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REFINED WAVE-TRACKING AND NONLINEAR 
STABILITY OF VISCOUS LAX SHOCKS* 

KEVIN ZUMBRUNt 

Abstract. We make use of recent improvements in the associated linearized theory to give a 
more accurate (indeed sharp) accounting of the nonlinear motion of a viscous shock wave under the 
effects of perturbation. This yields a particularly simple proof of L1 fl L00 —> Lp nonlinear orbital 
stability for viscous Lax waves satisfying the spectral stability criterion of Zumbrun and Howard: in 
particular, for weak Lax shocks in the system case and for arbitrary nonsonic shocks in the scalar 
case. For scalar shocks, we prove also a sharp pointwise convergence result yielding stability for initial 
data decaying as (1 + |x|)_r, r > 1/2, with temporal decay at the same rate. 

Introduction. Recently, Goodman and Yip, [GY], have announced preliminary 
findings suggesting the somewhat surprising result of L1 HW1,1 -» Lp orbital stability 
at rate ^st1-1/?) for Lax type viscous shock waves satisfying the spectral stability 
criterion of [ZH]. Previous results for systems have all required localization, i.e. spatial 
decay, of initial data of at least order (1 + |a;|)_3/2 [SX,L,ZH]; for scalar equations, 
the current best result requires localization (1 + l^l)-1 to achieve the above temporal 
rate [HZ. 1-2]. 

The approach of [GY] uses the flux transform of [G.2] to essentially "project out" 
variations in shock location. Together with the linearized decay bounds of [ZH], this 
immediately gives the result at the linearized level. The nonlinear analysis is quite 
nontrivial, however, requiring rather delicate (nonlinear) weighted L1 estimates to 
control terms arising through inversion of the flux transform (indeed, to the best of 
our knowledge, at the time of our writing this step is not yet complete). Moreover, for 
systems, the derivative Green's function bounds of [ZH] are not sufficient to close the 
iteration proposed in [GY]; specifically, jGyl^i^) = 0(1) and not ~ £~1/2 as needed 
(see notation below). In fact, we suspect that the desired derivative bounds do not 
hold for the "integrated" equations arising through the flux transform, except in the 
scalar case, see Remark 3.3 (they do hold for scalar equations by the bounds in [ZH]). 
This is a substantial obstacle to the application of the methods of [G.2,GY] to the 
(nonlinear) system case, at least as originally described in [GY]. 

On the other hand, we have recently shown for the original, "unintegrated" equa- 
tions that improved y-derivative bounds are possible precisely in the Lax and overcom- 
pressive case [Z.l]. (For a heuristic explanation of this somewhat subtle phenomenon, 
see Discussion, Section 3). At the same time, we gave an (unrelated) refined descrip- 
tion of dynamics near the shock layer, making possible a sharpened analysis in the 
untransformed equations. This suggests the possibility of a direct analysis of L1 —» Lp 
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748 K. ZUMBRUN 

stability avoiding the complications introduced by the flux transform at the nonlinear 
level. 

Motivated by these new developments, we here make use of the improved Green's 
function bounds in [Z.l] to refine the shock-tracking scheme of [ZH,HZ.l-2] a direct 
approach essentially opposite to that of the flux transform method. We immediately 
recover optimal linearized decay rates for shocks of all types, including the under- 
compressive variety (the flux transform method yields linearized results for Lax and 
overcompressive shocks, nonlinear results for scalar Lax shocks). More important, for 
Lax shock we obtain a truly simple proof of L1 n L00 -> Lp nonlinear orbital stability 
at the rate fsC1-1/^ conjectured in [G.2,GY], essentially equivalent to that used by 
Kawashima [Ka] to study stability of constant solutions. We give also an improved 
(optimal) pointwise analysis in the scalar case. 

2. The Scalar Case. For clarity of exposition, we first carry out our argument 
completely for the scalar case, which for the purposes of this paper exhibits all features 
present in the general Lax case. Consider a scalar conservation law 

(2.1) ut + f(u)x = (b(u)ux)x, 

u, /, 6 G M1, and a (without loss of generality) stationary viscous shock solution 

(2.2) u = u(x),    lim   u(x) =: u±, 
x—>-±oo 

satisfying 

(H)     f,beC\    b> 0,    df(uJ) > 0 > df{u+). 

These are equivalent to the standard hypotheses (H0)-(H4) of [ZH]. Note that the 
third hypothesis yields hyperbolicity of u± as rest points of the associated traveling 
wave ODE, hence 

(2.3) |ti*| = 0(e-n|*l),    z>0. 

Linearizing about iZ(-), we obtain the linearized perturbation equation 

(2.4) vt = Lv := -(av)x - (bvx)x, 

where 

(2.5) b(x) := 6(u(x)),    a(x) := df(u(x)) - db(u)ux; 

We will denote by a± := o(±oo),6± := 6(±oo) the limiting values of the coefficients. 
Define 

(2.6) G(x,t;y):=eLt5y(x) 

to be the Green's function associated with operator (dt — L).   Then, we have the 
following bounds, proved in [Z.l]: 

PROPOSITION 2.1.   Under assumptions (H), we have for y < 0 the decomposition 

(2.7) G = E + S + R, 



where 

(2.8) 

REFINED WAVE-TRACKING AND NONLINEAR STABILITY 749 

E(x,t;y) :=     ^-       err/n ' 

— err/n 

^+ - u- J y y    y/Ab-t 

x — y + a_t \ \ 

(2.9) 5(3?,*;!/):=' 

-(x~y-a_ty 

e      4b-t 

and 

(2.10) ii = 0 ((1 + t)"1/^-^ + e-*'*') r1/^ 
(a._y_a_t)^ 

/or some ry,M > 0, w;ftere a;+ denotes the positive part of x.  Likewise, we have the 
derivative bounds 

(2.ii)        |^| = o((i + *)-1/2ri/2c-i?a!
+ + g-^i^-i^^^-^;-0^ 

(2.12) [iZy | = 0((1 +1)-1/^"^4" + e-^t^e^M^ . 

^4 symmetric decomposition holds for y > 0. 

Bounds (2.8)-(2.12) refine and somewhat simplify bounds obtained in [H.l-2, ZH] by 
similar methods. 

EXAMPLE. In the case of & Burgers Shock, u(x) = —tanh(|), of the scalar Burgers 
equation ut + (u2/2)x = uXXl the linearized equation (2.5) can be solved explicitly by 
linearized Hopf-Cole transformation, [S,N,Z.5,LZ.1,GSZ], to give an exact formula for 
the Green's function of: 

G(x,t;y) = 

(2.13) ez + e   2 J v e2 + e   2 

6      2 \ i (x-y-t)2 / 62 \ i (x-y+O2 

—    (47rt)   2 e       4t      + ( _ —    (47rt)   2 e       4t 

+ 29^ 
x-y-t                  x-y + t. 

errfni ■==—) — errfni ^rr—) 

Interpretation/Discussion. Due to translation-invariance of (2.1), equation (2.4) 
possesses the stationary mode ux(-), corresponding to instantaneous translation of 
u('). The dominant term E in G reflects excitation of this mode. Note that its 
time-asymptotic value is simply the "projection" 

(2.14) ux( ,vo) 
U+ — U- 

of the initial data onto the "right eigenspace" SpanjiZa;}, by L2 inner product against 
the "left eigenvector" 1/(1/4. — uJ) (for rigorous discussion of associated, nonstandard 
spectral theory, see [ZH]). However, the effects of an exciting signal are not seen 
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instantaneously, but rather propagate according to the joint effects of convection and 
diffusion as reflected by the multiplying errfn factor. 

A simple heuristic explanation is that translation of the shock wave under pertur- 
bation is caused by accumulation of mass at the shock layer; the errfn profile records 
the amount of mass (up to a time-exponentially decaying tail) that has reached point 
x by time t, of a delta-function signal originating at point y and propagating as a con- 
vected heat kernel, hence the shock shift seen at x: (This refines a similar discussion 
in [HZ.3] to include the effects of diffusion). 

Linearized stability analysis.  Evidently, solutions of the linearized equations do 
not decay, but converge to the stationary subspace SpanjiZaJ. To quantify the rate of 
convergence, we define, the (linear) instantaneous projection: 
(2.15) 

*•«>=■ (ay r h- (w) - -* (w)) «<"* 
ux(x)   \  f+00 ( f-y-a-t\ f-y + a-i 
 ;——     /          errfn    —.              — errfn    —. 

/+oo 
E(x,y;t)vo(y)dy, 

' —oo 

where 

(2.16) E(x,t;y) := ux{x)e{y, t) := ux{x)e{Q,t\y), 

(2.17) E(x,t]y) =: ux(x)e(x,t]y). 

Definition (2.15) refines an analogous definition, 

f|a-l*l 
(2.18) ipfat) := f^^L) [ a+tvo(y)dy1 

given in [ZH]. The practical advantages of the new definition are twofold: improved 
accuracy as t -)• +00, due to the improved description of E given in Proposition 
2.1 (i.e. accounting of diffusive effects), and improved regularity as t -> 0, due to 
the inclusion of the cancelling exponential tail (i.e. second errfn in each integrand). 
The importance of the former will be seen immediately, in the improved linear decay 
rates of Proposition 2.4, below; the importance of the latter will be seen later, in 
the nonlinear analysis (specifically, in the proof of Lemma 2.5, below). Moreover, 
there is a conceptual advantage in the formal derivation via (2.16)-(2.17), which both 
clarifies the method and gives a guide for future extension. The choice of kernel 
e(y, t) := e(0, t; y) is easily motivated by the principle that E-E should be minimized. 

Denoting 

(2.19) G:=G-E, 

we have: 
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LEMMA 2.2.   Under assumptions (H), there holds for y < 0, and some rj, M, 
C>0: 

(2.20) 

and 

(x-y-a_t)2 

G = 0(t-*e ^^ 
-TJX 

pT]X     I     p — T]X 

(2.21) 

(aj-y-a_t)2 

Gy = 0{rle m 
0-r)x 

pT\X     I    g — T)X 

+ e-nte-nxerrfn{9L^M\)j 
>Mt 

with symmetric bounds for y > 0. (Note: E and thus E and G are defined differently 
for y < 0 and y > 0). 

Proof. Since terms 5, R (tesp.Sy, Ry) of (2.7) are clearly absorbable in bounds 
(2.20)-(2.21), we need only check that (E - E) (resp.^ - Ey)) so absorb. Using 
|ux| = 0{e-^x\), (2.3), we find for (z) > y/i that 

(2.22) \E\,\E\,\Ev\,\Ey\ < \ux\ < CeWVWe-W2*. 

For x - y — a-t < \y — a-t\ 4- \/t on the other hand, we have by the Mean Value 
Theorem that 

(2.23) 
lx-y-a-t\ -y-a-t 

errfn \  7=77=7— I ~" errjn yio yio 
^1   . _I       (»-y-a-02 

< C\x\t   2e        Mt       j 

for C,M sufficiently large. Combining, and noting that l^le-^/2^^' < e-^/4^^!, we 
obtain the claimed bound with 77 := rji/4. D 

COROLLARY 2.3.  Under assumptions (H), there holds 

(2.24) 
/+00 

G(;t;y)f(y)dv      < Cminil/Up.ri^-^l/Ui}, 
-OO ^P 

(2.25) 
/+00 

Gy(;t;y)f(y)dy      < C7min{r1/2|/|L„t-i<1-1/'')-1/3|/|il}) 
-00 LP 

for all t > 0, / e L1 D Lp, 5ome C > 0. 

Proo/.    Bounding the first terms in (2.20), (2.21) by Ct'^e"""""^"-'     and 
_ a;-y-a_t)2 

Ct~1e        M*      , respectively, we find by Haussdorf-Young inequality that their con- 
tributions satisfy the claimed bounds. The contribution of the second (error) terms 
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can be bounded using triangle and Holder inequalities as 

<Ce-* T00 ervfn (^^) \f{y)\dy 
J-oo \   VMt   ) 

<min{e-^|err/n (^^) |L-|/Ui,c^|err/n (^^) W\S\iA, 

llP+l/q = 1, hence are bounded by Ce'^2 min{|/|Li, |/|LP}. D 

PROPOSITION 2.4. Let (H) hold.   Then, for initial data VQ e L1, we have the 
linear decay bound 

(2.26) H;t)-f(;t)\LP < t-^-^Nii, 

and, for data decaying as (1 + \x\)~r, we have 

(2.27) \v(;t)-<p(;t)\LP<t-iWP-^)\v0\Lf, 

for all p > p > 1/r. 

Proof Noting that 

/oo 

G(x,t,y)v0(y)dy, 
-CO 

we immediately obtain claim (2.26) from Corollary 2.3, (2.24). For data decaying as 
I^OOE)! < C(l + |^|)~r, we observe that the same argument yields 

'/. 

+oo 
G(',t;y)f(y)dy\LP<Ct-i(1-1^\f\L, 

where 1/s = 1 + 1/p — 1/p, thus giving result (2.27). D 

Proposition 2.4 (which applies for systems also, see next section) sharpens the 
rates of orbital stability given in Proposition 9.2 of [ZH], for initial data decaying 
more slowly than (1 + |a;|)~r,r > 1. 

Nonlinear Stability Analysis. We now carry out the nonlinear stability argument 
following the framework set up in [ZH, HZ.1-2]. Define the nonlinear perturbation 

(2.29) v(x, t) := u(x + S(t)) - tZ(x), 

where d(t) (estimating shock location) is to be determined later; for definiteness, fix 
5(0) = 0. Then, 

(2.30) vt-Lv = Q(v,vx)x+6(t)(ux+vx), 

where 

(2.31) Q(v,vx) = 0(\v\2 + \v\\vx\) 
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so long as \v\ remains bounded. By DuhamePs principle, and the fact that 
/oo 

G(x,t;y)ux(y)dy = eLtux(x) = ux(x), 
-oo 

we have 

(2.33) 

/oo 

G(x1t]y)vo(y)dy 
-oo 

rt    poo r   /»oo 
- /    /     Gy(x,t-s',y)(Q(v1vx) + 5v)(y,s)dyd 

JO   J-oo 

+ 5(t)ux. 

(2.35) 

Defining, by analogy with the linear case, the nonlinear instantaneous projection-. 

(p(x,t) := ~-5(t)ux 

/oo 

J(X,t;y)v0(y)dy 

- I    I     Ey{x,t-s]y)(Q{v,vx)+5v)(y,s)dy, 
JO   J-oo 

or equivalently, the instantaneous shock location: 
/oo 

e(y,t)vo(y)dy 
-oo 

nt     r+OO 

+ /    /      ey(y,t-s)(Q(v,vx) + 6v)(y,s)dyd8,' 
JO   J-oo 

where E, e are defined as in (2.16), and recalling (2.19) and (2.8), we thus obtain the 
reduced equations: 

/oo   ^ 

G(x,t;y)vo{y) 

- /    /     Gy(x,t-s',y)(Q(v,vx)+8v)(y,s)dy,    ■ 
Jo   J-oo 

and, differentiating (2.35) with respect to £, 
/oo 

et(y,t)vo(y)dy 
-oo 

pt    /»4-oo 

+ /   /      eyt{y,t - s)(Q(v,vx) + 6v)(y,s)dyds. 
Jo   J-oo 

(2-37) -"" 

Note: In deriving (2.37), we have used the fact that ey(y,s) —r 0 as s —)- 0, as 
the difference of approaching heat kernels, in evaluating the boundary term 

/i-oo 

cy(y,0)(Q(t;,t;x) + 5v)(y,t)dy = 0. 
-OO 

(Indeed, |e2/(-, s)|£i ->• 0, see Remark 2.6, below). 
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The defining relation S(t)ux := —<p in (2.34) can be motivated heuristically by 

v(x, t) — ip(x, t) ~ v — u{x + 8(t), i) — u{x) 

~ v(x,t) + 6(t)ux(x), 

where v denotes the solution of the linearized perturbation equations. Alternatively, it 
can be thought of as the requirement that the instantaneous projection of the shifted 
(nonlinear) perturbation variable v be zero, [HZ. 1-2]. 

REMARK. Comparing (2.34) to (2.15), we see that the first term in (2.35) cor- 
responds to linear movement of the shock, dependent only on the initial data. The 
second term, on the other hand, corresponds to nonlinear movement, and evolves 
dynamically. This represents a new level of detail in the tracking of viscous shock 
waves. Previous analyses (e.g. in [LZ.2,HZ.2-3]) were not sufficiently fine to capture 
the nonlinear movement of Lax-type (e.g. diffusive scalar) shock waves. 

LEMMA 2.5.  The kernel e satisfies 

(2.39) \ey(;t)\LP,\et(;t)\LP < cH*1"1/*), 

(2.40) M-,*)U*<c*~"(1_1/p)~1/2, 
for all t > 0. Moreover, for y < 0 we have the pointwise bounds 

(2.41) M^UetM^cHe-13^^, 

-i„- (2.42) favfatyKCt-1* 
(y+q-Q 

Mt 

for M > 0 sufficiently large (i.e. > 4b±), and symmetrically for y > 0. 

Proof. From (2.8), (2.16), we have for y < 0 the explicit representation 

<-)   *■«> = bb:) H (^0) - -"»(^cr)) • 
and symmetrically for y > 0. Thus, 

(2.44) ey(y, t) = ( i—) (K(y + a-t, t) - K(y - a-t, t)), 

(2.45) et{y, t) = ( z ) ((K + Ky)(y + a-t, t) - (K + Ky)(y - a-t, t)), 

(2.46) ety(y,t)= ( ^ ) ((Ky + Kyy)(y + a-t,t) - (Ky + Kyy)(y -a.t,t)), 

where 

e-y2/4b-t 
(2.47) K(y,t):= 

y/4irb-t 
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denotes an appropriate heat kernel. The pointwise bounds (2.41)-(2.42) follow imme- 
diately for t > 1 by properties of the heat kernel, in turn yielding (2.39)-(2.40) in this 
case. The bounds for small time t < 1 follow from estimates 

\Ky 

ny-a-t 

(y{y + a-t,t)-Ky(y-a-t,t)\ = \ Kyy(z,t)dz\ 
J y+a—t 

(2.48) < a-3/2 f 
JvA- 

—a—t 2 

e^ft'dz 
y+a-t 

i/o     (y+Q-V2 

< Ct~1/2e sn     , 

and, similarly, 
/a-t 

Kvvv{z,t)dz\ 
-a—t 

(2.49) < Ct'2 fV ^ e^dz, 
Jy+a-t 

,        (y+q-O2 

< Ct^e       ^     . 

The bounds for \ey\ are again immediate. Note that we have taken crucial account of 
cancellation in the small time estimates of eu ety- D 

REMARK 2.6. For t < 1, a calculation analogous to that of (2.48) yields {eyiy, t)\ < 

Ce'^M't*   , and thus |e(-,s)|Li -^ 0 as s -> 0. 

With these preparations, we easily obtain our main result: 

THEOREM 2.7. Let (H) hold, and \VQ\LI, ML~ < Co, Co sufficiently small Then, 
the solutions (v,5)(x,t) of (2.30), (2.35) with initial datavo satisfy: 

(2.50) K^)|LP<CCo(H-^-i(1-1/p)
5 

(2.51) |<5(t)|<CCo(l + *)-1/2, 

(2.52) ^ |*WI<CCo. 

Proof Defining 

r2W ((t):=    sup    \v(;s)\LP(l + s)^1-1M+  swp  \5(s)\(l + s)i 
\*'uoJ 0<s<t,p 0<s<t 

we obtain from (2.24)-(2.25) 

\v(',t)\LP ^Ct-i^-^lvolv 

(254) +/     (t-8)-^1-1^-^\Q + Sv)\Li{a)d8 

nt 

/   (t-s)-$\{Q + 5v)\Lp(8)ds. 
Jt/2 

+ 
It/2 
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By standard short-time estimates, we have, so long as \V\L°° remains bounded, 
that 

C\v(',t-l)\Loo,   fort>l ( CM-, (2.55) M-,*)U-o<]       A     , -^- 
l Ct  2|t>o|z,~, for t < 1. 

Thus, recalling (2.31), (2.53), we can bound 

\(Q(v,Vx) + 6v)(;t)\LP < (\vx\Lco +\v\L~ +|*|)Hip 

<CC2t-*(l + <)-i(1-1/p). 

Substituting into (2.54), we obtain for t > 1: 

K-,t)U'<CCbri<1-1/i>) 
rt/2 

(2.57) t       
Jo 

+ [  (i-s)-2(l + s)-2(i-i/p)s-^) 
Jt/2 

<C«b + C(*)2)*"i(1"1/p)- 

For t < 1, we can use instead the bound 

\v(;t)\LP <C\VO\LP+ f (t-s)-i\Q + Sv\Lp(s)ds 
Jo 

(2-58) <CCo + at)2 fit-*)-*(! + sJ-^-Vrt-icfc 

<C7(Co + C(i)2)- 

Combining and rearranging, we have 

(2.59) K-,*)UP(l + i)^(1-1/p)<C(Co + C(i)2)- 

In precisely the same fashion, we obtain from (2.37) and (2.39)-(2.40) the bound 

(2.60) |^)|(1 + *)1/2<CKo + CW2), 

giving 

(2.61) C(i)<<?(Co + C(*)2)- 

But, this yields £(£) < 2CCo for all t > 0, for Co sufficiently small, by continuous 
indication. Comparing with definition (2.53), we obtain the results (2.50)-(2.51). 

Similarly, we obtain (2.52) from representation (2.35) together with (2.45), (2.39), 
the evident bound |e(-,£)| < C, l^olz,1 < Co, and the already established bound 

\Q + 5v\Li(t)<C&-i. □ 

COROLLARY 2.8. Let (H) hold. Then, for \uo-u\Li, \UQ -U\L°° < Co sufficiently 
small, the solution u(x,t) of (2.1) with initial data UQ satisfies 

(2.62) \u{x, t) - u{x - 5{t))\LP < CCo(l +1)'^1'1'1^ 
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for 8(t) satisfying 

(2.63) |5WI<CCo(l + *r1/2, 

(2.64) \8{t)\ < C(o. 

REMARKS. 1. The bound (2.64) follows also from \u(x,t) - u(x - 5(t))\Li < CCo 
and conservation of mass. 

2. For b(u) = constant, we can remove the assumption l^oU00 < Co? taking 
I^OIL

00
 merely bounded, to obtain the degraded bounds CCo^-^1-1/?) in place of 

CCo(l + *)-i(1-1^. 

3. Bound (2.62) is a sharp rate for orbital stability, as can be seen by exam- 
ination of the linearized stability analysis. Likewise, (2.64) gives the sharp result 
that convergence to the time-asymptotic state predicted by conservation of mass may 
be arbitrarily slow. Such convergence eventually occurs for scalar equations, by L1 

contraction [FS]; however, for systems, it is an interesting question whether S(t) ap- 
proaches a limit, or not. (Note: the bound (2.63) yields still poorer information, 
allowing oscillations of up to 0(t^) -» oo). 

Pointwise bounds. Using the pointwise bounds of Lemma 2.2 and Lemma 2.5, 
we can easily obtain a sharp nonlinear orbital stability result also for non-integrable, 
but weakly localized data, decaying as (1 4- |x|)~2. This result extends and simplifies 
similar results in [H.l-3, HZ.1-2]. 

A straightforward computation [H.3, HZ.1-2] yields 

LEMMA 2.9. Let d(x) := (1 + |^|)-r; r > 0. Then, for y < 0, 

(2.65) 

POO     / e-r)X \ (*-y-a.t)2 

TJX 

<Cd(|a;|+*), 

f00        i        (y+q-O2 

(2.66) /     r2e m- d{y)dy < Cd(t) 
J — oo 

(Note: (2.66) is a special case of (2.65), with x = 0). 

THEOREM 2.10. Assuming (H), let d(x) := (1 + |a;|)-r, r > 1/2. Then, for uo 
Holder continuous, exponent a > 0, with a-Holder norm bounded by some prescribed 
constant, and \uo — u\(x) < (od(x), (o sufficiently small, the solution u of (2.1), with 
initial datauo, satisfies 

(2.67) \u(x, t) -ux(x- 8(t))\ < C(od{\x\ + t), 

(2.68) \S(t)\ < Ctod(t), 

for some C(£o) > 0 independent of UQ. 
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Proof. Proceeding similarly as before, introduce the nonlinear perturbation vari- 
able v and shock location 8, satisfying (2.36)-(2.37), and define 

(2.69) CW:=    sup   \v(y,x)\ld(\y\ + s)+  sup  \6{s)\ld{s). 
y,0<s<t 0<s<t 

Applying (2.69), bounds (2.20)-(2.21) and (2.41)-(2.42) on G and E, and the con- 
volution bounds (2.65)-(2.66), we obtain from representations (2.36) and (2.37) the 
respective bounds 

(2.70) 

and 

(2.71) 

\v(x, t)\ < CCodQxl + t) + Cm2 f (t - 8)-ld(\x\ + t)d(s)(l + s-V^ds 
Jo 

<C(Co + at)2)d(\x\+t), 

\6(t)\ < CCodit) + C^t)2 [ (t - s)-*d(t)d(s)(l + s-l/2)ds 
Jo 

<5(Co + CW2MW, 

where in both cases we have used \d(s)\ = 0((l+s)~1/2) to obtain f^t-s^^dis)^ 
s^/^ds < C. Here, in place of (2.55), we have used the pointwise short time theory 
of [ZH], section 11, to bound 

C(*-l)d(|a;|+t-l),    t> 1, 
(2.72) i^v'"/! ^-^ Cori^)5 t<1 

MM)|<C    [i 
l   Cot     2( 

<CC(MM+*)(i + *"1/2). 

As in the previous argument, this yields CW < £((0 + C(t)2), and ((t) < 2Co for 
Co sufficiently small. D 

REMARKS. 1. Theorem 2.10 shows that algebraic spatial decay translates di- 
rectly into temporal (orbital) decay at the same rate, generalizing the corresponding 
observation made for exponentially decaying data by H'in and Olenik [10]. 

2. Since mass is unbounded, there is no well-defined time-asymptotic state for 
data decaying as (1 + M)-1 or slower. Thus, orbital stability is the only relevant 
notion here. On the other hand, the nonlinear part of S(t), 

rt   /*+oo 
ey(y, t - s)(Q(v, vx) + 5v)(y, s)dyds 

-00 

rt 

<( 

IT JO   J-c 

;cc(*)2 [\t - s)~1/2d{s)(l + s-^ds 
Jo 

is bounded, hence the main contribution to the time-asymptotic location of the shock 
is the "mass distribution function" given by linear estimate (2.15), which can vary as 
much as td(t) ~ t1/2 as t -> 00. 

3. Holder continuity is used only in the short-time theory leading to [GS.l], based 
on the parametrix method of Levi [Fr,Le], see discussion [ZH]. It can be dropped for 
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b = constant. 

3. The System Case. Now, consider the general situation of a stationary 
viscous shock solution 

(3.1) u = ufx),     lim u(x) =: u± 
x—tzL 

of a system of viscous conservation laws 

(3.2) u+ + f(u)x = (B(u)ux)x, 

u, f e Mn, B G Mnxn, i.e. a solution of the traveling wave ODE 

(3.3) u^Bw-^m-fiu-)). 
Following [ZH], we make assumptions (H) below, generalizing those of the scalar case: 

(HO) f,BeC2. 

(HI) Rea{B) > 0. 

(H2) cr(f,(u±)) real, distinct, and nonzero. 

(H3) Rea(-ikf'(u±) - k2B(u±)) < -9k2 for all real fc, some 9 > 0. 

(H4') The unstable manifold of u- in (3.3) is transverse to the stable manifold 
of tq., with one-dimensional intersection {u(x)}. (In particular, the solution &(-) of 
(3.1)-(3.2) is unique up to translation). 

Note that (H3)-(H4') are specific to systems, being in the scalar case consequences 
of (H1)-(H2). Condition (H3) is the stable viscosity matrix criterion of Majda and 
Pego, corresponding to linearized stability of the constant solutions u = u± [MP,K] 
(clearly necessary for stability of u(') of the type we seek, see further discussion ([ZH], 
pp. 746, 767, and 774-775). Condition (H4'), specializing (H4) of [ZH], is the require- 
ment that viscous profile u(-) be of nondegenerate Lax type (see classification, Section 
10.1 of [ZH]); In particular, it implies the Lax characteristic condition [Lax]: 

(3.4) a' > 0 > a+;     sgn aj = sgn at ^ 0, j ^ p, 

where p is the principal characteristic family of the shock and 

(3.5) af < • • • < a± 

denote the (ordered) eigenvalues of df(u±). 

Linearizing about u(') gives, similarly as in the scalar case: 

(3.6) vt = Lv := -(Av)x - (Bvx)x, 

with 

(3.7) B(x) := B(ux),    A(x)v := df(u(x))v - dB(u(x))vux. 
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Denoting A± := J4(±OO), B± := J5(±oo), define the (scalar) characteristic speeds 
af < • • • < a^ (as above) to be the eigenvalues of A±, and the left and right (scalar) 
characteristic modes if, rf to be corresponding left and right eigenvectors, respec- 

tively, normalized so that lj • ru — SJ
k. Following Kawashima [K], define associated 

effective scalar diffusion rates (3f : j = 1, • • • ,n by relation 

(3.8) 
M* 0 \ 

\0       PtJ 
= diag L±B±R±, 

where L± := (if,..., Z^)*, R± := (rf,..., r^) diagonalize A±. 

As previously, define 

(3.9) G(x,t;y):=eLtSy(x) 

to be the Green's function associated with (dt - L). Then, the relevant linearized 
theory can be summarized in the following two propositions, proved in [ZH], [Z.l], 
respectively: 

PROPOSITION 3.1.  Given (H), necessary conditions for L?-linearized orbital sta- 
bility, p > 0, of u(') with respect to perturbations VQ G CQ

0
 are: 

(V): 

(Dl)     L has no (1?, without loss of generality) eigenvalues in {Re\ > 0} \ {0}. 

(D2)     A := det(rf,..., r'^, r++1,..., r+, u+ -i/_) # 0, where p is the principal 
characteristic field defined in (3.4)-(3.5). 

PROPOSITION 3.2.  Under assumptions (H), (V), we have fory<0 the decom- 
position 

(3.10) G^E + S + R, 

where 

E(x,t;v):=1E&-]**(*Kt{e"'fn'X    *    "** 
<»r>o \ \   v^k* 

(3.11) ■■"'-, ' "    V 

x-y+_a[t 
— errfn 

v^ ** 
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(3.12) 

a-<0 

afc>0 

a^. >0, a^. <0 

a~>0,at>0 

(3-13) zf^.^^offt-yM 

and 

(3.14) ^(:C)i;2/):=^ + J^I    (al\   Kt 

and 
(3.15) 

flOc, t;y) = E O ((* + ir^V"** + e""!1") ri/2e-(^-y-art)2/Mt 

+   E   x{,a-„>|f|}o((*+irvvvv^H./M))2/^-^, 

+    E    x{|.-«|>|,|}o((t + D-^rVVC-^'-i"/-* D)'/^-^-, 
a~>0,at>0 

/or some 77, M > 0, lyftere a;1*1 denotes the positive/negative part of x, indicator func- 
tion X{|0-t|>lvl> z's one for \akA ^ 12/1 an^ zero otherwise, indicator function X{t>i} *5 

one fort > 1 and zero otherwise, and scattering coefficients [c0
k _], [cj'_] are constant, 

with 

(3.16) E K',>7 + E [<t]r; + [c0
fc,_](u+ - «_) = rfc- 

a7<0 at>0 

/or each k (note: uniquely determined, by condition (D2)), and 

E K-K = E K+W 
(3.17) a->0 a+<0 

= 7r:=(rJ-,...,rp-1,r+.1,...,r+,u+-ti-.)"1Cn, 

where en denotes the nth standard basis element.   Likewise, we have the derivative 
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bounds 

\RX\ = J2O ((* + y-VH-We-"** + e-^l) t-We-t*-*-***2'™* 
k 

+   E   x{,.-t,>W}o((t+i)-ir^e-(«-r(«-i»K-i))v^e-»-+, 
a~>0, a~<0 

+      E      X{,.-«,>W}0((« + D-H-We-l—tl'-i'Wr/xte-*'-, 

(3.18) 

afc >0,aT>0 

(3.19) 

ft 

+       E      X{|.-^„|}0((t + l)-it-i/»e-<—I" (H^I))V^e-^. 
afe >0,a7<0 

+      E      X{|.-t|>|f|}0((* + i)-^-1/^—^-l"/-. iW'^'e-^-. 
afc >0,at>0 

4 symmetric decomposition holds for y > 0. 

REMARKS. The stability criterion (V) is equivalent to the Evans function con- 
dition of [ZH] (see Lemma 9.3 and Proposition 10.3, [ZH]). The first condition is 
an obvious necessary condition for parabolic stability, while the second can be rec- 
ognized (see, e.g. [M]) as the criterion for hyperbolic (i.e. inviscid) stability of the 
corresponding ideal shock; for further discussion, including the generalization to multi- 
dimensions, we refer the reader to [ZS] or [Z.4]. The bounds in Proposition 3.2 refine 
bounds obtained in [ZH] by similar methods. Notice that (3.11)-(3.15) reduce in the 
limiting case u(x) = constant to the bounds obtained by Liu and Zeng [LZe] for 
stability of constant solutions. 

We point out that condition (Dl) is always satisfied in the scalar case (see e.g. 
discussions in [S,H,HZ.3,Z.3-4]), and, by results of Goodman, is satisfied in the system 
case for weak shocks of dissipative systems, satisfying the additional condition LBR > 
0 (see [G.l-2] and discussions in [ZH,Z.3-4]). Likewise, condition (D2) is satisfied 
always in the scalar case, for which A = u+ — U-, and, for weak shocks of systems, 
for which rt ~ rj, r^ ~ u+ — U- by Lax' (hyperbolic) shock structure theorem [La]. 

Interpretation/Discussion of Green's function bounds. From relation (3.17), the 
time asymptotic contribution of all excited terms is, similarly as in the scalar case, 
ux(7r,vo), where (•, •) denotes L2 inner product, i.e. TT plays the role of a "left eigen- 
function" at A = 0 dual to right eigenfunction ux; indeed, it is the effective left 
eigenfunction in the extended spectral theory of [ZH]. Note, in the scalar case, that 
(3.17) reduces to the simple formula TT = (u+ — U-)~l given in Section 2. 

The form of vector TT can be deduced from first principles via TT • (iz+ — U-) = 1 
and the properties TT • r^ = 0, k = 1,..., p - 1, and TT • rjj" = 0, k = p + 1,..., n. 
These follow, in turn, from the observation that in the far fields "outgoing mass" in 
modes rf,aj^0, simply escapes to infinity, and cannot contribute to the shifting of 
the shock. This argument, and a heuristic treatment of scattering, first appeared in 
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[LZ.2]; for related discussion, see [ZPM]. 

Along with excitation of the stationary mode ux, already seen in the scalar case, 
we have the new, system effect of scattering in the outgoing modes r^, af ^ 0. 
Grouping together terms in E, S with like initial propagation speeds ajjT, we see that 
unit incoming mass in mode r^, upon reaching the shock layer, splits into a portion 
[cj ] accumulating at the shock and n - 1 portions [cj_] leaving the shock in the 
outgoing modes rf.af^ 0. More precisely, an initial delta-function perturbation at 
y propagates in mode r^ as a Gaussian signal centered about z^ := y + a^t until the 
time T \— \y\l\o^\ when it reaches the shock location (z = 0), thereafter splitting into 
a stationary wave centered around the shock and n — 1 Gaussian signals outgoing in 
modes rf, centered about paths z^k := af(t - T). The relation (3.16) thus represents 
conservation of mass for a single scattered signal; for further details, see [ZH,Z.l]. 

The form of the time-varying diffusion pfc in (3.14) may be easily understood 
in terms of the history of the scattered signal. For, evaluating to lowest order at the 
center x = z^., in the critical regime t > \y/a^\ for which z^, ^ 0, we obtain the 
convex average 

l&tf + JsLffflV, 
l«f«l '    Ml 

of the incoming diffusion /?£" and a modified version 

(3.20) 

of the outgoing diffusion (if, weighted by the amounts of time T = \y/a^\ and t — 
T — l^/a^l spent by the (center of the) signal in the respective modes r^ and r^1. 
Correction (3.20) likewise has a simple geometric interpretation: For definiteness, 
consider a signal z^ outgoing toward the positive side. During the time T that the 

signal takes to reach the shock location z = 0, it diffuses a distance ~ (/^T)1/2. This 
means that the trailing edge of the signal will strike the shock layer after the trailing 
edge by a difference of time AT ~ (/^T)1/2/!^!, during which the two edges undergo 
convection differing by rate at - a^. This results in additional, convective spreading 
of approximately 

(3.21) (at - a;)AT ~ (/W^at - a')/^, 

yielding a total distance of (at/a^)(/3^T)1//2, consistent with the corrected diffusion 
(3.20). 

We point out two crucial differences between the bounds cited here and those 
reported earlier in [ZH]. The first is the refined description (3.11) of the excited terms, 
replacing the cruder estimate 

E(x,t;y)= ^[Ck^Uxix^fx^a-t^x-y]} 
a->0 
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of [ZH]; as we have seen already in the scalar case, this distinction is important for 
accurate wave-tracking incorporating diffusive effects (the dominant decay mechanism 
for nonlocalized data). 

The second is the absence in Sy, Ry of terms of the form 

(3.22) 0(e-^)t-h-(X~yMtjt) , 

dj ^ 0, corresponding to outgoing diffusion waves. Such terms necessarily occur for 
undercompressive shocks, hence must appear in the bounds of [ZH], which apply to 
shocks of all types. 

EXAMPLE. In [LZ.l], the Green's function about an undercompressive stationary 
Complex Burger shock is obtained explicitly as 

(3.23) 0=(a    G0), 

where d is the Green's function (2.13) for a Real Burger shock, and 
(3-24) 

G2(x,t;y) :=    -¥-     (4nt)   ^e       «      +    —       (4^ "^e"     « } 

We thus see directly that (G2 )y contains the terms 

(3-25)       Gfci+e-t)*) (-(^"^-^^ + (^rh-^). 

As noted in [Z.l], on the other hand, terms of form (3.22) do not arise for Lax 
or overcompressive shocks. This is a vital observation, since the argument of the key 
Corollary 2.3 requires \Gy\LP{x) ~ r^1"1^)-^ whereas 

(3.26) \Sy\LP{x) ~ le-^lHe-^^2^ ^ r^1"1^. 

We therefore take a moment to explain this essential distinction in behavior: 

A fundamental difference, pointed out with varying degree of rigor in [ZPM, 
LZ.2,ZH], between shocks of Lax/overcompressive type and shocks of undercompres- 
sive type is that scattering data — shock shift plus masses of outgoing diffusion waves 
— is in the former case entirely determined by mass of initial perturbation, but in the 
latter case depends also on the location (distribution) of that mass. 

Thus, scattering terms (comprising 5) in the Lax/overcompressive case take gen- 
eral form 

are constant, and in the undercompressive 

(3.27) Mjt-h 40^ t 

where the coefficient matrices Mj € E"xn are consta; 
case 

Mj{y)t-*e 
<-'- ?'>2 

(3.28) 4l3±t 
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where Mj(y) are asymptotically constant as y -> ±00, but not constant. Differentiating 
(3.28) with respect to y, we see directly that Sy in the undercompressive case contains 
additional terms 

(a-y- 
(x-y-a^t)' 

(3.29) Afj(y)r*c      4^ *       - e^^rh ^ 

not present in the Lax/overcompressive case. The "Residual terms" Ry are in both 
cases (Lax and undercompressive) faster decaying than 5^. 

The rigorous proof of the above statements follows very much along the lines of our 
heuristic discussion. Precisely, to obtain the additional scattering information given 
in [Z.l], one has only to replace Proposition 7.1 in [ZH] by the more detailed Lemmas 
4.7, 4.21, and 4.37 of [Z.4], which quantify these formal observations at the level of the 
resolvent kernel of the linearized operator about the wave. Then, approximating slow- 
decaying modes in x by their constant-coefficient limits using Proposition 3.1 of [ZH] (a 
version of the "Gap Lemma" of [GZ]), one can proceed by exactly the same analysis as 
in [ZH], Theorem 8.3 to obtain the desired Green's function bounds via inverse Laplace 
transform. We point out that the form of /3i may be deduced from the saddlepoint 

estimate ct~1/2e~a /0fc^ given in [ZH] for the scattered wave (now exact), where a 
and p are as defined in equation (8.79), p. 836 (resp. (8.91), p. 840) of that reference: 
specifically, from a = (a^/af)(x — zfk)/2t, we obtain /J^, = p(af)2/a^J yielding the 
result. The refined description of the excited term may be obtained similarly, using 
Lemmas 4.7, 4.21, and 4.37 of [Z.4], together with Proposition 3.1 of [ZH] to obtain 
the principal part as an explicit Fourier integral. For details, see [Z.l]. 

REMARK 3.3. Further considerations suggest that improved y-derivative bounds 
do not hold in the system case for the "integrated equations" 

(3.30) vt = Cv := -Avx + Bvxx, 

arising through the flux transform of [G.2,GY], nor do second-derivative bounds for the 
"unintegrated" equations exhibit further improvement; that is, the bounds available 
by the methods of [Z.l] are sharp. For, consider the trivial case of a Lax shock 
u(x) = (- tanh(a:/2),0) of (3.1) with f(ullU2) := (u2/2, {u + 2)v)* and B = 7, for 
which equations (3.30) decouple into 

(3.31) (v^t = -Oi^ija- 4- (v^xx 

and 

(3.32) (v2)t = -a2{v2)x + Mxx,    a>2 > 1 > 0, 

and the Greens function Q into 

Qi     0\ 
o   02)' 

The first equation, corresponding to the principal characteristic field, is just that 
arising from a scalar shock of (integrated) Burgers equation), hence obeys the deriva- 
tive bound |(5i)2/|L1(a;) ~ t"1/2 (by the bounds of [ZH], or direct computation similar 
to (2.13)). The second equation, corresponding to the transverse characteristic field, 
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may be studied by the observation that (£2)*/ = Gx, where G is the Green's function 
for 

vt = -(a2v)x+vxx, 

hence (62)0 = Jx Gyy. Heuristically, we expect 

(3.33) G~K(x-z{y,t),t), 

where K{x,t) := (ATrt)-1/^-*2/4*1 denotes a standard heat kernel and z(y,t) denotes 
the path of a signal originating at y and convected at rate 02, hence 

for large t Thus, Gy ~ -ZyKx - e^y\Kx, matching the predictions above, but 

Gyy   -   -ZyyKX   -  Z2
yKXX   ~   6'^^ 

and 

(3-34) (g2)y ~ -ZyyK - z2
yKx ~ e-i\v\K, 

whence |Gyy|Li(jB) - \Gy\Li{x) ~ r1^ and K&JyUiw - I^Uifx) - 1 » r1/2. 

To put it another way, more related to the previous discussion of the undercom- 
pressive case, (3.32) does not exhibit conservation of mass, hence we expect behavior 

Q2 ~ m(y,t)K(x - z(y,t)) 

in place of (3.33), with niy - e-^L This yields directly that (£2)*, - rriyK - e-^K, 
matching conclusion (3.34) above. 

Nonlinear stability analysis. With these observations, our nonlinear stability anal- 
ysis carries through exactly as in the scalar case. That is, defining v, S formally by 
(2.29), (2.35) and E, G, e by (2.16) and (2.19), we again arrive at the reduced equa- 
tions (2.36)-(2.37). Likewise by essentially the same calculations as in the scalar case, 
we have: 

LEMMA 3.4. Given (H), (V), kernels G, e satisfy bounds (2.24)-(2.25) and 
(2.39)-(240) of Corollary 2.3 and Lemma 2.5, respectively. 

Proof. The crucial estimation of E - E (resp. Ey - Ey) is obtained by summing 
over each incoming scalar mode fc, a^ > 0, the estimates from the scalar case, while 
the terms 5, R (resp. Sy, Ry) again clearly absorb. D 

Thus, the arguments of Proposition 2.4 and Theorem 2J/Corollary 2.8 carry over 
verbatim to yield our main theorems: 

THEOREM 3.5. Given (H), (V) is necessary and sufficient for Lp-linearized or- 
bital stability of u(-) with respect to initial perturbations VQ G L1 or \vo(x)\ < C(l + 
\x\)~r, r > 1/p. Moreover, if (V) holds, we have the (sharp) linear decay bounds: 

(3.35) M,*)-¥>(•,t)Up <H
(1
-

1/P)
MLI, 

in the first case, and in the second case 

(3.36) \v{;t) -V{;t)\Lr < r^P-^Vo^, 
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for all p > p > l/r, where v is the solution of (3.6) with initial data VQ, and if is as 
defined in (2.15)- (2.19). 

THEOREM 3.6. Let (U), (V) hold. Then, for \uo - u\Li,\uo - IX|L~> < Co, Co 
sufficiently small, the solution u(x,t) of (3.2) with initial data UQ satisfies 

(3.37) KM) - u{x - S(t))\Lp < C5Q(1 + t)-^1'1^. 

where S(t) (defined as above) satisfies 

(3.38) (*WI<CCo(l+ *)-*, 

(3.39) m\ < CCo- 

REMARKS. 1. The conclusions of Theorem 3.5 apply also for over- and under- 
compressive shocks (note: this result requires only bounds on \G\ and not \Gy\, which 
are equivalent in the three cases [Z.l]). 

2. For localized data, \v\ ~ (1 4- |a:|)~r,r > 1, pointwise bounds analogous to 
those of Theorem 2.9 can also be obtained, but here there is not particular advantage 
of the Lax over the undercompressive case; for this analysis, we refer the reader to 
[Z.2]. 

3. As noted above, the overcompressive case features the same improved y- 
derivative Green's function bounds as does the Lax case; however, the stationary 
manifold {us} of solutions of (3.1)-(3.2) local to u does not typically have the simple 
group structure used in our stability argument (translation, in the Lax and under- 
compressive case). It is an interesting open question whether L1 flL00 -> Lp stability 
holds in this case. Nonlinear stability of overcompressive shocks was shown in [ZH] 
using a pointwise argument of Liu [L], for data decaying as (1 + |x|)~3/2. 
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