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PITCHFORK AND HOPF BIFURCATIONS OF TRAVELING PULSES 
GENERATED BY COEXISTING FRONT AND BACK WAVES* 

SHUNSAKU Nllt 

Abstract. Pitchfork and Hopf bifurcations of traveling pulse solutions bifurcating from coexist- 
ing traveling front and back waves of reaction-diffusion systems are studied. It is assumed that the 
parameter set on which the traveling front exists and the set on which the back wave exists intersect 
non-transversally. As a result, more complicated bifurcations than the transversal case are proven 
to occur, including pitchfork and Hopf bifurcations of traveling pulses. 

1. Introduction. Recently, bifurcation phenomena of traveling waves and their 
stability in parabolic systems has been attracting attention. Such systems include 
reaction-diffusion systems, where the waves are thought to represent qualitative change 
of propagation of transition layers of chemical substances, and nerve axon equations, 
where they are thought to represent conduction of electric pulses. These waves are 
expected to be stable if they are observed experimentally. This problem has already 
commanded a large body of literature. 

One way to study this subject is to regard the bifurcations and the linear stability 
of traveling waves as bifurcations of homoclinic or heteroclinic solutions of ordinary 
differential equations. 

A natural strategy in this line of thought is as follows: 
(1) Assume the weakest type of degeneracies on the homoclinic or heteroclinic 

orbits corresponding to the wave and apply the homoclinic or heteroclinic 
bifurcation theory. Then analyze the stability of waves corresponding to the 
homoclinic or heteroclinic solutions. 

(2) Proceed to more degenerate cases. 
Results in stage (1) go back to early works by Evans, Fenichel and Feroe [5], 

Yanagida [21], Yanagida and Maginu [22] Kokubu, Nishiura and Oka [13] and Deng [4]. 
Later results include Alexander and Jones [2] [3], Gardner [6], Kan-on [10] [11], Nii [14] 
[15] [16] and Sandstede [18] [19]. [13] and [14] treat bifurcation of pulses from coexisting 
front and back waves under certain transversality conditions. Works belonging to 
stage (2) have already done by Sandstede, Alexander and Jones [20], Yew [23] and 
Nii and Sandstede [17]. 

The subject of this paper is bifurcation from coexisting front and back waves 
which do not satisfy transversality conditions. This type of degeneracy appears in 
[13] and belongs to stage (2) above. 

In [13], the following type of one-dimensional reaction diffusion system is treated: 

n 1V [eTUt=e2uxx + f(u,v'i0,j) 

\     vt =vxx +g(u,v',6,'y) 

where x € M. and t > 0. e and r are real positive parameters, with e a small parameter. 
The nullcline of / intersects with that of g at P — (up,vp), R — (UR,VR) and 
Q — (UQ^VQ) where vp < VR < VQ. P and Q are stable constant solutions of (1.1), 
which guarantees the bistability, while R is unstable. 
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Let s = x + ct be the traveling coordinate. Then the system of equations for a 
traveling wave becomes: 

(■ = -) k        ds' 

U    = -Ui 
e 

< ui = —ui - ~f(u,V',t 

V    = Vi 

, vi =cui -9{u,v\6,i) 

This system is simply written as: 

/.\ 

X = ^(X'jfjb),           x = 
Ui 

V 
G 

W 
This system has equilibria corresponding to P and Q, which are denoted in the same 
notation by: 

P = 

fup\ 
0 

Vp Q = 

(UQ\ 

0 

\0J 
The equilibrium P (resp. Q) has a two-dimensional stable manifold WS(P) (resp. 

WS(Q)) and a two-dimensional unstable manifold WU(P) {resp. WU(Q)). In [13], 
a function Si(//) (resp. ^2(1^)) is defined to analyze heteroclinic orbits from P to Q 
(resp. from Q to P), which measures the separation of WU(P) and WS(Q) (resp. 
WU(Q) and WS(P)) and satisfies the following property: 

Si = 0 if and only if there exists a heteroclinic orbit from P to Q. 
(resp. S2 '= 0 if and only if there exists a heteroclinic orbit from Q 
to P.) 

It is, then, proven that Si is expanded into the following Taylor expansion: 

Si(/z) - FO + Gc7 + He3 + o(\e\ + |c27| + |c4|) 

where F, G and iJ are positive if s and r are sufficiently small. Moreover, Si and S2 
have the following relations: 

Si (c, 0,7) = -S2(-c,0,7) 

and 

2i(c,0,7) = S2(c,-0,7) 

It follows from the information above that the set of zeros of Si and S2: 

Mi:={M,7)eM3   I   Si(c,0,7)=O}, M2:-{(c,0,7)GM3   |  S2(c,0,7)=O} 

form cusp surfaces which are symmetric to each other.   Especially, the bifurcation 
diagram in c-0 plane for fixed 7 has the following feature: 
7* > 0 Mi7jlt and il^, intersect transversally at (c,0) = (0,0) 
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Mw     t  ^M 

(0,0) 
7* = 0 they tangent at (c, 8) = (0,0) 
7* < 0 they intersect transversally at three points including (c, 9) 
where M^ — Mif)^ = 7*}. (See figure 1.) As for the stability of waves correspond- 
ing to these heteroclinic orbits, the following is shown: 

Let ^* G Mi, then 

|H1(^)>O (^S1(^)<0) 

if and only if the traveling wave corresponding to the heteroclinic 
orbit is stable (resp. unstable) as a solution of the original system 
(1.1); the same applies for £2. 

In [13], the existence of homoclinic orbits to P and Q bifurcating from the 
transversal intersection of Mi7^ and M27s)c are obtained by applying homoclinic bifur- 
cation theorem by Kokubu [12]. That is, when Mi7j|t and M27st! intersect transver- 
sally i.e. 7* ^ 0, there are branches of curves Mp^ — Mp fi {7 = 7*} and 
MQ^ — MQ fl {7 = 7*} in c-9 plane corresponding to homoclinic orbits to P and Q 
which bifurcate from the intersection points of Mi^ and Mz-y*. (See figure 2.) The 
stability of traveling pulses corresponding to these homoclinic orbits is determined in 
[14]. The method used there also depends on the transversality. 

At this stage, nothing had been proven concerning the existence of homoclinic 
orbits for 7* = 0. Later, an almost complete bifurcation diagram of homoclinic and 
heteroclinic orbits, and the stability and instability of the corresponding waves were 
obtained for piece-wise linear / and g by the singular perturbation technique (Ikeda, 
Ikeda and Mimura [8]). The existence of Hopf bifurcation of pulses was also shown. 
Still, these results exclude a small neighborhood of (c, 0,7) = (0,0,0) in the parameter 
space, because of the lack of transversality. 

The purpose of this paper is to investigate this type of degeneracy and to exhibit 
the bifurcation structure of pulses. Moreover, the existence of Hopf bifurcation of 
pulses is also proven. 

2. The Theorems. In this section, the theorems of this paper shall be stated. 
First, a theorem concerning a heteroclinic bifurcation of a family of ordinary differen- 
tial equations under certain condition is introduced. Pulse solutions for a system of 
reaction diffusion equations are obtained from an application of the theorem. Then, 
under additional assumptions of symmetry, a theorem concerning the Hopf bifurcation 
of the pulse solutions is stated. 
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Figure 2. 

The subject analysed first is a three parameter family of ordinary differential 
i2n. equations on 

(2.1) 
x = X(x,y;fjLo,fjii,fjL2) 

y = 2)(x,2/;/io,/ii,M2) 

where x,y G Mn and (/ZQ? ^1^2) € E3. 
In order to formulate the problem, this system is assumed to satisfy several hy- 

potheses. 

HYPOTHESIS 1. The system (1.1) possesses the following symmetry: 

-X(y,x]-no,nuii2) = fQ(x,y;fio, ^1,1x2) 

HYPOTHESIS 2. The origin O is a hyperbolic equilibrium of the system and there 
are other hyperbolic equilibria O- and O+. 0- corresponds to 0+ under the sym- 
metry in Hypothesis 1. O (0±) has an n-dimensional stable manifold Ws(0) (resp. 
Ws(0±)) and an n-dimensional unstable manifold Wu(0) (resp. Wu(0±)). 

For the sake of simplicity, the system (2.1) is assumed to be linear around the 
origin O. Moreover, it is written in the following form for some small neighborhood 
around the origin: 

(2.2) 

fxA     /-A(/io,Mi3A*2) 0 0 0 \(Xl\ 
x     _ 0 — A(/zo,Mi,AX2) 0 Ox 
2/i    _ 0 0 A(-//o,Mi,^2) 0 2/1 

V£ /     \ 0 0 0 A(-fio^i^2)J\y J 

where (xi,x),(yuy) e 
(n — 1) matrix. 

x 1)71-1 , A(jLfco,jtzi,A*2) > 0 and AQuo,/^/^) is a (n - 1) x 
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HYPOTHESIS 3. ^(0,^1,^2) < 0. 

HYPOTHESIS 4.    There is a positive constant v > A(/io,/xi,/i2) satisfying the 
following property: 

||e-^o,/*i,A*2)i|| <e-ut (t>0) 

As the subject of interest is the heteroclinic bifurcation of this system, the original 
heteroclinic solutions which undergo the bifurcation are assumed to exist. 

HYPOTHESIS 5.   When (//OJMIJ/^) = (0,0,0) (2.1) possesses a heteroclinic solu- 
tion, which is unique up to translation in t 

hi(t) = (hi(t),hl(t)) satisfying    lim  hi(t) = O- and   lim   hi(t) = O. 
t—^ — 00 t->+oo 

If /12CO :— (^i(—*))'li(""*))? ^en the symmetry in Hypothesis 1 implies that 
/i2(t) is a heteroclinic solution satisfying   lim   hi(i) = 0 and   lim   hi(t) = O+. 

t—>—00 t—>+oo 
These heteroclinic solutions are assumed to be of generic type i.e.  they satisfy 

the following hypotheses. 

HYPOTHESIS 6. 

*-H-«>|/llOO| 

By the symmetry, the following also holds: 

kit) 

lim   MI = (-1,0,0,0) 

lim = (0,0,1,0) 

Let Hin = {xi = 5} and Sont = {yi — ^} be local sections which are transversal to 
the heteroclinic orbits and S > 0 be so small that Ejn and Eou^ are in the neighborhood 
of the origin where the linearity assumption (2.2) holds. (See figure 3.) In what 
follows, S = 1 is assumed through a scalar change of the coordinates, and (x,yi,y) 
and (xi,x,y) are used as the coordinates on E;n and Y,out. 

Figure 3. 
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HYPOTHESIS 7.   Wu(0-) fl S^n is expressed as the graph of a smooth function 
from y to (x,yi) (see figure 4)' 

x = €(y; 1*0,1*1, to),        Vi = miwVoiVufa) 

By the symmetry in Hypothesis 1, this implies that Ws(0+)C\Yiout is expressed as the 
graph of a smooth function from x to (xi, y): 

xi = 771 (x; -/io, /ii, 112),        y = dix] -/io, Hi, ^2) 

The next hypothesis represents the degeneracy which is under investigation. 

Yi 

WS0)nZi 

Figure 4. 

HYPOTHESIS 8.  T/ie function rji has the following symmetry: 

771 (0;/io3^i5M2) = -7/i(0;-^0,-/^1,^2) 

and is expanded into the following Taylor expansion: 

77i(0;/io,Mi,^2) = Mi +M0M2 +Mo + 0 (iMil + l/^l + l^oI) 

REMARK 2.1. ^(O^o^i?/^) corresponds to the separation function in [12] and 
[IS]. 

Let M_ and M+ be the parameter sets on which the heteroclinic solution from 
O- to O and from O to 0+ exists: 

M_ := {(/io,/ii,M2) I mityVOiHufr) = 0} 

M+ := {Quo,Mi,#2) I 7yi(0;-/xo,Mi,M2) = 0} 

and let P := M_ fl M+ be the parameter set on which both heteroclinic solutions 
coexist. Hypothesis 8 implies that M_ and M+ form cusp surfaces which are expressed 
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by /i! = c(/io, M2) and /ii = c(-/xo, ^2), and that V consists of the line {//Q = Mi = 0} 
and the graphs of symmetric square-root-like functions {/io = ^(^2)7/^2 <0,/xi = 
0} U {^0 = -p(V2),V>2 < 0, Mi = 0} with p(/x2) > 0 and p(0) = 0. 

Under the hypotheses above, the following heteroclinic bifurcations occur. 

THEOREM 1. Under Hypothesis 1 to Hypothesis 8, there exists a heteroclinic 

solution from 0_ to 0+ for (0^1,^2) with Mi > 0- Furthermore, for 
H2 < 0 with sufficiently small I//2I, there exists a function 0(/zo,M2) for 
~P{lJ'2) < Mo < p(M2) ^wc/i that there exists a heteroclinic solution from O- to O+ for 

(/io,Mi>M2) = (MO,0(MO,M2),M2). 0(Mo,M2) satisfies 771(0; ±MO,<KMO,M2),M2) > 0 and 
lim      0(^o,M2) — 0- 0(0,M2) converges to 0 as ^2 ^ 0 like /i2 = MilogMi-   ^ee 

figure 5.) 

REMARK 2.2.  Tfte branches of the heteroclinic orbit is unique when M2 ^ 0 and 
//1 is near 0 6y £Ae results of Kokubu [12]. 

JLl2<0 

Figure 5. 

When this theorem is applied to the problem of traveling waves, the theorem 
concerning existence of pulse solutions is obtained. The subject here is the following 
system of reaction diffusion equations: 

(2.3) ut = Buxx + /(U;AO 

where x € E, t > 0 and u E W1. B is an n x n positive diagonal matrix and 
/ is a smooth function of u depending on parameters // =. (M15M2) G M2. This 
equation is considered on the function space i?[/(M, W1) := {u: R —> W1 \uis bounded 
and uniformly continuous }. The basic hypothesis for this system is the following 
bistability 

HYPOTHESIS 9. 
constant solutions u 

The non-linearity f has two zeros P and Q, and steady state 
E P and u = Q are both stable. 
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Put s = x + ct and (2.3) in (5, t) coordinate becomes: 

(2.4) ut = Buss - cus + f(u; y) 

Then a traveling wave solution u(x,t) is a stationary solution u(x,t) = 1/(5) of (2.4) 
for which   lim   u{s) exists and equals either P or Q. That is, if the equation: 

s—>±oo 

(2.5) £wss - c^s + /(w; //) = 0 

possesses a solution u(s) with   lim   u(s) — P or Q, then ^(x + c^) in (x, t) coordinates 
s—>-±oo 

becomes a traveling wave solution of the system (2.3). Notice that a traveling wave 
is called a traveling pulse if both of the limits of   lim   u(s) are equal to P or both 

s—>±oo 

are equal to Q, and is called a standing wave (a standing pulse) if c = 0. 
The problem above is regarded as the existence problem of a homoclinic or het- 

eroclinic solution. The second order ordinary differential equation (2.5) is rewritten 
as a first order system: 

{u = v d 

v = cB-1v-B-1f{uMiuii2) (    =^) 

Under Hypothesis 9, the system (2.6) has two hyperbolic equilibria {u,v) = (P, 0) 
and (u,v) = (Q,0). By abuse of notation, these equilibria are also denoted as P and 
Q. Then {u^u') is a homoclinic or heteroclinic solution to P and/or Q of (2.6) if and 
only if u is a solution of (2.5) with   lim   u{s) — P or Q. 

s—>±.co 
In what follows, / is assumed to be linear around P corresponding to the as- 

sumption (2.2). Then, by letting O = P, 0_ = 0+ = Q and (^0,^1,^2) = (c,/ii,/i2)5 

Hypothesis 1 and Hypothesis 2 are automatically satisfied after a suitable change of 
coordinates. This system is, then, expressed as in (2.2). 

In this context, theorem 1 is interpreted as follows. 

THEOREM 2. If (2.6) has heteroclinic solutions which correspond to traveling 
waves of (2.3) and which satisfy the above hypotheses, then the system possesses a 
homoclinic solution to Q for c = 0 and /ii > 0 which corresponds to a standing pulse 
of (2.3). Furthermore, the system has a homoclinic solution to Q for /di = 0(c,//2) 
for fj,2 < 0 which corresponds to a traveling pulse with speed c. 

REMARK 2.3. From this point of view, the bifurcation point (c, 111,112) — 
(O,0(O,/X2)>^2) of a traveling pulse from a standing pulse is the pitchfork bifurcation 
point of the standing pulse. 

In the context of traveling waves, this degeneracy generates a richer structure. In 
fact, it is shown that the standing wave undergoes Hopf bifurcation under additional 
hypotheses. 

The first hypothesis is a symmetry of the system (2.3). 

HYPOTHESIS 10.  The non-linearity f is odd symmetric with respect to u and JJLI: 

/(-!*;-//I,^) = -f(u',ni,ii2) 

If P and Q correspond to each other under this symmetry, then Q = —P for jii = 0. 

The next hypothesis concerns the linear stability of traveling waves. 
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Let u(s) be a traveling waves of (2.3). Consider the linearization of the system 
(2.4) along the wave: 

pt ^Lp-.^Bpss-cps+Dfiuis^^p 

Under Hypothesis 9, there is a negative constant CTQ such that the essential spectrum 
cre(L) of L on the function space BU(R, Mn) lies in the region 5Jz < (JQ. Moreover the 
origin is an eigenvalue of L with the eigenfunction u8(s) which corresponds to spatial 
translation of the wave. The wave is said to be linearly stable if there is no eigenvalue 
of L with non-negative real part and linearly unstable if there is an eigenvalue of L 
with positive real part. 

REMARK 2.4. In the context of reaction diffusion systems, it is well known that 
linear stability of a wave implies non-linear stability. See Henry [7], for example. 

Let u_(s;c,/ii,//2)  be the traveling wave satisfying    lim   u_(s)   =   Q and 
s—>■—CO 

lim   u-(s) = P, which exists for (c,//i, ^2) £ Af_, and let u+(s]c, ^1^2) be the wave 
s—>+oo 

satisfying   lim   iq.(s) = P and   lim   1*4.(5) = Q, which exists for (c,/xi,/i2) £ ^+- 
s—y—00 s—>-\-oo 

HYPOTHESIS 11. Let L_ be the linearized operator corresponding to the traveling 
wave U-(s;c1fii,fi2)' Then there is a negative constant o\ so that there are only two 
eigenvalues of L_ with real part greater than ai. Moreover, one of these is negative 
(positive) if and only if 

-^(0;c,/xi,/i2) > 0        (resp. -^(Ojc,//!,^) < 0) 

(The other one is at the origin.) Similarly, let L+ be the linearized operator corre- 
sponding to the traveling wave u+{s\c,/ii,/^)- Then there are only two eigenvalues 
of L+ with real part greater than fj,i, one of which is negative (positive) if and only if 

-^■(0;-c,/Ji,/i2) <0        (resp. -^(0;c,/xi,/X2) > 0) 

Under these hypotheses, the standing pulse, the existence of which is proven in 
theorem 2, undergoes Hopf bifurcation. 

THEOREM 3.   Under the additional Hypotheses 10 and 11, there is a curve 112 — 
1^2(1^1) for Hi > 0 such that the linearization along the standing pulse possesses a 
pair of pure imaginary eigenvalues for (^1,^2) = (^1,^2(^1))? an^ ^2(^1) satisfies 
lim//2(Mi) = 0. 
MI 4-0 

3. Heteroclinic bifurcations. In this section, theorem 1 and 2 shall be proven. 
To begin with, the bifurcation equation is formulated. 

PROPOSITION 3.1. The system (2.1) possesses a heteroclinic solution from O- 
to O4- if and only if the following system of equations has a solution (x,y): 

(3.1)   I 

M/XQ,MI,M2) ,_ x 

{W;M0,Ml^2)}A(-^i,M2)   =r]1(x]-fXo^l^2) 

* = eXP { A(-MO^I,M2) 
l0g^(^5 MO, /Jl, /i2)A(/iO, //I, M2)} f (S; MO, Ml, M2) 

y = exP {M^TJJT^) ^S7?!^;Mo,Mi5M2)^(-Mo,Mi5M2)}C(^;-Mo,Mi5M2) 
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Proof. By Hypothesis 7, a point in Wu{0-) fl Ejn is expressed as: 

(a,2/i,27) = (€($', lM),IJ>i,IJ>2),'ni(y,lJ>o, 1*1,1*2),$) 

and a point in Ws(0+) fl Sout as: 

(xi,x,^) = (7/i(x;-//o,^i^2),5,^(5;-^o,^i,^2)) 

Then, the condition that the orbit of a point in Wu(0-) fl Sfn under the flow of (2.2) 
hits a point in Ws(0+) fl Sout is expressed as (3.1). D 

Then, the first half of theorem 1 is easily proven. 

PROPOSITION 3.2. For HQ = 0 and fii > 0, £/ie system (2.1) possesses a hetero- 
clinic solution from O- to 0+ if |/ii| and |/i21 are sufficiently small. 

Proof. If x = y, then the first equation of (3.1) is automatically satisfied and the 
second equation coincides with the third equation. Let F: Wl~l x E2 -> IRn-1 be 
defined as: 

F(y; 1*1,1*2) := < 
y - exP { Mo^T^T log l^1 (2/; 0' Mi) ^2)|A(0, Mi,/i2)] f (2/; 0, fiufr) 

(^i (27; 0,^1, ^2) 7^0) 
27 (*7i(27;0,//i,//2) = 0) 

Then, F(0; 0, /X2) = 0 and F is of class C1 by Hypothesis 4. Furthermore, ^^(0; 0, /X2) 
= / and thus there is a function y = yifii, 1*2) satisfying F(y(iJ,i,{12); 1*1,1*2) = 0 for 
small |/xi|. A similar calculation yields ^- = -^ = 0 at jii = 0 which means 
771 (27; 0,//1, ££2) > 0 for positive small )izi by Hypothesis 8. Therefore, (3.1) is satisfied 
by x = y = y(111,112) for sufficiently small positive jii. □ 

To tackle the case ^0 ^ 0, the second and the third equation are solved first. 

LEMMA 3.1. Let G: W1'1 x W1'1 x M3 -> E72"1 x W1'1 be defined as: 

G(x,yiLio, 1*1,1*2) 

* ~ exP { A(-MO!MI,M2) 
1O

S I7?!(2/5 W,/ii, /i2)|^(/io, /^i, ^2)| ^(27; f*0,l*l,l*2) 

^y - exp Ixp^^J log l^i(2/; A^o,Mi,M2)|^(-'^o,^i,^2)] ^(^;-/io,^i,M2)y 

ifrjiiy'iVoiViito) ^ 0 and 

G(x,y;fio,f*i,f*2) := (£,27) 

z/ ryi(y;/io,l*i,^2) = 0, ^ften ^ere is a function X(fjLo, 1*1,1*2) andY(fio,fii,fi2) with 
X(0,0,0) = y(0,0,0) = 0 ly/iic/z sofoes ^e equation 

G(X(fio, l*i, fi2),Y(iio, f*i, 1*2), 1*Q, l*i, 1*2) = 0 

/or sufficiently small |/xo|, |/^i| ^^^ 1/^21- 

Proo/. This is also a consequence of Hypothesis 4 and the implicit function theo- 
rem. □ 
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Moreover, the following is easily seen. 
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LEMMA 3.2. 
(1) X(fJLo,IJLufJL2) =Y(flo,flUll2) =0 if(HQ,Hi,H2) E M_ 
(2) $2L — d2L — QX- — dY_ _ dY_ _ dY_ _ _  dX_ 

dfio din 
dX 
dfi2 

This lemma implies the following. 

LEMMA 3.3. rii(Y(/jio,Hi,^2);/^o,i^i,^2) > 0 holds z/|/io| and|/ii| are sufficiently 
small and /zi satisfies 0(110,112) < /ii. 

In what follows, JIQ > 0 is assumed because the results for the other case auto- 
matically follow from the symmetry. (Hypothesis 1) 

In order to find a solution of the first equation of (3.1), the following function is 
considered: 

f/X/ioMi,/^) := < 

1^2) 

-77i(A:(/zo,^i,/i2),-W),Mi,/X2)A(^0j/il,/l2)} (^o>0) 

{^(y^o,^,^),^,^,^)^0^1'^ 

77i(-x:(w,,/ii,^2),-/io,Mi,w)A(-/io^1>A42)}        (^ = 0) 

Mo=0 

Then for fio > 0, H(//Q, /ii, ^2) = 0 if and only if the system (2.1) possesses a hetero- 
clinic orbit from O- to O+. 

The next proposition proves the second half of the theorem. 

PROPOSITION 3.3. There exists [12* < 0 such that the following holds. For each 
M2* < to < 0 and 0 < to < P(to) there exists to with c(to,to) ^ to satisfying 
H(to,to,to) = Q' 

Proof. First, there are constants Ci and C2 and a function Cs(to,to) > 0 suc^ 
that H(to,toito) is defined for 0 < to < Ci> \to\ < C2 and |//o| < Cz(toito) by 
the proof of the proposition 3.2 and the continuity of 771 {Y(to, to, to)'itoito 5 to) and 
^(XdiQitoito)) —toitoito)- Moreover, lemma 3.2 implies that there are constants 
C4 and C5 such that r)i(Y(to,toito)]to,to,to) > 0 for l/^ol < ^4, 1/^21 < C2 and 
c(toito) < to < Cs- Therefore there is a function CQ(to,to) such ^a^ ^ '1S defined 
for 0(110,112) < to < Ceitoito) if 0 < /io < ^(^2) and -(72 < to < 0 because 
r)i(X(to,to,to)', -to,to,to) > 0 for (to,to,to) £ M-. 

H(0,to,to) is explicitly expressed as: 

#(0,/il,//2) 

^(nO,^,^)^,^,^)^0^'^-1 

'^i,,, dY 

(3.2) 
A(0, //1, /i2)| -rpC^O, /xi, /i2), 0, /xi, to)g— (0, /^i, M2) 

- -^(X(Q,to>to),Qitoito)^— (0,^1,^2)+ 2-^(0,//1,^2)} 

+ 2^— (05Mi5 ^2)771 (y(0, to, to), 0,Mi> ^2) log ^(y (0,^i, ^2), 0,A4i, /X2) 
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Because -§^(0,^1^2) < 0, -H"(0,/xi,/X2) behaves like 112 - Pi log/xi. Therefore there 
is a constant CV and a function CgC/^) with C%{Q) = 0 such that H is positive if 
0 < //o < ^7, |^2| < C2 and Cg^) < Hi- 

On the other hand, H is negative if ^2 < 0, 0 < ^0 < p(/X2) and //1 = 0(^0,^2) 
as 7/1 (0; ^0,^1,^2) = 0 and 771 (0;-/ioj ^1,^2) > 0 there. 

Take //2* < 0 such that I//2I < C2, Csfa)' < C5 and p(/X2) < min{C4,C7} 
holds for /i2* < /i2 < 0. Then, for each ^2* < M2 < 0 and 0 < //o < ^(^2), 
r}i(y(110,111,112)',Ho,ViiHz) is positive for 0(^0,^2) < Mi < ^5, and ff(/io,/ii,^2) is 
defined and positive for Csifa) < Hi < C5. 

When (110,112) is fixed in this region and /xi is increased from 0(110,112) to C5, 
either of the following happens: 

(1) fl" is defined for all 0(110,112) < Hi < 0$ and H < 0 for fii = 0(^0,^2) and 
H > 0 for //1 = C5. 

(2) There is some C(HO,H2) < Hi* < Cs such that H is defined for C(HO,H2) < 
Hi < Hi* and H < 0 for Hi = C(HO,H2), but mi^iHo, Hi:H2)', -Ho,HiiH2) 
becomes zero at HI —HI* 

The conclusion immediately follows by taking into account that H(HU) > 0 for the 
second case. D 

Proof of theorem 1. The theorem for 0 < Ho is proven in proposition 3.3. The 
conclusion for jio < 0 follows from the symmetry (Hypothesis 1). Asymptotic of the 
bifurcation curve follows from (3.2). □ 

Proof of theorem 2. Recall the system of the traveling wave (2.6): 

f u — v 

\ v = cB^v - B'1 f(u; Hi,H2) 

This system is simply written as 

^ ) =F(u,v;c,ti1,/i2) 

Let DF(P,0;C,HI,H2) be the linearization of F around the equilibrium P. If 
A(c, Hi, H2) is an eigenvalue and V = (u, v) is a generalized eigenvector associated with 
A, then the symmetry implies that W = (u,-v) is an eigenvector of DF(P, 0; -c, Hi,H2) 
associated with the eigenvalue-A(c,/ii,/i2). Thus, if ^(c) = (ui(c),vi(c)),... ,Vn(c) 
= (un(c),vn(c)) are n eigenvectors associated with eigenvalues \i(c,Hi,H2),-- • , 
\n(c,Hi,H2), then the other eigenvectors are obtained as Wi(c) = (wi(-c), -vi(-c)), 
... ,Wn(c) = (un(-c),-t;n(-c)) and belong to the eigenvalues -\i(-c,Hi,H2),-• • , 
-Xn(-c, Hi,H2). Therefore, if (Vi,... , Vn, Wi,... , Wn) are the basis of the coordi- 
nates, the system (2.6) possesses the symmetry of Hypothesis 1, and is expressed as 
(2.2). Hypothesis 2 also holds if Hypothesis 9 holds. 

Then theorem 2 is obtained by applying theorem 1. 

4. Hopf bifurcations. In this section, theorem 3 shall be proven. In order to 
do this, a geometric interpretation of the eigenvalue problem is introduced, and then 
the proof of the theorem based on this interpretation is presented. 

4.1. Geometric interpretation of the eigenvalue problem. Let u(s) be 
a traveling wave of (2.3)—i.e.   (u(s),u'(s)) is a homoclinic/heteroclinic solution of 
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(2.6) to/between P or/and Q—and consider the eigenvalue problem associated with 
the linearization along the wave: 

(4.1) Lp = Bpss -cps + Df(u(s);/j,)p = Ap 

This system is also treated in the form of the first order system: 

{p = q 

q = cB^q + B-1 {A - Df{u(s)iMl, w)}p 

This system is simply rewritten as: 

z = T(u(s)]A]c,fjL)z 

Also consider the n-ih exterior power of (4.2): 

(4.3) i(n) =T^(u(s);A-c^)z^ 

where z^ G A C2n and r(n) := F <8> J <g> • ■ • <g> I + • • • + I <g> • • • ® I ® r|n . Notice 
that if zi(s),... ,Zn(s) are solutions of (4.2), then zi(s) A • • • A zn(s) is a solution of 
(4.3) 

Under Hypothesis 9, there exists a negative constant OQ such that for 5RA > CTQ 

the matrix r±(A) :=   lim   Ftuts); A) has n eigenvalues Af,... , A^ with negative real 
s—>-±oo 

part and n eigenvalues Aj^,... , Xfn with positive real part. Moreover, 5RA^ < Xf < 0 
for 2 < i < n and 0 < A^+1 < 5RAf for n + 2 < i < 2n holds under Hypothesis 4. 

Then r± (A) :=   lim   r(n^(5; A) has a simple eigenvalue A^1 =    ^   Af having the 
s^±00 i=n+l 

n 
largest real part among the eigenvalues and a simple eigenvalues A^- = ^2 Xf having 

i=l 

the smallest real part.   (See [1].)   Let Zi± be the eigenvector associated with the 

eigenvalue A^ and z^ be the eigenvector associated with the eigenvalue AJJ. 

As the problem (4.1) is treated on the function space BU(R, En), A is an eigen- 
value of L if and only if (4.1) has a bounded non-trivial solution. This is just to 
say that the system (4.2) has a non-trivial solution which converges to zero when 
s -t ±oo. This is reformulated in the following manner. 

Let W- := {z(s) \ a solution of (4.2) satisfying    lim   z(s) = 0} and W-(so) := 
s—>—oo 

{z(so)  | z(s)  e  W-}.    Similarly let W+  :=  {z(s) \ a solution of (4.2) satisfying 
lim   z(s)  = 0} and W+(so)  :=  {z(so)  I z(s)   G  W+}.    Then W±(so) is an n- 

s—y+oo 

dimensional subspace of C2n. The following is easily seen. 

LEMMA 4.1. A is an eigenvalue if and only ifW+(so) D W-(so) ^ {0}. 

This lemma is interpreted as follows. Let z[n\s; A) be a solution of (4.3) which 

converges to 0 as s ->• —oo along the eigenspace span{z[_ } of r_ ^ and let z^ (s; A) be 

a solution of (4.3) which converges to 0 as s -» -hoo along the eigenspace span{z2+} 

of 1+ . Zi    and z^    can be chosen such that they are analytic in A. 

LEMMA 4.2 ([1]). A is an eigenvalue if and only if z[n\s; A) A ^   (s; A) = 0 as 
71 71 2T7 

an element in C ^ (AC2n) A (AC2n) = A C2n. 
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LEMMA 4.3. A is not an eigenvalue if and only if z[n'(s) diverges along the 

eigenspace span{zi+} 0/I+   s -> +00. 

Proof      Let    zi(s),   ...,   Z2n(s)    be    the    solutions    of    (4.2)    for    which 
lim   |;^(s)|e_^A; ss~li exists and is non-zero for some non-negative integer /$. Then 

s—>-+oo 

Zi    is expanded as z^   (s) —     Yl     ^h,... 4n zh (s) A • • • AZin {s) and z^    is expressed 
(n,...,in) 

as Z2 (s) = C^i(5) A • • • A zn(5) for some non-zero constants C;l5... ^n and C. By this 

expansion, ^n\s) A ^2 (5) 7^ ^ is equvalent to Cn+i,...,2n 7^ 0 and this means that 

Zi (s) diverges along the eigenspace span{z^} since Xj is the eigenvalue of Ty 
with largest real part. D 

In this paper, this problem is treated in the framework of the Grafimann manifold. 
Let Gn(C2n) be the Grafimann manifold of n-dimensional subspaces in C2n.  Then 

this manifold can be seen as a submanifold of the projective space P(A C2n) of A C2n 

by the following Pliiker embedding: 

Gn(C2n) 3 span{vu ... ,vn} ^ [^ A • • • A vn] <E P(AC2n) 

As the system (4.3) is linear, it induces a system on Gn(C2n): 

(4.4) I - f (5;u(s), A; c,p)       ze Gn(C2n) C P(AC2n) 

Then lemma 4.3 is expressed as follows: 

LEMMA 4.4. A is not an eigenvalue if and only if 

[^A)]^^]        (5->+oo) 

znGn(C2n)cP(AC2n). 

In what follows, the eigenvalue problem along the standing pulse solution, exis- 
tence of which is proven in theorem 2, is treated from this point of view. 

4.2. Analysis of Poincare maps. The analysis makes use of the analysis of 
Poincare maps. For this purpose, first coordinates and sections are suitably chosen. 
Let (x,y) = (xi,x,yi,y) be a local coordinate system around P in which system (2.6) 
satisfies Hypothesis 1 and is expressed as (2.2). Let X^n = {xx — 5} and E01it = 
{yl = J} be local sections which are transversal to the heteroclinic orbits between 
P and Q which exist for (c,/xi) = (0,0). Similarly, let {x' ,y') = (x'^x1.y'^y') be a 
local coordinate system around Q, and let X^n = {x^ = 5} and E'^ = {y,

1 = 5} be 
local sections. As above (the discussion following Hypothesis 6), S is assumed to be 1 
through a scalar change of coordinates. 

Consider the coupled system of (2.6) and (4.2) 

(w = F(wic,ii) 

\ z = T(W]A',C,IJL)Z 

where w = (u,v). Let (x,y,z) = (a;i,£,2/i,2/,£(i),... ,2(2n)) and (x',y',z') = 
{x'^x'.y'^y^z'^y... ,z[2n)) be local coordinate around {P} x C2n and {Q} x C2n. 
By simple application of Kato [9] p.  99, these coordinates can be chosen such that 
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they are analytic in A and smooth in c and /i, and r(w;A,c,//) is expressed in the 
following form: 

r(w;A;c,/i) = 

/-A(A;c,/i)             0                     0 0 ^ 
0 -A(A;c,/x)            0 0 
0                    0 A(A;-c,/x) 0 

V        0                     0                    0 J4(A;-C,/X)/ 

if K; is near P and 

r(^;A;c,^) 

f-X'(A;c,fi)             0                      0 0 \ 
0 -^(Ajc,^)             0 0 
0                     0 \'(Ai-c,n) 0 

V        0                     0                     0 A'(Ai-c,ii)J 

if w is near Q. Moreover F and Z)P coincide for A = 0 i.e. 

T(w] 0; c, /i) = DF(w] c, /i) 

if K; is near P or Q. 

The system (4.5) induces a system on E2n x AC2n in the same manner as (4.2) 
induces (4.3): 

(4.6) 

(4.7) 

Ho 

n+ 

w  = F(W;C,[JL) 

z(n) =r(n)(w;A;c,//)^n) 

and this induces a system on M2n x Gn(C2n): 

jw = F(w',c,fj) 

\ z = f(w,z;A]c,Li) 

Now consider the Poincare maps: 

n_: E^ x Gn(C2n) ^ Ein x Gn(C2n) 

Xin x Gn(C2n) ^out x Gn(C2n) 

SontxGn(C2n)^E^xOn(C2n) 

E* (* = ±,0) is denoted as: 

Il^Wji; A;c,jL4) = (7r*(iy,c,^),7r*(iy,i; A;c,/i)) 

On each section, inhomogeneous coordinate systems on P(AC2n) are employed 
as coordinate systems on Gn(C2n). On S'out x Gn(C2n), let 

%   = (^l,n+2,...,2nJ ••• J^ii,...,*„>•••) 

be the inhomogeneous coordinate systems on P(A C2n) centered at ^(n+1) A • • • Azi2n), 
that is, the point 

2^ Ciu...,inZ{il)   A"'AZ{in) 
(n,.-.,*n) 
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is expressed as 

/pi pi 0l,n+2,...,2n ^ii,.••,«»* z' = pi ' *  *  •    '   pi 5 0n+l,...,2n 0n+l,...,2n 

Then {x'^x'^y',Z') is employed as the coordinate system on E^ x Gn(C2n). Simi- 
larly, (xi,x,y,Z) is employed as the coordinate system on E0^ x Gn(C2n). 

On Ein x Gn(C2n), let C = (Cn+i,...,2n, •. • ^Cii,...,^,---) be the inhomogeneous 

coordinate system on P(A C2n) centered at z^ A ^(n+2) A • • • A Z(2n)» that is, the point 

(ii,...,in) 

is expressed as 

Cn+l,...,2n Cii,..-,in C 
Ci,n+2,...,2n W,n .+2,... ,2n 

Then (#,2/i,y,C) is employed as the coordinate system on T,^ x Gn(C2n). 
In what follows, the map TT* (* = ±,0) is analysed. 

As the system (4.6) is linear around {P} x A C2n, TTQ is obtained by direct calcu- 
lation. 

LEMMA 4.5. 
A(A;c,n)-f A(A;-c,/i) 

^o(z,?/l,£,Cn+l,...,2n,-..) = (C+l,...,2n2/l ^^ »••• ' ^U,-.. ,in » • • • ) 

and for (ii,... , in) ^ (1, n + 2,... , 2n) the following estimate holds: 

where u is what appears in Hypothesis 4- 

As for #_, consider its Taylor expansion: 

7r_(a;,,2/,;Z,;A;0,//) = 7r_(0,y,(0,/i2);0;0;0,0,^2) 

+ (higher order terms) 

where (0,y'(//)) := TTZ^I,^^);O,/XI,AI2),T7I(2/(A0;0>MI^2),^)) 
for the function 

y(/i) defined in proposition 3.2 

LEMMA 4.6. 

(7r-)n+i,.. ,2n(0, /(O, /is); 0; 0; 0,0, //2) = 0 

and 

^7)"+1"",2w(0,y,(0,/i2);0;0; 0,0,^) = -1 
0'Zl,n+2,...,2n 
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where (7r_)n+ij... ^n stands for the (n + 1,... , 2n) component of 7r_. 

Proof The first equality is clear from the fact that ((^'(O,/^)) is on the hetero- 
clinic orbit from Q to P and A = 0 is an eigenvalue, and lemma 4.3. 

The second equality is proven as follows. 
As the system is symmetric when fii = 0 (Hypothesis 10), there exists a solu- 

tion (WQ(S),ZO(S)) of (4.5) for A = c = /xi = 0 such that wo(s) is a heteroclinic 
solution from Q to P, and if (uo(s),vo(s)) are the (u,v) coordinates of Wo(s) and 
(Po(s),qo{s)) are zo(s) in (p,q) coordinates then (uo(-s),Vo(-s),po(-s),qo(-s)) - 
{-uo(s),vo(s),-po(s),qQ(s)) holds and    lim   ^(s)^^®^8 exist and are non- 

zero.   See [13].   Also Hypothesis 6 implies that    lim   |ti;o(s)|e±A(0;0'M2)s exist and 

are non-zero. 
Chose so such that WQ{—SQ) G ^'out and W(SQ) G Sin and let 

*o(-So)= (^l)(-5o),...  ^(n)(-So),2:(n+i)(-5o),...  ^(2n)(-So)) 

then 

^o(5o) = (^(l)(5o),... ,£(n)(so),2(n+l)(5o),.-.  ,^(2„)(So)) 

= (^(n+l)(-5o),... ^(2n)(-5o),^i)(-«o),... ,^n)(-fio)) 

by the symmetry (Hypothesis 1 and 10), and Z'^A—SQ)  ^ 0,z|2^(-5o)  =  •••  = 

z',n)(—so) = 0 holds. Also, let 

^o(-5o) = (^(^(-so),... >/
(n)(-so),^/

(n+1)(-so),... ,w'(2n)(-so)) 

in (^n), •.. , 2(2n)) coordinates then; 

^o(5o) = (^(l)(5o),-.. >(n)(5o)>(n+l)(5o),.-. ,/^(2n)(5o)) 

= (-W/(„+l)(-ao),...  3-^,(2n)(-So),-^/(i)(-5o),... ,-^(-50)) 

in (^(i),... ,^(2n)) coordinates, and ^(n+1)(-so) 7^ O^^-SQ) = ••• = W'^-SQ) = 
0. 

Consider a system on Wn x   A  Cln: 

r4Rv f^ =*>;c,/i) 
1     j ^(n-i)    =r(w-1)(ii;;A;c,/i)^n-1) 

Hypothesis 7 implies that there exists a solution {WQ(S),ZQ ~ \s)) of (4.8) such 

that   lim   |zon~1)(5)|e~A(n"1) s and   lim   \zQ1\s)\e~x n 1 s exist and are non-zero, 
s-> —OO S—>-+CX) 

where A^-1) and A^71-1) are the sum of all eigenvalues of ^'(O; 0,0,^2) and A(0; 0,0,^2). 

Then ^"^(-so) - C^n+2) A • • • A^2n) and ^"^(so) -       £      ^1,...fin_1^1) A 
(H,...i„_l) 

• • • A Z^^) With Cn+2,... ,2n ^ 0. 

Let 4n)(*;C) == «;o(s)A4n~1)(s)+C2o(5)A4""1)(s); then («;o(s),4n)(*)) satisfies 
(4.6) and 

= (C+l +C£'Ul)C"z(n+l) A- • • A*(2n) +C^iC"2(l) A0{„+2) A- • • A«(2„) 
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since C[ = -'- = C'n= 0,C'n+1 f 0 and B\ ± 0,2?^ = ••• = £>;= 0, and 

» 4;(^o;C) 
2n 

= (I]-Ci+n^)+   IT   -C[-nZ{i))l\       2       C'<i.-.i-iz«i)A,',Az(*-i) 
i=l 2=n+l (n,...in-i) 

n 2n 

+ C(13-D<+nZ(')+    S    ^i-n^wJA        51        C'*i,...,i-i«(<i)A-"A«(i«-i) 
z=l i=n+l (u,...2n-i) 

^C^iCn+2,... ,2n^(n+l) A • • • A ^n) 

+ (-C^+1 + ^^+1)^+2,... ,2n^(l) A £(n+2) A • • • A ^(2n) 

+ ••• 

Thus 

and the second equality is obtained from this. □ 

LEMMA 4.7. 

fl(fr-)n+l,...,2n 
(0,y/(0,/X2);0;0;0,0,Ai2) = -l 

9//i 

Proo/. Let u;o(s;^i) be a solution of (2.6) with the initial condition 

wo (so(/ii),Mi) = (!>^(0; 05 Vuto),*!!(0; 0,//i,//2),0) 

where ^ and 771 are as in hypothesis 7, so(Mi) is chosen such that u>o(so(Mi)5MI) € 
Ein and WO(-SO(MI),MI) € S^. Then WO(SO(AH)>A*I) = (-A,-^,Ar/i,0). Here, 
7/1(0; 0,^1,^2) = Mi +C)(/i?). Let 2;

2
(5;MI), . •. ^n(5;Mi) € Tw^^^^^iQ) be 

linearly independent solutions of (4.5) with A = 0 satisfying z^n+^(so(fjbi),fjbi) = Sij 

(j = 2,... ,n) and ^(soC/xi), Mi) = 0, where z(
i
A,)(5o(Mr))Mi) is the zw component 

of ^(5O(MI),MI)- Also let i^(5;MI) = wo(^;Mi) A ^2
(S;MI) A • • • A £n(s;Mi). Then 

(wo(s,Mi): ^n\s] MI)) is a solution of (4.6), and 

i(n)(-5o(Mi),Mi) = C'z[n+1) A • • • A z[2n) 

i(n)(5o(Mi),Mi)    = -A^(i) AZ(n+2) A---A^n) 

+ (AMI + 0(M?)) ^(n+l) A • • • A Z(2n) + • • * 

The conclusion follows from this. D 

LEMMA 4.8. 

(4.9)      ^-w.....2n(0)/(0)/f2);0;o;o,o,,2) = -j^^^ 

and 

(4.10) ^dv"" '^(0'y,(0, ^ 0; 0; 0'0'M2) < 0 
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Proof. Let wi(s;0,(12) € WU(Q) be a solution of (2.6) with the initial condition 
wi(s]c,fi2) = (l,f(0;c,0,/X2),m(0;c,0,^2),0). Also let (wi(s;0,/i2),2(s; A,/^)) be a 
solution of (4.5) such that    lim   \z(s; A1fi2)\e~x s exists and is non-zero, i(s; A,/i2) 

s—>• — 00 

is analytic in A and smooth in /i2, and ^(s;0,/i2) = ^i(5;0,/i2)- Then 

^i(s;0,^2),g^(5;0,^2) - -^-(s;0,/x2) 

satisfies (4.5).   This is easily seen by subtracting the differentiation of (2.6) with 
respect to c from the differentiation of (4.5) with respect to A. Moreover, 

(4.11) f^M,/^) - ^rM^) e r^o^w^Q) 

because 

Let (wi(s;0,/i2),^'n~1'(s;-^)/x2)) be a solution of (4.8) for which 

lim   |,g<n-1>(s;A,/i2)|e-A<B"1)'' 
S—*■ — CO 

exists, is non-zero, and is analytic in A. Then {w\(s; 0, /12), -S^™'(«; A, ^2)) is a solution 

of (4.6) for i(")(s; A,M2) := ^(*; A,/^) A0("-1)(s; A,/^), and 

lim   |i(")(S;A,M2)|e-{A(""1)'+V}s 

S—> — OO 

exists. 
If £(so; A,/Z2) and £^n~1^(5o; A,/^) are expanded in (^(i),... ,£(2n)) coordinates: 

i^oiA,^)     =(-A(A),C2(A),...,Cn+1(A),...,C2n(A)) 

^"^(sojA,^) =      X^      cru,...,in-.i(A)^(t1) A--- Az^,,) 
(il,... ,2n-l) 

then 

£^(5o;A^2) 

= f-A(A)Cn+2f...,2n(A) 

2n \ 

(4.12) +   ^   C,i(A)Cfi,n+2,...,t-i,t+i,...,2n(A) U(i) Az(n+2) A--- A2;(2n) 

i=n+2 / 
/    2n \ 

+  I     zli   CiWCn+i,... 4-14+1,... ,2n(A) j 2(n+l) A • • • A 2f(2n) 

+ ... 

Here, (4.11) and 
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mean 

and 

means 

dA 
M,M2) - ^-(sjO,^)) A^-"(s;O,^) = 0 

n+l,...,2n 

^O;0,//2)G TWl{S0.0^)w
u(Q)n ^l(so;o,M2)W

5(P) 

ai(n-i) \ 
i(s;0,^2) A (gjO,^) = 0 

OA /n+l,...,2n 

where ( )n+i,...,2n stands for (^(n+i) A • • • A z^n)) component. Thus 

dz^ dz dft71-1) 
■(so;0,/i2) = ^j-(so;0,//2) A^(n-1)(5o;0,)u2)-fi(5o;0,^2) A———(so;0,/i2) 5A 

Therefore 

9(7r_)n+iv..52n 

^A 
9/7 

^A 

-^-(0, 0, lJ,2)Z(n+l) A ' • • A Z(2n) + ' ' ' 

dA 

dc 

A=0 

Si=n+1 Ci(A)Cn+l,... ^i^+i^.. ,2n(A) A    
dA V-A(A)Cn+21...,2„(A) + E-:„+2^(A)Ci>„+2,... .i-Li-n,...,2„(A)/ 

1 ^-(0,0, M,) 

A=0 

A(0; 0,0,^2) 9c 

since C;(0) = 0 for i = n + 1,... , 2n. (4.9) follows from this and 

77i(0;c,/ii,/i2) = Mi +C/X2 + c3 +O(|AXI| + |c2/i2| + |c4|) 

As for (4.10), let (wi(s;0,//2),4n)(5; ^,^2)) be a solution of (4.6) for which 

lim   l^taA,^)^-^' 
s—>+oo 

exists and is non-zero, and is analytic in A, then 

4n)(so; A,/Z2) = C^A)^!) A • • • Az{n) 

Define an Evans' function -D(A) by: 

^(A):=iW(5o;A,//2)A4n)(5o;A,//2) 

Then D(A) = 0 if and only if A is an eigenvalue. (See [1].) 
By (4.12), 

Z?(A)=£(A)(    £    C7<(A)Cn+lf...>i-ll«+l,...f2n(A)) 
\z=n+l / 
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and 

dA A=0 -■W'ffi 
2n 

(    2^    Ci(A)Cn+ii...ii-ili+ii...,2n(A) 
A=0   \i=n+i > 

= ^(0)^(0,0,^) 

Thus ^IA=O 
= 0 if and on^ if ^(0'0' to) = 0. 

dA IA=0 
Tf  dD\ — 0   then 

d2D 

dA2 
A=0 ■^'^ 

2n 

(    X/   ^(^^n+l,... ,i-l,i+l,...,2n(A) 
A=0   \i=n+i > 

On the other hand, hypothesis 11 implies that there are two zeros of D(A) for 
5RA > cri counting multiplicity. Moreover, if z^ is chosen such that    lim   JD(A) > 0, 

A-^+oo 
then ^IA=O > 0 if and onlyif ^ > 0' ^IA=O <0 if arid onlyif it < 0'aiid 

> 0 when ^ = 0. Thus, this choice of 4    corresponds to (7(0) > 0 and d*D 
dA2 

A=0 

dA2 

2n 

^    Cr
i(A)Cn+l,...,i-lfi+lf...>2n(A)      >0 

A=0   \t=n+i / 

Therefore at fi2 — 0, 

^2 (*-)«+!,... ,2^ 
^A2 (O,/^,^);^^)^; 0,0,0) 

d2 

A(0;0,0,/X2) ^A2 

2n 

A=0  \i-n+l 
/ v   ^(A)^^i,... ,2-l,z+l,... ,2n(A) 

<0 

LEMMA 4.9. 

7r+ (w, v, z; c, in, fr) = 7r_ (-u, -v, z; c, -/ii, ^2) 

Proof. Under Hypothesis 10, the system 4.6 is invariant under the transformation 
(u,v,ni) -» (-w, -v, -/ii) z.e. 

fF(^;c,/xi,/X2)        = -F(-w] 0,-11x^2) 

[T(w] A; c, /ii, ^2)    = r(-it;; A; c, -^1, ^2) 

Thus if ii;o(s-;c,/zi,/Z2) is the heteroclinic solution of 

it; = F(w]c,tii,fJL2) 

from Q to P, then — w(s;c, ^1^2) is the heteroclinic solution of 

it; = F(w]c,-fjLi,fjb2) 

from P to Q, and the Poincare map has the following relation: 

(7r+(u, v, c, /ii, /i2), 7r+(u, v, z; c, Mi, ^2)) 

= (7r_(-u, -v; c, -/ii, ^2), *-(-w, -v, 5; c, -/ii, /i2)) 

This includes the lemma. D 
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4.3. Proof of theorem 3. Theorem 3 is proven by tracing the image of the 
unstable manifold of Q under the Poincare maps. 

Let w(s; (JL) be the homoclinic solution of (2.6) to Q with w(si; /i) £ ^'out^ W(S2]/J) 

E T.in and ^(53;/i) G Sou*- Consider the image of (w(si]/jb), [^(n+i) A- • -A^n)]) under 
the Poincare maps n_, IIo and 11+. 

First, by lemmas 4.6, 4.7,4.8 and the fact that §^(0^2) = 0 

(*-)n+i,...,2n(0Jy
,(M);0;A;0,^) 

= (*-)n+i,... ,2n (0. /(O, ^2); 0; 0; 0,0, W) 
9(^-)n+l,...,2nA        g2(^-)n+l,..,2nA2 

9(7r_)n+1        2n ^(^-)n+l,...,2n 
+    a(^y)    (0'y ^'^ - y ^'^ + —^ Ml 

+ 0(^,A3) 

Also Hypothesis 7 implies that all other (TT-^      in are also bounded for small /J,I 

and A. 

Second, by lemma 4.5 

(*o)i,n+2,... ,2n (^(J/^); 0' ^1» ^2)^1 (2/(M); 0, //I, /Z2), 2/0/), (*-)n+l,... ,2n > ' ' • ) 
(oA(A;0,A*) \ 
^    \—1 „-    M0;0,/*) 7 \ 
V7r-/n+l,...,2nr'l '* * ' '^U.-^nJ * '•   I 

where 

l^,...,inl < (*-);il,..,2n-(*-)i1,...,iB ^l^0"'' 

= (*0)i,Il+2, .. ,2n ■ (^-)u,... ,<„ • Vl'1 

for (ii,... ,i„) ^ (n + 1,... ,2n). 

Third, by lemmas 4.6, 4.7, 4.8 and 4.9, and the facts that y'(0, /xi) = ^(0; 0,0, m), 
$(0,112) = 0 and »ji(0;0,/ii,/i2) = Mi + O(Mi) 
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(^+)n+i)...,2n('7i(Jif(At);0)/ii>iu2),y(M)^(j/(A«);0.Ati»^2);2';A;0,/ii)/f2) 

= (*-)„+i,...,2n(7?i(y(/i);0'//i'//2),y(M),^(j/(/i);0,/xi,/Lt2);Z;A;0,-/Lti,yL*2) 

= (*-)M-I,... ,2n (0' 0> ^(0;0'0' W); 0; 0; 0,0,/^ 

fl(*-)n+l,...,2nA   .   g2(^-)n+l,...,2nA2 

5A 9A2 

O (7r_)n I i       2n 
+       d(x' y')'    fa(y^);0,/ii,Ai2),g(A«),g(y(A*);0,A«i,/*2)-g(0;0,0,Ai2)) 

g(7r-)n+l,...,2n g(7r-)n+l,...,2»^      n,   2   A3   72x 

i „   A   ,   d2^-)n+l,...,2n.2 
 ^A + Kn. A A(0;0,0>Aii)^ dA2 

,   g(7r-)»+l,...,2n 
+  ^ ^ 

+ ■/*! — ^l,n+2,...,2n 

+ 0(Zll,...iJn,p?,A3,) 

Therefore 

(7r+ o 7r0 o ^_)n+li... )2n (0, y'(M); 0; A; 0, M) 

1 „   A    ,   d2(fr-)n+l,...,2nA2   ,   g(^-)n+l,...,2n , 
^2A+  ^T^ A   +  — m+fr 

(4.13) A(0; 0,0,^1)^ dA2 dx^ 

,/ X(0;0,M) 

 : Zhwi + OOF™, A3) 

Let JB(A,/Z) be defined by the right hand side of (4.13). Then, by lemma 4.3, A 
is an eigenvalue if E(A, //) = 0. Here, as A = 0 is an eigenvalue and the eigenfunction 
is given by the 5 derivative of the wave, i£(0, /i) = 0 and thus 

 tol ^ " -2 

The existence of pure imaginary eigenvalues is proven by a scaling argument. Let 
M2 = \/Mi/-*2 and A = ^/JIiA, and consider the following: 

S(A,/ii,/i2) := —E(A,n) 
Mi 

rfeA+a2(J4"t1--2wA2-l A(0;0,0,MI) 9A2 

2
A(0;0,M)-

2 

 T Ml   a^) : + Oifi"^'*-", VMTA
3
) 

- Aloiok77^A + a^1 2"A2 " 1 

o MAiO,^)      O 
,/ A(0;0,/x) ~2 
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E(A, n) can be continuously extended to /xi = 0. The equation: 

lim E(A,/ii,/i2) = -wn,n n     S^A + TTAAA
2
 - 1 j _ -      —=-—- 

Miio ACO.O.CAt!) _X(_l_T//2A + 7rAAA2-l 

= 0 

has solutions 

A = 0>#-    and    fa±>/^ + 8*AAA» 

where TTAA stands for   n    ''"' n.   The last two solutions are pure imaginary 

when fa = 0; therefore, the equation iS(A,^i,/x2) = 0 has pure imaginary solutions 

for small /xi > 0, which are near ±A/T^-, because E is continuous for //i > 0 and 

analytic in A near /A2  Y^        —. This proves the theorem. 

5. Discussion. First, notice that the bifurcation curve fii = ^(0,^2) for c = 0 
in theorem 2 is that of a pitchfork bifurcation of the standing pulse. This is easily 
seen from the following two facts. The first is that 

= 771 (F(c, fix,/X2), c,/zi,^2)A(c,/il,'l2) - 77i CX"(c,/xi, ^2), -c,//1,M2)A(~c'Ml,//2) 

measures the separation of the stable and unstable manifolds Ws((5) and T;Fn(Q) of 
Q. The second is that H(0,111,112) = 0 and ^fl"(0, /X1/X2) = -H"(0,//iM2) = 0 mean 
that that Evans' function J5(A) for the pulse has a double zero at the origin. 

Next, as is mentioned in the introduction, the theorems of this paper apply to 
the following e-r system treated in [13] and [8]: 

(       v f CTlfc* = ^Ua-a; + f(u, V] <9, 7) 

\     vt=vxx+g(u,v',0,j) 

[13] proves that the hypotheses in this paper are satisfied for suitably chosen / and 
g, but it only proves the existence of pulses bifurcating from transversal intersection 
of Mi and M2. 

[8] proves the existence of pitchfork and Hopf bifurcations for piece-wise linear / 
and g by the singular perturbation technique. Although their results exclude a small 
neighborhood around the degenerate point in the parameter space because of lack of 
transversality, the asymptotic of the bifurcation curve of pitchfork bifurcation for the 
singular limit system agree with that of theorem 1 of this paper. 

The order of the bifurcations, that is, whether Hopf bifurcation or pitchfork bi- 
furcation occurs first when ^ is decreased, is not determined by the analysis of this 
paper. 
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