follows that the map is onto and that the group G/G′ is also finite.
Therefore G0 = G′0.

Remark. In [29] there is an algebraic version of Theorem 13. It is possible
to transpose Katz’s Tannakian argument to the analytic situation. Then we get an
injective homomorphism

G′
K′ → GK ⊗K K ′
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inducing an isomorphism of K ′-Lie algebras

G′
K′ → GK ⊗K K ′.

But this isomorphism comes by tensorization ⊗CK ′ from a C-linear natural map

Lie ϕ : G′
C
→ GC.

Therefore ϕ is an isomorphism of complex Lie algebras. This gives another proof
of Theorem 13.

Appendix C. Connections with structure group. Let X be a Riemann
surface. We denote by OX (resp. MX) its sheaf of holomorphic (resp. meromorphic)
functions.

Let G ⊂ GL(n;C) be a Zariski connected complex linear algebraic group. We
denote by G ⊂ End(n;C) its Lie algebra. We denote by G(OX) (resp.G(MX)) the
sheaf of holomorphic (resp. meromorphic) matrix functions whose values belong to
OX (resp. MX). We adopt similar notations for functions whose values belong to
the Lie algebra G.

We recall that we defined a holomorphic G-bundle over X as a holomorphic
vector bundle over X admitting G as a structure group. It is defined by an element
of H1(M ;G(OX)). We have a notion of local G-trivialization of a G-bundle. We also
introduced the notion of meromorphic G-bundle (cf. Appendix A).

Let ∇ be a meromorphic connection on a G-bundle V . Using a local coordinate
t and a frame corresponding to a local G-trivialization, we get a differential operator
∇ d

dt
= d

dt −A, where A is a meromorphic matrix. If the values of A belong to the Lie

algebra G, we will say that ∇ is a meromorphic connection with structure group G (or
a G connection) on the G-bundle V . This definition is independent of the choice of a
trivialization: if the values of a meromorphic invertible matrix P belong to the group
G, then the values of the meromorphic matrix P−1AP − P−1 d

dtA belong clearly to
the Lie algebra G.

Theorem 14. Let ∇ be a G-meromorphic connection on a trivial G-bundle V
over a connected Riemann surface X. Then its differential Galois group “is” a closed
subgroup of G.

This result is due to Kolchin, who introduced the notion of G-primitive extension
[32]. We will give here a very simple Tannakian proof. Following Chevalley’s Theorem
[64], 5.1.3. Theorem, page 131 (cf. also [8]), the linear algebraic group G ⊂ GL(n;C)
is the subgroup of GL(n;C) leaving invariant a complex line W ′

0 in some construction
W0 on the complex vector space V0 = Cn. To the natural operation of the group G on
the construction W0 corresponds a natural operation of the Lie algebra G on the same
construction W0. This action clearly leaves also invariant the complex line W ′

0. We
denote by GW0

⊂ GL(W0) the natural representation of G, and by GW0
⊂ End(W0)

the corresponding Lie algebra. If we choose a basis of the complex vector space W0

such that its first vector generates W ′
0 over C, then the Lie algebra GW0

corresponds
to the Lie algebra of the matrices whose entries which belong to the first column are
zero, except perhaps the first one.

To the construction W0 on V0 corresponds a holomorphic vector bundle W . We
obtain it from the holomorphic vector bundle V by a similar construction. To the
meromorphic connection ∇ on V corresponds similarly a meromorphic connection
∇W on W . To the complex line W ′

0 corresponds a trivial sub-line bundle W ′ of W .
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We choose a (meromorphic) uniformizing variable over X and a frame of the trivial
GW0

-bundle W such that its first element generates the sub-line bundle W ′. Then the
GW0

-meromorphic connection ∇W can be interpreted as a system d
dt −B, where the

meromorphic matrix B takes its values into the Lie algebra GW0
. Consequently the

entries of B which belong to the first column are identically zero, except perhaps the
first one. Therefore the action of the meromorphic matrix B on the sheaf of meromor-
phic sections of the vector bundle W leaves invariant the subsheaf of meromorphic
sections whose values belong to the subbundle W ′. Going back to connections, we
see that the meromorphic connection ∇W leaves invariant the sub-bundle W ′ and
consequently that it induces a sub-connection (W ′,∇W ′) ⊂ (W,∇W ).

By the Tannakian definition ( section 3.2 ) the differential Galois group H of ∇
is defined by the list of all the subspaces of all the constructions C(V0) on the vector
space V0 corresponding to the fibers (in fiber functor sense) of the underlying vector
bundles of all the subconnections of the similar connections ∇C(V ) on the similar
constructions C(V ). But (W ′

0, W0) belongs to this list, therefore H is a closed subgroup
of the algebraic group G (which itself can be defined by the only pair (W ′

0, W0).

In our paper we need only the following result corresponding to G = Sp(n;C).
(Using Appendix A, if V is a meromorphic symplectic bundle over X , we can suppose
that it is a trivial symplectic meromorphic bundle.)

Corollary 11. Let ∇ be a symplectic meromorphic connection on a meromor-
phic symplectic bundle V over a connected Riemann surface X. Then its differential
Galois group ”is” a closed subgroup of the symplectic group.
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Astérisque 169–170, 1989.

[8] A. Borel, Linear Algebraic Groups, Springer-Verlag, New-York, 1991.
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de Toulouse (1), 12 (1898).

[43] J. Martinet and J. P. Ramis, Théorie de Galois différentielle et resommation, in Computer
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