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NUMERICAL ANALYSIS OF A QUASISTATIC PROBLEM OF 
SLIDING FRICTIONAL CONTACT WITH WEAR* 

JIUHUA CHENt, WEIMIN HAN*, AND MIRCEA SOFONEA§ 

Abstract. We consider numerical approximations of a quasistatic problem modeling the slid- 
ing frictional contact with wear between a viscoelastic body and a rigid moving foundation. The 
contact is modeled with the Coulomb's law of dry friction and the wear is described by a version 
of Archard's law. The variational formulation of the problem consists of a nonlinear evolutionary 
equation coupled with a time-dependent variational inequality with nonlinear differential operators, 
which has a unique solution under certain assumptions on the given data. We derive error estimates 
for both spatially semi-discrete and fully discrete schemes to solve the problem. Under appropriate 
regularity assumptions on the exact solution, we establish optimal order error estimates. 

1. Introduction. We consider a mathematical model for the process of bilateral 
frictional contact of a viscoelastic body with a rigid moving foundation, such that there 
is no lose of contact between the body and the foundation. The framework is that 
of small displacement and small strain theory. The external time dependent volume 
forces and tractions are assumed to vary slowly; as a result the mechanical states 
evolve quasistatically. We assume a sliding frictional contact which involves wear of 
the contacting surface. The friction is modeled with Coulomb's law and the wear is 
modeled by a version of Archard's law. 

Situations of frictional contact between deformable bodies can be frequently found 
in industry and everyday life such as train wheels with the rails, a shoe with the floor, 
tectonic plates, the car's braking system, etc. For this reason, considerable progress 
has been made with the modeling and analysis of contact problems. An early attempt 
to study frictional contact problems within the framework of variational inequalities 
was made in [5]. An excellent reference on analysis and numerical approximations of 
contact problems involving elastic materials with or without friction is [12]. The math- 
ematical, mechanical and numerical state of the art can be found in the proceedings 
[18]. 

Wear is one of the plagues which reduce the lifetime of modern machine elements. 
It represents the unwanted removal of materials from surfaces of contacting bodies 
occuring in relative motion. Wear arises when a hard rough surface slides against 
a softer surface, digs into it, and its asperities plough a series of grooves. When 
two surfaces come into contact, rearrangement of the surface asperities takes place. 
When they are in relative motion some of the peaks will break and therefore the 
harder surface removes the softer material. This phenomenon involves the wear of the 
contacting surfaces. Material loss of wearing solids, the generation and circulation 
of free wear debris are the main behaviors of the wear process. The loose particles 
form a thin wear product layer on the body surface. Tribological experiments show 
that this layer has a great influence on contact phenomena and the wear particles 
between sliding surface affect the frictional behavior.  Realistically, wear cannot be 
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totally eliminated. It is very difficult to express accurately a quantitative law for 
the wear because of the many factors that affect this process. It is known that hard 
materials wear less than soft and the rate of wear of metals is inversely proportional 
to the hardness of material [16, 24]. Very often wear increases with increase of loads 
and sliding time [24]. 

Generally, a mathematical theory of friction and wear should be a generalization 
of experimental facts and it must be in agreement with the laws of thermodynamics of 
irreversible processes. The first trials of a thermodynamical description of the friction 
and wear processes were provided in [3, 13, 14, 15]. General models of quasistatic 
frictional contact with wear between deformable bodies were derived in [22, 23] from 
thermodynamic considerations. There a dual pseudo-potential with a general friction 
and wear limit criterion was investigated, from which Coulomb's law of friction and 
Archard's law of wear were obtained. The consistency of such models in the case of 
small displacements and small strain theory was also discussed. The models derived 
in [22, 23] were used in various papers where existence and uniqueness results of weak 
solutions have been proved. For example, a dynamic thermoelastic contact problem 
with normal compliance and surface wear has been analysed in [2] and variational 
analysis in the study of viscoelastic frictional contact problems with wear has been 
provided in [19, 20, 21]. 

The present paper represents a continuation of [21]. Its aim is to provide numerical 
analysis of a quasistatic problem of sliding frictional contact with wear, similar to that 
studied in [21]. We model the process as in [22, 23] by introducing the wear function 
which measures the wear of the contact surface and which satisfies Archard's law. The 
friction is modeled with the sliding version of Coulomb's law. The well-posedness of 
the problem is stated and may be obtained using the arguments of [21]. In a variational 
formulation, the problem consists of a nonlinear evolution equation coupled with 
a time-dependent variational inequality with nonlinear differential operators. The 
literature is abundant on numerical treatment of variational inequality, see for instance 
the monographs [6, 7, 11, 12]. Of particular relevance to this paper are the works on 
numerical analysis of variational inequalities arising in plasticity, cf. [8, 9, 10]. 

The paper is organized as follows. In Section 2 we present the mechanical problem 
together with its variational formulation. We then list the assumptions on the data 
and state an existence and uniqueness result, which shows that under a smallness 
assumption on the given data, the mechanical problem has a unique weak solution. 
In Sections 3 and 4 we analyze spatially semi-discrete and fully discrete schemes, 
respectively. We use the finite element method to discretize the spatial domain and 
a backward Euler scheme to obtain the fully discrete problems. We also derive error 
estimates for both spatially semi-discrete and fully discrete schemes. Finally, under 
appropriate regularity assumptions on the exact solution, we obtain optimal order 
error estimates. 

We thank the two referees whose suggestions lead to an improvement of the paper. 

2. The problem of sliding frictional contact with wear. In this section we 
describe a model for the contact problem with wear, present its variational formula- 
tion, list the assumptions imposed on the problem data and state an existence and 
uniqueness result. 

The physical setting is as follows. We consider a viscoelastic body whose material 
particles occupy a bounded domain ft of lRd {d = 2,3 in applications).   For the 
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domain fi, we assume that its boundary F is Lipschitz continuous, and is partitioned 
into three disjoint measurable parts Fi, r2 and Fs, with meas (Fi) > 0. Displacement 
and surface traction conditions will be specified on Fi and r2, respectively. On Fs, the 
body is in frictional bilateral contact with a moving plane foundation, which results 
in the wear of the contacting surface. We assume that there is only sliding contact 
which is always maintained. Let [0, T] be the time interval of interest. 

As usual, we will use the notation u = (ui) : Q x [0, T] ->> JRd for the displacement 
field and a = (a^) : ft x [0,T] ->• 5^ for the stress field. Here and throughout this 
paper, the indices i and j run between 1 and d, we adopt the summation convention 
over repeated indices, unless stated otherwise, and the index that follows a comma 
indicates a partial derivative with respect to the corresponding component of the 
independent variable. We use Sd to represent the space of second order symmetric 
tensors on lRd, or equivalently, the space of symmetric matrices of order d. We define 
the inner products and the corresponding norms on IR   and 5^ by 

u-v — UiVi,    \v\ = (v -v)1/2,    ViijVelR/*, 

(T • T = (TijT* IJ I % J 5 Irl^r-r)1/2,    V(T,TG5d. 

Since the boundary F is Lipschitz continuous, the unit outward normal vector u on the 
boundary is defined a.e. For every vector field v, we use the notation v to denote the 
trace of v on F and we denote by vu and vT the normal and the tangential components 
of v on the boundary given by 

v1/ = v • v,    vT = v — vvv. 

We also use the notation e(v) for the tensor field defined by 

e(w) - (eti(w)),    eij{v) = - (vij + v^i). 

For a stress field cr, the application of its trace on the boundary to is is the Cauchy 
stress vector au. We define, similarly, the normal and tangential components of the 
stress on the boundary by the formulae 

ay = (erv) >v,    crT = crv — ovv. 

Finally, in the sequel div will denote the divergence operator for tensor fields, i.e. 

diver = (c^). 

The material is assumed to be viscoelastic, its constitutive relation being 

(2.1) o- = i4(e(ti)) + G(e(ti)), 

where A and G are given nonlinear constitutive functions and e{u) represents the small 
strain tensor. Here and below a dot above a variable represents its time derivative. 
We recall that in linear viscoelasticity, the stress tensor cr = (cr^) is given by 

cr^j = a>ijkl£kl(u>) + gijklSkl{u) 

where A = (aijki) is the viscosity tensor and G = (gijki) is the elasticity tensor, 
for i,j, fc,Z = l,...,d. Kelvin-Voigt viscoelastic materials of the form (2.1) involving 
nonlinear constitutive functions have been considered recently in [19, 20]. 
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We assume that the viscoelastic body is fixed on Fi, and therefore the displace- 
ment field vanishes there. We also assume that a body force of density / acts in fi, 
and surface traction of density g is imposed on r2. The densities / and g may depend 
on the time variable and are assumed to vary slowly in time; the accelerations are 
therefore neglected in the equations of motion, leading to a quasistatic approach of 
the process. 

We now briefly describe the boundary conditions on the contact surface Fs, using 
the model derived in [22, 23]. We introduce the wear function w : Fs x [0,T]'-» 1R 
which measures the wear of the surface. The wear is identified as an increase in gap 
in the normal direction between the body and the foundation or, equivalently, as the 
normal depth of the material that is lost. Since the body is in bilateral contact with 
the foundation it follows that 

(2.2) u„ = -w 

on Fs. Thus the position of the contact evolves with the wear. We remark that the 
effect of the wear is the recession on Fs and therefore is expected that uu < 0 on Fs 
which implies w > 0 on Fs. We conclude that the wear is positive which justify the 
sign convention in (2.2). 

The evolution of the wear of the contacting surface is governed by a simplified 
version of Archard's law (cf. [22, 23]) which we now describe. The rate form of 
Archard's law is 

w = -kwau\uT -v*\ 

where kw > 0 is a wear coefficient, v* is the velocity of the foundation, and \uT — v*| 
represents the slip between the contact surface and the foundation. We see that the 
rate of wear is assumed to be proportional to the contact stress and the slip. For 
the sake of simplicity we assume in the sequel that the motion of the foundation is 
uniform, i.e. v* is a constant vector in the plane of the foundation and we denote 
t>* = |v*| > 0. We also assume that v* is large and therefore we neglect in the sequel 
uT as compared with v* to obtain the following version of Archard's law 

(2.3) w = —kujCrjsV*. 

Use of the simplified law (2.3) for the evolution of the wear avoids some mathematical 
difficulties in the study of the quasistatic viscoelastic problem. 

We can now eliminate the unknown function w from our problem. Let a = kwv* 
and 0 = 1/a. Using (2.2) and (2.3) we have 

(2.4) au = f3uv. 

We model the frictional contact between the viscoelastic body and the foundation 
with Coulomb's law of dry friction. Since there is only sliding contact it follows that 

(2.5) \crT\ = ulavl    o'T = -\(uT-v*),    A>0 

where /i > 0 is the coefficient of friction. These equalities show that the tangential 
stress is limited and it is in the opposite direction to the relative velocity ziT - v*. 

Moreover, the wear increases in time, i.e. w > 0 and therefore, it follows from 
(2.2) and (2.3) that uv < 0 and a,, < 0 on Vs. Thus, the conditions (2.4) and (2.5) 
imply 

(2.6) -<?„ = Pliij/l,    \crT\ = -fi <7„,    o-T = -\(uT -v*),    A > 0. 
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on T3. Using now (2.1) as constitutive law and (2.6) as contact conditions, the classical 
formulation of the mechanical problem of sliding frictional contact with wear is the 
following: Find a displacement u : fi x [0, T] -)• IRrf and a stress tensor a : fi x [0, T] -> 
Sd such that 

' a = A(e(u)) + G(e(ti))    in ft x (0,T), 
divcr + / = 0    in ft x (0,T), 
u = 0    onrix(0,T), 
(Tu = g   onr2x(0,T), 
-au = i9|i«/|, |crr| = -fiav, crr = -X(ur - v*), A > 0    on T3 x (0,T), 
u(0) = UQ    in ft. 

(2.7) { 

Here UQ represents the given initial displacement. 

To present the variational formulation of this problem we need to introduce some 
functional notation. For the displacement variable, we use the space 

V = {v = {vi) e (H1^))* : v = 0 on Fi} 

with the canonical inner product defined by 

(u,v)v = / UiVidx + / eij(u)eij(v)dx 
Jn Jn 

and the associate norm 

IMIv = y/(v,v)v 

For stress and strain fields, we use the space 

Q = {T e (L2(n))dxd : Tij = TjU 1 < ij < d} 

with the canonical inner product defined by 

(
T

>£)Q = / TijZijdx, 
Jn 

and the corresponding norm defined by 

IH|^ = (T,r). 

We will also need the space 

jff(div;fi) = {r G Q : divr G (L2(ft))d}. 

Since meas(ri) > 0, Korn's inequality holds ([17]): 

(2.8) IHIv<c||e(t;)||0   Vv € V, 

where c is a positive constant depending on ft and Fi. Everywhere in this paper, 
the symbol c will represent a positive constant which may change its value from 
place to place, and may depend on the input data, but independent of discretization 
parameters h and k to be introduced later. 

From (2.8) it follows that v *-> \\£(V)\\Q is a norm over the space V, equivalent to 
the norm v H-» \\V\\V- 
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For any normed space X, C([0,T];X) denotes the space of continuous functions 
from [0, T] to X, with the norm 

ll/llc([o,T];X) = max ||/(*)||x. 

Similarly, Cl ([0, T]\X) denotes the space of continuously differentiable functions from 
[0,T] to X, with the norm 

ll/llc7i([o,r|;X) = max ||/(t)||x + max ||/W|U. 

When X is a Banach space, both C([0,r];X) and C71([0,r];X) are Banach spaces. 

In the study of the mechanical problem (2.7) we make the following assumptions. 

(a) A : fi x 5^ -> Sd. 
(b) There exists CA > 0 such that 

|A(a;,ei) -A(x,e2)\ < £A\£I -£2]    Vei,ei G Sd, a.e. x G ft. 
(2.9) \   (c) There exists m > 0 such that 

{A(x1ei)-A(x,£2)) - (£1-62) >m\£i-£2\2   Vei,ei€Sd, a.e. xGfi. 
(d) For any e E Sd, x \-> A(x, e) is Lebesgue measurable on ft. 
(e) The mapping # M> -A(a;, 0) G Q. 

(a) G : ft x Sd -> 5d. 
(b) There exists an £<- > 0 such that 

(2.101 \G(x,e1)-G(x,£2)\ < £G\£I -£2!    Ve!,^ G Sd, a.e. a; G ft,. 
(c) For any e G 5d, x H> G(X, S) is measurable. 
(d) The mapping x »-» G(x, 0) G Q- 

f  /GC([0,T];(L2(ft))rf), 
^GC([0,T];(L2(r2))

rf), 
(2.11^   //GL00^),    H(X) > 0 a.e. on Fa, 

/? G L00^),    /?(^) > /?* > 0 a.e. on Fs, 
txo G V. 

We define the functionals 

L(t]v)= j f(t)-vdx+ [ g(t)-vds, 
Jn JT2 

j(u,v)= /   (3\uv\ (/JL\VT -v*I +vu)ds 
'Fa 

for all w, v G V and £ G [0,T], where ds denotes the surface element. 

The variational formulation of the mechanical problem (2.7) can be stated as 
follows. 

PROBLEM P. Find a displacement u : ft x [0,T] -> lRd and a stress field cr : 
ft x [0,T] -> Sd, such that for t G [0,T], 

(2.12) <T(t) = A(e(u(t))) + G(e(u(t)))    in ft, 

(2.13) (v(t),e(v -u(t))) +j(u(t),v)-j(u{t)Mt)) > L(tiv-u(t))    Vv G V, 

and the initial condition 

(2.14) u(0) = UQ. 
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Well-posedness of this problem is given by the the following result. 

THEOREM 2.1. Let the assumptions (2.9)-(2.11) hold. Then there is a constant 
ao > 0 which depends only on fi,, Fi, T^ and A, such that if 

(2.15) ||/3||^(r3)(||/i||Loo(r3) + l)<ao, 

then the problem P has a unique solution u G C1([0,T]; V), cr e C7([0,r]; if (div;!))). 

The proof of Theorem 2.1 is carried out in several steps, using the same arguments 
as in [21]. Since the modifications are straightforward, we omit here the details. We 
just recall that the proof is based on classical results for elliptic variational inequalities 
followed by fixed point arguments. In the rest of the paper, we assume the conditions 
stated in Theorem 2.1 are satisfied so that the contact problem P has a unique 
solution. 

We end this section with the remark that if v* is large enough then (3 = l/(kwv*) 
is small enough and therefore condition (2.15) which guarantees the unique solvability 
of problem P is satisfied. We conclude that the mechanical problem (2.7) has a unique 
weak solution if the velocity of the foundation is large enough. 

3. Spatially semi-discrete approximation. In this section we consider an 
approximation of the problem P by discretizing only the spatial domain. Let Vh C V 
and Qh C Q be finite-dimensional spaces which for example, can be constructed by 
the finite element method. We assume that these spaces satisfy 

e(Vh) C Qh. 

This assumption is very natural and is valid when the polynomial degree for the space 
Vh is at most one higher than that for the space Qh. 

Let VQH : Q -> Qh be the orthogonal projection defined through the relation 

(3.1) {VQKq,qh)Q = (q,qh)Q        \/qeQ,qhe Qh. 

Obviously, we have 

(3.2) IPQ^HO < ||9||Q       V<7€Q. 

This property will be used on various occasions. 

We now discuss a spatially semi-discrete scheme. 

PROBLEM P'1. Find the displacement field uh : [0,T] ->• Vh and the stress field 
crh : [0,T] ->Q/l such that 

(3.3) uh(0)=u^ 

and fort G [0,T],. 

(3.4) ah(t) = VQhA(e(uh(t))) + VQhG(e(uh(t)))    in ft, 

(3.5) (*h(t),e(vh-uhm + j(uh(t),vh)-j(uh(t),uh(t)) 

>L(t;vh-uh(t))    \/vh eVh. 

Here, UQ G Vh is an appropriate approximation of UQ. 
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Using the arguments in [21], it can be shown that under the conditions stated 
in Theorem 2.1, the problem Ph has a unique solution uh € C71([0,r];VF/l), crh G 
C([0, T]; Qh). Our main purpose here is to derive estimates for the errors u — uh and 
cr-crh. 

To this end, let t e [0,T]. From (2.12) and (3.4), we have 

*(t)-*h(t) 

= (IQ - VQh)a{t) + VQh [A(e{um - A{e{uh(t))) + G{e(u(t))) - G{e{uhm], 

where IQ : Q -> Q is the identity operator. 

Using the conditions (2.9), (2.10) and the property (3.2), we obtain 

(3.6) ||<r(i)-<7ft(i)||Q 

< ||(/Q - 7VMt)||Q + c (\\e(u(t) - uhm\Q + l|e(u(t) - uh(tmQ). 
Since 

e(u(t) - uh{t)) = e(uo - tij) + f e(u(r) - uh(r)) dr, 
Jo 

we have 

(3.7) ||e(u(t) - uhm\Q < Muo - u§)||g + /' ||e(«(r) - «ft(r))||Q dr. 
Jo 

Thus from (3.6), 

Mt) - <jh(t)\\Q < \\(IQ - VQh)cTmQ + c {\\e(u(t) - uhm\Q + Muo - ufoWq) 

+ c ;/%(tt(r)-6V))llg*. 

Recalling Korn's inequality (2.8), we conclude 

(3.8) lk-^||C([o,T];Q) 

< IK^Q - ^)^IIC([0,T];Q) + C (||t4 - Uh\\c([0,T};V) + IK - ^0 IIv). 

It remains to estimate \\u - uh\\c([o,T]]V)' We take v = uh(t) in (2.13) and use 
(2.12) to obtain 

(A(e(u(t))) + G(e(um,e(*h(*) " *(*))> + i(*(*>> ^W) " i(^W^W) 
>L(*;tifc(0-ti(t)). 

Using (3.4) and (3.5), we get 

(A(e(uhm + G(e(uhm,e(vh-uhm +j(uh(t),vh) - j(uh(t),uh(t)) 
>L(t;vh-uh(t)). 

Adding these two inequalities and performing some elementary manipulations, we 
obtain 

(A(e(um - A(e(uhm, e(u(t) - uhm 
< {A(e(um - A(e(uhm,e(u(t) - vh)) 

+ (G(e(u(t))) - G(e(uhm,e(u(t) - vh)) 

- (G(e(u(t))) - G(s(uhm,e(u(t) - «h(f))) 

+ R(t; u(t),vh) + D(u(t),uh(t),vh), 
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where 

(3.9) R{t;u{t),vh) 
- (<T(t),e(vh -«(*))> +j(u(t),vh) -j(u(t),u(t)) - L{t;vh - u(t)), 

(3.10) D{u{t),uh(t),vh) 
= j(u(t),uh(t))-j(m,vh)+j(uh(t),vh)-j(uh(t),uh(t)). 

Using the assumptions (2.9) and (2.10) on the functions A and G, we then have 

||e(tt(t) - uhm\Q < c {\\e(m - vh)\\Q + l|e(«(*) - «h(*))llo) 
+ c(\R(t-Mt),vh)\ + \D(u(t),uh(t),vh)\), 

or equivalently, 

||e(«(t) - uhm\Q < c (||e(tt(t) - t^llg + ||e(«(*) - «ft(*))ll«) 

+ c (|ii(t; u(t),i>ft)|1/2 + |I>(«(<),«"(*).«fc)|1/2)- 

Recalling again Korn's inequality (2.8) and the inequality (3.7), we obtain 

(3.11)||«(i)-u'l(t)||y < c(\\u(t)-vh\\v + \\uo-'U%\\v + J ||«(r)-«fc(r)||vdrj 

+ c(|iJ(t;ti(t),t;'k)|1/2 + |I?(u(t),«fc(t),«fc)r/2)- 

From the trace theorem V M- (I'2(r))d (cf. [1]), we have 

(3.12) MiLHr^^MkLHTW^cMW   Vv € V. 

Now we are ready to estimate the term 

D(u(t),uh(t),vh)= [  /3(KW|-|^(t)|)(/i(|^W-i;1-|^-t;*|)+^(t)-^)d5. 

Since 

\D(u(t),uh(t),vh)\ 

<m\L°°(r3)\\uAt)-uhM\LHr3) 

■ (IMlL~(r,) ll«r(*) " ^HcL^r,))- + ll«*(*) - ^ll^fra)) 

< m\L°°(r3)(\ML~(r3) + 1) Mt) - 6fc(t)ll(L»(r,))-ll«fc(*) " A\(LHv3)y 

< ll/9|U»(r3)(llA*llL«"(r,) + 1) ll«(t) - «fc(*)ll(L*(r,))- 

• (||«fc(t) - u(t)\\mrt))< + \\u(t) - t>fc||(La(r,))<0, 

using the trace theorem (3.12), we have 

\D(u(t), uh(t), vh)\ 

< c||)9||L-(r8)(llA*llLco(r») + 1) ll«(*) - ""Wllvdl^W " «(*)llv + ||tt(t) - vh\\v). 

Therefore, it follows that 

(3.13) \D(u(t),uh(t),vh)\ 

< cM\L~(r3)(ML°°(r3) + 1) Mt) - uhm2v + c||«(t) - vh\\2v. 
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Using (3.13) in (3.11), we obtain 

\\u(t) - uh(t)\\v < c 11/31115^3)(INU-ojra) + i)172 II^W " 6*(*)llv 

+ c(\\u(t)-vh\\v + \\uo-u%\\v+[ \\u(r)-uh(r)\\v dr+lRfoiiit)^11)]1/2 

Then, if ||/?||Loo(r3)(||AillLoo(r3) + 1) is sufficiently small, we have 

(3.14) \\u(t)-uh(t)\\v 

<c(\\u(t)-vh\\v + \\uo-uZ\\v + J lltiW-A^WIIvdr+liZ^uW,^)!1^. 

Notice that vh is arbitrary in the above inequality. Using the Gronwall's inequal- 
ity, we obtain 

(3.15) max \\ii(t) - uh(t)\\v 
t6[0,T]U    V / Wl1 

< c||tio - tijllv + c max    inf   (\\u(t) - vh\\v+ \R(t;u(t),vh)\1/2\ 

The following estimate for cr - ah follows directly from (3.8) and (3.15). 

(3.16) max \\a{t) - ah(t)\\Q < c\\uQ - uh
Q\\v + \\{IQ - ^)^llc([o,T];Q) 

+ c max    inf    ( \\u(t) - vh\\v + \R(t]u(t),vh)\1/2 ). 
te[o,T]vhevh V / 

Summarizing, we have shown the following result. 

THEOREM 3.1. Let (u,a) and (uh,ah) be the solutions of the problems 
P and Ph respectively. Assume the conditions stated in Theorem 2.1. Then 
^/ll/3||Loo(r3)(llMlUoo(r3)+ 1) ^ sufficiently small, the estimates (3.15) and (3.16) hold. 

In order to give more concrete results based on (3.15) and (3.16), we now briefly 
specify the finite dimensional spaces Vh and Qh via the finite element method. Details 
can be found in [4]. For simplicity, we assume that ft is polygonal. Let Th be a regular 
finite element partition of the domain 0. Here we use linear elements for the space 
Vh and piecewise constants for Qh. 

To perform our convergence analysis, we need the following density result from 
[25]. 

LEMMA 3.2. Assume that X is a Banach space, XQ C X is a dense subspace of 
X. Then C([0,T];X0) is dense in C([0,T];X). 

Now we are ready to give convergence and error analysis of the spatially discrete 
solution for the problem P. 

THEOREM 3.3. Keep all the assumptions in THEOREM 3.1. Assume the initial 
approximation UQ G Vh is chosen such that 

(3.17) ||uo-wollv->0,     as   h -> 0. 

Then 

(3.18) max (\\u(t) - uh(t)\\v + \\a(t) - <rh(t)\\v) -> 0    as h -> 0. 
te[o,T] 
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Moreover, if 

(3.i9)fi€C1([o,T];yn(H2(n))dn(H2(r3))d),   aeC^Ty^H1^))^), 

and 

(3.20) INo-Wollv <ch, 

then we have the optimal order error estimate 

(3.21) max (\\u(t) - uh(t)\\v + \\(r{t) -crh{t)\\v) <ch. 

Proof. Since Vn(H2(n))d and (H1(n))dxdnQ are dense in V and Q respectively, 
then by LEMMA 3.2, C([0,T]; Vn(#2(ft))d) and C([0,T]; (Jff1(fi))dxdnQ) are dense 
in C([0,T];V') and C([0,T];Q) respectively. Therefore, Ve > 0, there exist u G 
C([0,T];Vn(tf2(fi))d) anda-GCQO,^;^1^))^^^) such that 

(3.22) ||n - n||c([o,T];V) < e,    Ik - *llc([o,T];Q) < £• 

Let Ilhv G V^ be the piecewise linear interpolant of v G Vn(H2(Sl))d. Then (cf. [4]) 

(3.23) \\v -ILhv\\v <ch\\v\\lH2m*. 

Now we estimate the term \R(t]u(t),vh)\ in (3.15) defined by (3.9). Recalling 
the assumption (2.11) and the trace theorem (3.12), we can show that 

\Rfau(t),vh)\<c\\u(t)-vh\\v. 

By (3.22) and (3.23), we obtain from (3.15) that 

max \\u(t)-uh(t)\\v <C\\UQ-UQ\\V+ c max    inf   \\u(t) - vh\\]l2 

te[o,T] te[o,T}vh£Vh 

<c\\uo-u^\\v+c61/2 -he max \\u(t)-Uhu(t)\\\/2 

ct[U, 1 J 

< c||tio - uJHv + ce1/2 + c/i1/2||ix||^05T];(^2(Q))d). 

Using the assumption (3.17), we conclude from the above estimate the convergence 
of uh to ii. 

Observe that the error bound of (3.16) differs from that of (3.15) only in one 
extra term ||(/Q - ^Q>0<X||C([O,T];Q)- Thus the convergence of orh to a follows from 
the estimate 

IIUQ " 7V)0-||c([o,T];Q) < \\cr - <T||C([O,T];Q) + max    inf   ||<x - ^||Q c€|P,i J qn£Qn 

< € + Ch ||cr||c([0,T];(#1(n))dxd)> 

by using (3.2), (3.22) and finite element interpolation error estimates ([4]). 

We now prove the error estimate (3.21) under the solution regularity condition 
(3.19) and the assumption (3.20). We re-estimate the term 

R(t'Mt),vh)= [ (a(t)'e(vh-u(t))-f{t)-(vh-u(t)))dx- f g(t) • (vh-u{t))ds 

+ /  /3|^(t)|(/x(|^-^|-|^r(t)-V*|)+^-^(t))^. 
Jr3 
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Integrate by parts, 

R(t-u(t),vh) = f (-divo-ft) - /(*)) • (vh - u(t))) dx 

+ / <r(t)i> • (vh - u(t)) ds - I g(t) • (vh - u(t)) ds 

+ / P\uv(t)\ (/i(|^-v*|-|nr(^)-v*|)+^-^(i)) ds. 

Using the equilibrium equation and the boundary conditions on Fi r2, we have 

R(t',u(t),vh) = 

f    L(t)v • (Vh - U(t)) + /? \uu(t)\ {l* (kr " V*\ - \Ur(t) -17*1)+^- ^(*)) ds. 
>r3 L 

Therefore, 

\R(t;u(t),vh)\ 

< (Mt)v\\lL2iT3))* + ||/3|U-o(r3)(IHU~(r3) + l)\\Mt)\\L*(rs))\\u(t) - ^H^^))^ 

which with the aid of the result (3.12) yields 

\R(t;u(t),vh)\ < (||o-||c([o,T];(ffi(n))-xd) + ||^|U«>(rs)(INU«>(r3) + l)ll^llc([o,r];y)) 

'\\u>(t)-vh\\iL2{r3))d. 

Hence from the estimate (3.15), it follows that 

(3.24)      max \\u(t) - uh(t)\\v 
^G[O,T]

M
   

w Wl1 

<c No - uil\\v + c max ^ m^ M|ti(*) - vh\\v + ||ti(*) - ^llj^rs))*1) " 

With the regularity condition (3.19), using the interpolation results, we have 

\\u(t) -Uhu(t)\\v <ch\\u(t)\\{mmd, 

\\u(t) - Uhu(t)\\{L2{r3))d < c/i2||n(^)||(i/2(r3))<i, 

IK^Q -^QO^WIIQ <cft||<T(*)||(fri(n))dxd 

for all t e [0,r]. Then the error estimate (3.21) follows from (3.16), (3.20) and (3.24). 
D 

4. Fully discrete approximation. Now we consider a fully discrete approxi- 
mation of the problem P. In addition to the finite dimensional spaces Vh and Qh 

introduced in the last subsection, we need a partition of the time interval [0, T] : 0 = 
to < ti < • • • < tjy = T. We denote the step-size kn = tn — tn-i for n = 1,..., iV. We 
allow non-uniform partition of the time interval, and denote fc = maxn kn the maximal 
step-size. For a continuous function w{t)^ we use the notation wn = w(tn). For a se- 
quence {wn}n=oi we denote Awn = wn-wn-i for the difference, and 5wn — Awn/kn 

the corresponding divided difference. In this section, no summation is implied over 
the repeated index n. 
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Then a fully discrete approximation method based on a backward Euler scheme 
is the following. 

PROBLEM Phk. Find the displacement field uhk = {u*k}%=0 C Vh and the stress 
field (Thk = {(T%k}%=o C Qh, such that 

(4.1) uZk=uZ, 

and for n = 1,..., iV, 

(4.2) <Thn
k = VQhA(e(Suh

n
k)) + P^G^^J)    in fl, 

Using the argument technique of [21], it can be shown that the fully discrete 
problem P*1*5 has a unique solution if ||/J||Loo(r3)(llMllLoo(r3) + 1) is sufficiently small. 

We now derive some error estimates for the numerical solution. We will use the 
notations un = u(tn), un = u(tn) and crn = cr(tn). We use (2.12) and (2.13) at 
t = tn and take v = 5u^ to obtain 

(4.4) {A{e(un)) + G(e(ttn)),e(8uh
n
k - un)) + j(un,5u*k) - j{un,un) 

>L(tn;8u*k-un). 

Substituting (4.2) into (4.3), we get 

(4.5) (A(e(5uh
n
k)) + G'(e(nf_1))) e(vh - 5uh

n
k)) + j(Suh

n
k,vh) - j(Suh

n
k, 8uh

n
k) 

>L{t;vh-5uh
n
k). 

Adding (4.4) and (4.5) with rearrangement of the terms, we obtain 

(A{e{un)) - A{e{5uf)),e{un - Suf)) 

< -(G(e(un)) - G(e«fc_1)), e(un - Suh
n
k)} 

+ (A(s(Suh
n
k)) - A(s(un)) + Gisiu^)) - G(e(un)),s(vh - un)) 

+ R(tn;un,vh) + D(un,8u™,vh), 

where the quantities ./?(*«; tin, vh) and D(un, 8u,^,vh) are defined in (3.9) and (3.10). 
Using the conditions (2.9) and (2.10), we obtain 

\\e{un-8uh
n
k)\\l 

<C||£(u„-<fc_1)||Q||e(«n-«5«f)||Q 

+ c (||e(nn - 8uf)\\Q + ||e(un - u^Wq) \\e{un - vh)\\Q 

+ c (\R(tn; «„, vh)\ + \D(un, 8u^,vh)\). 

Then we have 

\\e(un-Suh
n
k)\\Q 

^cflle^-^^llQ + IK^-v^llQ + li?^;^,^)!1/^^^,^,^)!1/2' 

Korn's inequality (2.8) can be applied here to yield 

(4.6)||un-<Ju**||v 

< c (\\un - uJtiJIv + ||«„ - ^Hv + |i?(in;nn,^)|1/2 + \D(un,6u*k,vh)\^A. 
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From the estimate (3.13) and the result (3.12), 

\D{unMnk,Vh)\1'2 

< cIl0lli~(r.)(IMU~(ra) + i)172 ll«n - Suh
n
k\\v + c\\un - vh\\v. 

Using this estimate in (4.6), we obtain 

IK - Su^\\v ZcM^r^MlL-F,) + 1)1/2 »«„ - Suh
n
k\\v 

+ c\\un - u^Wv + c   inf   (||un - t;fc||v + |i?(*n;«„,v11)^2}. 
vhevh ( J 

If ll/^II^^GHlL^rs) + 1) is sufficiently small, we have 

(4.7) Hun-^Hv 

< c||tiB - u^Wv + c   inf  (||«n - t>fc||v + \R(tn;un,vh)\V2\. 

Write 

n-l n-1 

Then 

(4.8) \\un - Wn-lllv < \\uo - U^\\v + |K - Un-lHv 
n—1 n—1 

i=i i=i 

Hence from (4.7), we get 

n-l 

(4.9) Utin-JM^IIv <c||tio -UQ\\V + c||tln-Un-i||v +C ^fcj||^ -^||y 
i=i 

+ C     mf    IllAn-^llv + l^nJWn^^l^j+C^*^^ 
^ 3=1 

To proceed further, we need the following result. 

LEMMA 4.1.   Assume {gn}n=i an^ {en}^Li we two sequences of non-negative 
numbers, satisfying 

n-l 

^n < cgn + c J^ fc^ej,    n = 1,..., iV. 
i=i 

Tften 

n-l 

(4.10) en < c ^n + ^2, k39j),    n = 1,..., N. 
3=1 
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Therefore, 

(4.11) max en < c   max gn. 
V J l<n<N        -      l<n<N 

Proof. Denote 
n 

En = 2^ kjej' 
i=i 

Then 

(4.12) en<cgn + cEn-U    n = l,...,iV. 

Now 

En — En—\ = knen < ckngn + cknEn-i, 

which implies 

(4.13) £n - (1 + ckn) En.! < ckngn   n = 1,..., N. 

We introduce a sequence of numbers {^n}^L0 by setting ZQ = 1 and 

n 

^n= JJ^ + cfcj),    l<n<^. 

Using the inequalities 

1< 1 + ckj <eck>,    j = l,...,N, 

we have the following bounds: 

N 

(4.14)        i< n (i+cfe*)^ec(T"*i)' J=
I

>~->
N

' 

Now with the above notations, the inequality (4.13) can be rewritten as 

En _ En-i      ckngn 

Zn zn—l Zn 

A simple induction argument gives us 

n n n 

En <czn^2kj— = c Y^fy   Y[ (l + cfci)^-, 
j=l 3 j=l       i=j+l 

which can be combined with (4.12) and (4.14) to yield (4.10). The inequality (4.11) 
follows easily from (4.10). D 

Applying LEMMA 4.1 to the inequality (4.9), we obtain the following estimate, 

(4.15) max  \\un-6u*k\\v 
l<n<N 

hk\ 

JV-1 

< c^ ||tAo -^ollv + y]kn\\Sun -iinWv \ +c   max  \\un-un- 
I x—' I l<n<N K n=l J -   - 

+c   max     inf   \ \\un - vh\\v + \R{tn',Un,vh)\1/2 

l<n<NvheVh { 
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Now we turn to bound an — crj^. Subtracting (4.2) from (2.12) at t = tn, we have 

<T„ - <r** = (IQ - VQh)<Tn + VQK [A{e{un)) - A{e{8uh
n
k)) + G(e(«n)) - GleivftLJ)], 

which, by the assumptions (2.9), (2.10) and the property (3.2), yields 

IK - VnWQ < \\{IQ - ?VKIIQ + C\\U„ - SU^\\V + C\\un - U^Wv- 

Recalling (4.8), we then get the estimate 

(4.16) max.\\<rn - <T*k\\v 
l<n<N 

< C < \\uo - U%\\v + Yl kn\\Sun " ^n||v [ + IK^Q " ^QO^IIC([0,T];Q) 

^ n=l ' 

+c   max  \\un - un-i\\v +c   max     inf   < ||tin - vh\\v + |fi(^n;nn,'U/l)|1/2 >. 
l<n<N l<n<N vheVh { ) 

Summarizing, we have shown the following result. 

THEOREM 4.2. Let (u,a) and {(u!^, a^l
k)}^=1 be the solutions of the prob- 

lems P and Phk respectively. Assume the conditions stated in Theorem 2.1. Then if 
ll^llLoo(r3)(llMllLoo(r3) + 1) ^ sufficiently small, the estimates (4.15) and (4.16) hold. 

The following result (cf. [25]) is needed for convergence analysis. 

LEMMA 4.3. Assume that X is a Banach space. Then Coo([0,r];X) is dense in 
ci{[Q,nx). 

THEOREM 4.4. Keep all the assumptions in THEOREM ^.^. Assume the initial 
approximation UQ G Vh is chosen such that 

(4.17) \\u0 - u^Wv-* 0,    as   h -+ 0. 

Then 

(4.18) max (\\un - Su^k\\v + \\<rn - (r^k\\v) -+ 0    ash,k->0. 
l<n<N 

Moreover, if 

uicrt      / uecH[o,nvn(H*m<ln{H*(rs))<,)nw2>1(o,T;V), 
^■iy) \ (reC([0,T\;{H1(il))d*d), 

and 

(4.20) ||wo-«ollv <ch, 

then we have the optimal order error estimate 

(4.21) max (||un - (J«**||v + IK - ^nWv) <c(h + k). 
l<n<N 

Proof. First we show the convergence result (4.18). Most terms on the right-hand 
sides of the estimates (4.15) and (4.16) can be handled in much the same way as those 
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similar terms on the right-hand side of the estimate (3.16), as was done in the proof 
of Theorem 3.3. Here it is enough for us to estimate the two terms 

JV-l 

Ekn\\5un - iinWv    and      max  \\un - nn_i||y. 
l<n<iV 

n=l ~   - 

By LEMMA 4.3, C00^,?1];1^) is dense in CH^T]; V). Hence Ve > 0, there exists 
w G C^tfO,!1]; y) such that 

Since 

11^-wllci([0,T];V)  <^- 

\Sun - Un\\v < \\S(un - Wn) - (Un - Wn)\\v + ||^n " Wn\\v 

i rtn 

<e + \\- (w(t)-wn)dt\\v 
k Jtn-i 

<e+ [     \\w(t)\\vdt,    n = l,...,JV-l, 
Jtn-l 

we have 

iV-l 

^2 kn\\Sun -Un\\v <Te + k\\w\\Li(o,T.V), 
71=1 

where w(t) denotes the second-order derivative of w(t) with respect to the time 
variable t. It is easily seen that 

max  ||iin -un-i\\v < k\\u\\c([o,T};V)- 
l<n<iV 

Thus we have the convergence (4.18). 

Under the regularity condition (4.19), we have 

JV-l 

^ kn\\Sun - un\\v < k ||ii||l,i(0,T;V)- 

n=l 

The estimate (4.21) can be proved in much the same way as the estimate (3.21) was 
proved in the previous section. □ 
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