
METHODS AND APPLICATIONS OF ANALYSIS. © 2000 International Press
Vol. 7, No. 3, pp. 577-590, September 2000 011

ANALYSIS OF THE SHAKE-SOR ALGORITHM FOR
CONSTRAINED MOLECULAR DYNAMICS SIMULATIONS*

DEXUAN XIBt, L. RIDGWAY SCOTT*, AND TAMAR SCHLICK§

Abstract. Molecular dynamics integration with bonds constrained to equilibrium values is a
common approach used to increase the feasible timestep and hence reduce the overall simulation time.
Here we analyze the widely used numerical iterative scheme for constrained molecular dynamics
simulations, SHAKE, in a general algorithmic framework, from which SHAKE'S relationship to
nonlinear solvers can be established. Using the nonlinear SOR-Newton iterative method, we define an
accelerated variant of SHAKE, called SHAKE-SOR, and prove a fundamental relationship between
SHAKE-SOR and SOR-Newton. Based on this relationship, the convergence of SHAKE-SOR is
proved in the framework of nonlinear SOR theory. Numerical results show that SHAKE-SOR can
significantly improve the performance of standard SHAKE by reducing the number of iterations per
timestep through an optimal parameter choice.

1. Introduction. Molecular dynamics (MD) simulations constitute an impor-
tant tool for exploring molecular motions of chemical and biological systems [1, 16].
In the underlying models, macromolecules are represented as chains of atoms linked
by covalent bonds. Such bonds vibrate at a very high frequency, so that a typical
timestep for the MD simulation is very small - around one femtosecond (10~15 sec-
onds) - thereby limiting severely the total simulation time. Many effective techniques
have been proposed to increase the timestep (see recent reviews in [16, 17, 18]). One
of the simplest techniques is to freeze the high-frequency vibrational motions by im-
posing algebraic constraints that fix the bond lengths. The algebraic constraints have
little influence on the underlying dynamics in most cases [7] and can increase the
timestep by a factor of two or three, with minimal added cost per step. The cost
involved is solution of an auxiliary set of nonlinear equations at each timestep.

Ryckaert et al. [13] described a scheme termed SHAKE for MD simulations sub-
ject to a set of bond-constraint equations based on the Verlet discretization [21]. Since
then, SHAKE has become a widely used algorithm in biomolecular simulations. To
improve the stability of the Verlet discretization, SHAKE has been adapted to the ve-
locity Verlet scheme, leading to the so called RATTLE algorithm [2]. SHAKE has also
been extended to handle general constraints (such as of other internal variables) [14].
An accelerated version of SHAKE based on the nonlinear successive over relaxation
(SOR) method [12] has been proposed in [3, 22].

Different approaches to analyze the convergence of SHAKE can be found in
[3, 15, 22]. A recent attractive approach for analyzing SHAKE within the framework
of nonlinear SOR theory [12] was described in [3]. That work also led to a practical
improvement of SHAKE. However, the theoretical relationship between SHAKE and
the Gauss-Seidel-Newton (GSN) method [12] was incomplete due to over simplifica-
tions in eqns. (23) through (26) of [3] (see details in footnote [24] here). Here we use a
slightly different approach to couch the SHAKE process in a mathematical nonlinear

* Received November 5, 1999.
tDepartment of Mathematics, Graduate Program in Scientific Computing, University of Southern

Mississippi, Hattiesburg, MS 39406-5054, USA (Dexuan.Xie@usm.edu).
^Departments of Computer Sciences and Mathematics, Computation Institute, University of

Chicago, Chicago, IL 60637, USA (ridg@uchicago.edu).
§ Departments of Chemistry, Mathematics, and Computer Science, Courant Institute of Math-

ematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA (schlick@
nyu.edu).

577

578 D. XIE, L. R. SCOTT, AND T. SCHLICK

iteration framework, completing the proof in [3] by adding the conditions under which
the equivalence of a SHAKE variant and nonlinear SOR holds.

We first formulate the SHAKE algorithm according to standard routines used in
the packages CHARMM [4, 9] and GROMOS [6]; these are two widely-used molecular
mechanics and dynamics programs. We then show that the SHAKE iterates {r(m)}
generated by the SHAKE algorithm can be formulated in the general form

(1.1) r^1) = r^ + SA, m = 0,1,2,...,

where r(m) approximates the collective position vector of the molecular system at
each dynamic step, B is a matrix independent of r(m), and the vector A (a function of
r(™)) is defined by using GSN as an approximate solution of the nonlinear constrained
equations of motion. The detailed definitions of B and A will be given in the next
section.

Expression (1.1) invites definitions of variants that can improve the performance
of SHAKE (in terms of the convergence at each dynamic step). In fact, if the vector
A in (1.1) is defined by a more effective nonlinear iterative method than GSN, the
resulting scheme can perform better than SHAKE of [13]. In this paper, we define A
by the SOR-Newton method [12], leading to the same accelerated variant of SHAKE
proposed in [3, 22]. For convenience, we refer to this variant as SHAKE-SOR.

With the general framework of (1.1), we also easily overcome the difficulty that
exists in the standard SHAKE algorithm. Namely, SHAKE [13] is thought to fail
if the inner product between a reference bond vector and a corresponding updated
bond vector is zero. In [4, 6], this case is interpreted as too large a deviation in a
SHAKE iteration. This simple treatment to this case seriously affects the robustness
of SHAKE because this situation happens occasionally during the SHAKE execution.
In this paper, we show that the setting of A in SHAKE is essentially an approximate
solution of the nonlinear constrained equations of motion; thus, it is natural to select
another definition for A in the case of the above zero inner product. We propose a
modification of A that ensures the convergence of SHAKE-SOR.

Noting that SHAKE-SOR includes SHAKE as a special case, we analyze SHAKE-
SOR in this paper. We prove the basic relationship between SHAKE-SOR and SOR-
Newton, from which the convergence of SHAKE-SOR follows under additional con-
ditions. We derive these conditions, with which the convergence of SHAKE-SOR is
equivalent to that of SOR-Newton. These conditions correct the work in [3].

Finally, numerical results using CHARMM [4, 9] are presented showing that
SHAKE-SOR can significantly improve the performance of SHAKE. Examples are
shown for three biomolecules: the protein BPTI (bovine pancreatic trypsin inhibitor),
the protein lysozyme, and a DNA dodecamer (i.e., 12 base pairs). These systems have
582, 2050, and 11510 bond constraints, respectively. Other numerical results that
demonstrate the good performance of SHAKE-SOR can also be found in [3, 22].

The remainder of the paper is organized as follows. Section 2 describes the con-
strained Verlet discretization, and Section 3 presents a practical SHAKE algorithm.
Section 4 formulates the SHAKE iterates in the form of (1.1), and Section 5 defines
SHAKE-SOR. Section 6 presents and proves the fundamental relationship between
SHAKE-SOR and SOR-Newton. Section 7 presents numerical results for SHAKE-
SOR, with conclusions following in Section 8. For completeness, the description of
the SOR-Newton method for solving the constrained equations of motion is given in
the Appendix.

ANALYSIS OF THE SHAKE-SOR ALGORITHM 579

2. The constrained Verlet method. We consider a molecular system of iV
atoms interacting via a force field F(r(t)), where r(t) denotes the collective position
vector of the molecular system at time t, i.e., r(£) = (ri(£),r2(£),... ,r/v(£))T with
r^ (t) being the position vector of atom i in the real space i?3. We often simply write
r(t) and rj(£) as r and r^ in this paper. The superscript T denotes a vector or matrix
transpose.

In constrained MD, a molecular system satisfies the Newtonian equation of motion

(2.1) Mr = F(r)

subject to the algebraic constraint condition

(2.2) g(r) = 0.

Here r is the second derivative of r with respect to time £, g(r) is a vector function of r,
M is the diagonal mass matrix defined by M = diag(mi, mi, mi, m2, m2, m2,..., m^v,
m^jmiv), and rrii is the mass of atom i. To define g, we consider a set of / specified
nonlinear equations for the / bond constraints1. That is, the vector function g(r) =
(<7I,02J • • • ,gi)T has component k defined as

(2.3) gk(r) = \\rik-rjkf-dl fc = 1,2,...,/, ■

where k labels the rigid bond connecting atom 2& and atom jk of length dk (see Fig. 1),
and the norm || • || is the standard Euclidean distance norm in R3.

The system above can be rewritten as unconstrained by introducing the Lagrange
multiplier vector A = (Ai, A2,..., A/)T. The constraint condition (2.2) can then be
regarded as an additional force expressed as — J(r)TA, where J(r) is the Jacobian
matrix (i.e., the first derivative) of the vector g(r). Thus, system (2.1) together with
(2.2) is equivalent to:

(2.4) Mr = P(r) - J(r)TA

provided that A is appropriately chosen so that the solution r of (2.4) satisfies the
constraint condition (2.2). In the remainder of this paper, we simply denote the
Jacobian matrix J(r) as J.

We approximate (2.4) by the following second-order finite-difference equation:

(2.5) r(t + A*) = 2r(t) - r(t - At) + A^M^F^)) - A*2AT1 J(r(t))TX,

where Ait is a timestep, and A is a solution of the following nonlinear equation of A:

(2.6) g(T-Al?M-1JT\) = 0,

where

(2.7) f = 2r(t) - r(t - At) + A^M^F^)).

Together, Eqns. (2.5) and (2.6) are commonly referred to as the constrained Verlet
method [10, 21]. Setting A = 0 in (2.5) yields the unconstrained Verlet scheme.

To simplify the notation above, we set A = —2At2X and B = ^M-1 JT. Thus,
eq. (2.6) becomes

(2.8) g(r + J3A) - 0.

1The algorithm can be generalized to other internal constraints [14].

580 D. XIE, L. R. SCOTT, AND T. SCHLICK

3. The SHAKE algorithm. We describe a practical SHAKE algorithm as
used by both the CHARMM [4, 9] and GROMOS [6] programs. We then present an
important modification to SHAKE.

Let {r(m)} be a sequence of SHAKE iterates that approximate the constrained
Verlet update r(t + At) and set r — r(t). The initial guess r^0^ is obtained from
the unconstrained Verlet method, namely, r(0) = f(£), where r(£) is given in (2.7).
In the computer implementation, the update r(m+1) shares the array for r(m) for
m = 0,1,2,...; hence, only one array f is required for the sequence {r^m^}. Suppose
that f holds the m-th SHAKE iterate r(m), i.e., f <- r(m\ To define the SHAKE
iterate r^m+l\ the array f is updated by considering the constraints successively.
That is, for k = 1,2,..., Z, the k-ih component A& of the vector A is computed via

(3.i) A, £dM!
2(1/™^+!/™^)^)^)'

where the bond vectors r^) and f ^ are computed by r^) — rik — Yjk and f ^ =
f ik — fjk, and the position vectors f ^ and fjk of the fc-th bond are then updated via

(3.2) fik <r- fik + —-r(k)Ak and fjk <- fjk - —r{k)Ak.
rnik

rrijk

This completes one iteration of SHAKE, and the updated f holds the SHAKE iterate
r(m+l)>

A common convergence (or termination) rule for SHAKE iteration is below

(3.3). ll<Kr(ro))IU = max\9k(r^)\<e,
l<k<l

where e is a small number such as e = 10~10, the default value in CHARMM [4, 9].
Clearly, if the inner product r^T f^ = 0 (or small enough in practice), the

value of Ak defined by formula (3.1) is undefined, leading to the failure of SHAKE.
This case happens occasionally in the implementation of SHAKE. To overcome this
difficulty, we first prove the following theorem.

THEOREM 3.1. The value of Ak defined by formula (3.1) is the first iterate of the
Newton iteration method for solving the k-th constraint equation

(3.4) \Kew-r]r\\2-di=0

with an initial guess of zero. Here f^w and f^w denote the updated f;fc and fjk in
(3.2), respectively. That is, f£cw = vik + ^-v{k)Ak and f%w = f^ - ^-r{k)Ak.

Proof. The k-th constraint equation (3.4) can be written as a quadratic equation
of Ak:

(3.5) aA^ + bAk + c = 0,

where a = (l/mik + l/mjk)
2 \\r{k)\\

2, b = 2(1/™^ + !/™^^^), and c = ||f(fc)||
2-

dfc. For an initial guess p(0\ the first iterate p^1) of the Newton iteration method for
solving (3.5) is defined by:

(3 6) p(i)-p(0)_^0)2 + M0> + c

ANALYSIS OF THE SHAKE-SOR ALGORITHM 581

If r(fc)Tf(fc) 7^ 0 (i.e., b / 0), we can simply select p^ = 0, leading to pW = —c/6,
which coincides with Ak as defined by (3.1). This completes the proof of Theorem 1.

According to Theorem 3.1, we now can easily overcome the difficulty that exists
in SHAKE. That is, if r^T f^ = 0, we can define A^ as the first Newton iterate
p^ from (3.6) with a small nonzero value of p^ (such as p^ = 0.001). Since
T(k)T'r(fc) = 0, 6 = 0, and the formula of A^ defined by (3.6) can be simplified as
follows:

(17\ A - 1(0) , dl-\\f(k)\\2

[' k~2P +2(l/mik + l/mjknr{k)\\ipW'

The complete SHAKE algorithm can now be described in the following algorithm.
ALGORITHM 1 (An improved SHAKE algorithm). Let the k-th bond constraint

connect atoms z& and jk for h — 1,2,..., /.
1. Set initial guess f = 2r(*) - v{t - At) + A^2M"1F(r(i)) and r = r(t)
2. Setm = l
3. One SHAKE iteration: For A; = 1,2,...,Z, compute

(a) f{k) = fi^ - fjk and r{k) = r^ - rjk

(b) If |r(A.)Tr(A.)| > e (e.g., e = lO"10^, set Ak by (3.1); else, compute Ak

via (3.7)
(c) fik <r- fik + ^-r{k)Ak and fjk <- fjk - ^-r{k)Ak

4. Convergence test: If the termination rule (3.3) holds, i.e., all updated bond
vectors f^) satisfy

\\\f(k)\\
2-dl\<e, k = l,2,...,l,

stop and define the m-th SHAKE iterate as: r(m) = f; else, go to the next
SHAKE iteration by setting m 4- m + 1 and returning to Step 3.

As mentioned above, we can use one scalar variable to implement the calculation
of Ak for k = 1,2,..., / to save memory space for array A.

Our modification to A^ given by (3.7) ensures convergence; see next section.

4. The mathematical form of SHAKE iteration. The following theorem
assigns to SHAKE a common mathematical iterative expression, and shows that such
SHAKE iterates are essentially defined by using GSN.

THEOREM 4.1 (SHAKE iterative expression). The SHAKE iterate sequence
{r(™)} generated from Algorithm 1 is equivalent to the iterative process

(4.1) r(m+1) - r(m) +]-M-1 JTA, m = 0,1,2,...,

where M is the diagonal mass matrix, J is the Jacobian matrix of the constraint vector
function g defined in (2.3), and A = (Ai, A2,..., Aj)T with Ak being defined by (3.1)
or (3.7). Moreover, the vector A is the first GSN iterate for solving the constraint
equation of A

(4.2) 9(^m\+^M'1JTA) = 0

with the initial guess A0 = (Aj, A2,..., A^)T defined by A^ = 0 if \r(k)T r(k)\ > e, and
Al = p0 (such as p0 = 0.001J otherwise.

582 D. XIE, L. R. SCOTT, AND T. SCHLICK

Proof. For simplicity, we assume that the inner product r^T
Y^ ^ 0. Hence,

from Algorithm 1 it follows that all A^ for k — 1,2,..., / are defined by formula (3.1).
For gk given in (2.3), the entry dgk/dr^ of the Jacobian matrix J is defined as:

u„ d9k / 29
r(*) **" = <*>

(4-3) ^r = < -2r(fc) for ii = jk,
M [0 otherwise,

where k = 1,2,..., /, and fi = 1,2,..., N (N = number of atoms). Hence, the SHAKE
iterate sequence {r(m)} generated from Algorithm 1 can be expressed as

(4.4) r(-+i)=r(™> + _l_^!jA&) 4 = 1,2,3,...,^

where m = 0,1,2,..., and r^ ^ is an initial guess. Writing the above expressions in a
matrix form gives (4.1).

To obtain the expression of A in terms of r^ , we introduce vector bjL =

h V^Td^T ~ l£~d7f~)' By using (4.3), the vector b^ can be written as

(4.5) bW =
i-r(M) if /i G efc

0 otherwise,

where 0^,^ denotes the set of bond indices besides k which atom i is involved in; see
FIG. 4.1 for an illustration. Hence, the vector A*; defined in (3.1) can be expressed by

(4.6) A kJ
k ''^t^ L ^1,2,...,/,

where r^-r^-r^.

We next show that the vector A defined in (4.6) is the first GSN iterate for solving
the constraint equation with an initial guess of zero.

With (4.4) and notation b^ , we can write r^1 as

i

'w^'w + E^V

where k — 1,2,...,/, so that the constraint equation (4.2) becomes

i

(4.7) l|rJS) + 53bli*)AJ2-d*=0, fc = 1,2,...,/.

Let /jfc(A) denote the left hand side of the above equation. Then g^ ^ = 2(r^x +

SM=i ^ AM)Tb^ \ Hence, for an initial guess of zero, the first GSN iterate A^1)

ANALYSIS OF THE SHAKE-SOR ALGORITHM 583

Bond 3 • (len:

FIG. 4.1. Illustration of the index set Ok,i: Qk,ik = {3,5} and Qk,jk = {2,4,7}

for solving the nonlinear equations /^(A) = 0 for k = 1,2,...,/ has the following
expression:

(i) By comparing (4.6) to (4.8), we see that Ak = Ajj,; for fc = 1,2,..., l. This completes
the proof of Theorem 2.

5. The SHAKE-SOR method. Theorem 2 implies that the vector A of the
SHAKE iterative expression (4.1) can also be computed by using a more effective
nonlinear iterative method. Since SOR-NEWTON is an accelerated variant of GSN,
it is natural to define the vector A of SHAKE by using SOR-NEWTON. This variant
of SHAKE is referred to as the SHAKE-SOR method.

The first iterate of SOR-Newton for solving the nonlinear constraint equations
(4.7) is defined by

(^ WD A(o) Kg + SabWA^ + EU^AiP^I'-cg

for k = 1,2,... ,Z. Hence, for the initial guess A^0) = 0, the value of A& defined by
(5.1) has the following formula:

r; (k) + y^-1b(*)A(1)ll2-d2

2(r^) + E:iib^)A^rb^'
(5.2) Ak = -u

Incorporating a relaxation parameter of unity (i.e., to = 1) into (5.2) yields the formula
(4.6) for SHAKE. Hence, the standard SHAKE method can be regarded as a special
case of SHAKE-SOR. Its convergence also follows from that of SOR-Newton by the
arguments outlined in the next section.

6. The relationship between SHAKE-SOR and SOR-Newton. Another
approach to update the position vector r(t + At) defined in (2.5) is to directly solve
the constraint equation (2.8) by SOR-Newton. The sequence {A^m)} of SOR-Newton
iterates for solving (2.8) is defined by

(6 1) A(m+1) = A(m) llrW + 2^=i p^ yV + Z^=fc PM
yV 11 ak

2(fW + Ej=i bWA^+1) + ZU b^A^Fb (*)

584 D. XIE, L. R. SCOTT, AND T. SCHLICK

for k = 1,2,..., /, and m = 0,1,2, — Here f(fc) = rik - Tjk, and f is defined in (2.7).
See Appendix for details of the classic SOR-Newton iteration. The termination rule
of SOR-Newton is that ||p(f + \M-1JT\^)\\(Xi < e.

Although SHAKE-SOR is a different algorithm from the SOR-Newton iteration
defined in (6.1), we show here that their convergence behavior is equivalent under
certain conditions.

THEOREM 6.1 (Relationship of SHAKE-SOR to SOR-Newton). Let {A(m)} be a
sequence of SOR-Newton iterates defined in (6A), and {r(m)} a sequence of SHAKE-
SOR iterates defined by (4.1) and (5.2). If K^ = 0, then SHAKE-SOR has the
following relationship to SOR-Newton:

(6.2) r(m) = r^ + ^M"1 JTA(m\ m = 0,1,2,....

Proof. Clearly, the vector A defined in (5.2) depends on m. For clarity, we denote
it as p(m). We first show, by induction, that

(6.3) p(m) = A(m) - A^"1), m = 1,2,....

By the definition of p^, it immediately follows that (6.3) holds for m = 1 because
pi1) = AW, AW = 0, and r0 = f. Suppose that (6.3) holds for m = j. We show
that (6.3) holds for m = j + 1 by induction. The induction assumption follows that
(6.3) holds for m < j, so that we can write the SHAKE-SOR expression (4.1) as (6.2)
with m = j. Using this p^ expression, we write the term in the numerator of the
SOR-Newton eq. (6.1) inside the norm function as follows:

"?*) + E W+1) + E W> = r|fc) + E bW(AW+i) - AW).
/J,=1 fj,=k 11=1

Consequently, the SOR-Newton expression (6.1) is written as

* o+i) _ A(i) _ _, iir(fc)^M=1PM I^M -^ ;II -»ft

* " ~ 2(rJt) + ES bift)(Ai/+1) - A«))Xbf •

Substituting p^+1^ for the above quantity ku - A^, the same expression as (5.2)
follows. This proves that p^+1) = A^1) -A^. Therefore, (6.3) is true for all integers
m.

We can now prove the relationship (6.2) by induction. According to the definition
of SHAKE-SOR, (6.2) holds for m = 1. Suppose that (6.2) holds for m - 1. Then,
with (6.3),

r(m)=r(m-l) + IM-ljTp(m)

= r(n»-i) + IM"1 JT(A(m) - A^-1))

= r(0) + IM-1 jTK(m-l) + IM-1 jT(A(m) _ A(m-1))

= r(0) + iM-ljTA(m)_

This completes the proof of (6.2) for all m = 1,2,

ANALYSIS OF THE SHAKE-SOR ALGORITHM 585

From relation (6.2), the convergence of SHAKE-SOR follows from that of SOR-
Newton. In fact, if limm^00 A(m) = A^, and A^ satisfies

p(r(o) + lM-ijTA(*))=0)

then, with (6.2),

lim r(m> = r<0> + \M-
X
J

T
 lim A^' = r^ + ^M"1 JTA(*),

m—>00 2 771—>oo 2

and

lim 0(r<m>) = g{v^ + ^M"1 JTK^) = 0.
m—>-oo 2

Conversely, the convergence of SOR-Newton does not follow that of SHAKE-SOR
unless the linear system JTA = 0 has a unique zero solution. This means that if the
rank of Jacobian matrix JT is larger than or equal to /, and the initial guess A(0) = 0,
the convergence is equivalent for SHAKE-SOR and SOR-Newton. In general, however,
the convergence of the two iterative sequences {A^771)} and {r^} is not equivalent.

7. Numerical experiments. To show that SHAKE-SOR can improve the per-
formance of SHAKE [13], we experimented in CHARMM [4, 9] with two proteins,
BPTI and lysozyme, and a DNA dodecamer. The DNA system is the Protein Data
Bank structure 1D98 with sequence d(CGCAAAAAAGCG)-d(GCGTTTTTTCGC).
These three systems use 582, 2050, and 11510 bond constraints, respectively. The
proteins BPTI (568 atoms) and lysozyme (2030 atoms) are simulated in vacuum; hy-
drogens have been added to the structures using the HBUILD algorithm of CHARMM
[4, 9]. The DNA model, which has 760 atoms (including hydrogens), is placed in a
hexagonal prism with 27 crystallographic waters, 22 sodium ions, and 3537 additional
water molecules [20]. Each water molecule in the DNA system is modeled with three
constraints in CHARMM.

We set the timestep to A£ = 2 fs (femtosecond) and performed one step of
dynamics for all numerical experiments. Default parameters in CHARMM were used
for computing the force field F(r). The numerical experiments were performed in
double precision on a single R10000 processor (195 MHZ) of an SGI Power Challenge
L computer at New York University. CPU times in FIG. 7.2 in seconds were derived
by using the SGI system routine etimeQ.

FIG. 7.1 plots the total number of SHAKE-SOR iterations, determined by the
convergence rule (3.3) with tolerance e = 10-12, as a function of relaxation parameter
LJ. It compares the convergence performance of SHAKE-SOR for simulating the three
molecular systems with different numbers of bond constraints. The total number of
iterations of SHAKE [13] (which can be thought of as SHAKE-SOR using u = 1)
for BPTI, lysozyme, and DNA are 37, 37, and 44, respectively; SHAKE-SOR with
u = 1.2 reduces these numbers to 24, 22, and 25. These values are very similar to the
averages obtained over a long trajectiory (see Table 1). FIG. 7.1 also suggests that
to — 1.2 is the optimal relaxation parameter for all three molecular systems.

FIG. 7.2 plots the total CPU time of SHAKE-SOR as a function of a; for simulating
DNA with 11510 bond constraints. SHAKE-SOR with cu = 1.2 took 0.17 seconds,
less than half the CPU time for standard SHAKE (0.36 seconds). This implies about
a factor of two saving in CPU time over a dynamics trajectory.

586 D. XIE, L. R. SCOTT, AND T. SCHLICK

70

W pBPTI:582
860 /
CO \ * / Lysozyme: 2050
<D "^ \ / /.♦1D98DNA: 11510.
b \ J.

*
E40

N
/ '.^

5 ^, <■'

*. / //:■■

O30
f-

+\
■*'

4
20

The Relaxation Parameter co The Relaxation Parameter co

FIG. 7.1. The total number of SHAKE-SOR FIG. 7.2. The total CPU time of SHAKE-
iterations as a fuction of relaxation parameter u. SOR as a fuction of relaxation parameter OJ

This figure shows that SHAKE-SOR with LJ = for simulating ID98 DNA with 11508 bond con-
1.2 converges much faster than SHAKE [13] (i.e., straints. SHAKE-SOR with LJ = 1.2 took less
SHAKE-SOR with u = 1). Here the timestep than half the CPU time of standard SHAKE [13].
At = 2 fs.

45

40

35
CL

«30

0)
.§25

iSso

O 45

CD
.Q40
E
3 35

30

25

20

~i 1 1 1 j-

Lysozyme

.J i i_
20 40 60 80 100 120 140 160 180 200

1D98 DNA

J-^

(0 = 1
adaptive co
(0 = 1.2

XMrpJhjtb^^

20 40 60 80 100 120 140 160 180 200

Time

FIG. 7.3. The total number of SHAKE-SOR iterations per timestep as a fuction of time

FIG. 7.3 plots the total number of SHAKE-SOR iterations as a function of time
for lysozyme and DNA as obtained over 400 fs. Corresponding CPU times and average
iteration counts per timestep are listed in Table 7.1. From this figure and table we
see that the SHAKE-SOR using the optimal relaxation parameter u = 1.2 similarly
requires about half the number of iterations and also half the CPU time as standard

ANALYSIS OF THE SHAKE-SOR ALGORITHM 587

TABLE 7.1
Performance of SHAKE-SOR for 200 timestep simulations. The number in parentheses is the

average value per timestep. CPU time is measured in seconds.

SHAKE-SOR Total CPU Time Total Iterations
Lysozyme 1D98 DNA Lysozyme 1D98 DNA

u = l 9.59 (0.05) 67.42 (0.34) 7603 (38) 8326 (42)
w = 1.2 5.98 (0.03) 33.46 (0.17) 4579 (23) 4983 (25)

adaptive w 6.02 (0.03) 33.53 (0.17) 4651 (23) 4998 (25)

SHAKE (i.e., w = l).
To determine the optimal relaxation parameter of SHAKE-SOR, a simple adap-

tive algorithm has been proposed in [3]. Using that formula, we performed expriments
for the lysozyme and DNA systems. Very similar performance was obtained as for the
SHAKE-SOR using u = 1.2 (see FIG. 7.3 and Table 7.1). This shows that the adaptive
algorithm in [3] also works well for choosing the optimal relaxation parameter.

Finally, we show by a constructed example that SHAKE-SOR with our modifi-
cation of A given in (3.7) works well in the case of r^T f^ = 0. The numerical
example was constructed for lysozyme by modifying the current position vector fjk

in such a way that the current bond vector f^ satisfies r^Tr^ = 0. Specifically,
for k — 10 and j& = 23, we set fjk = (l/(4xi)1l/(4yi),-l/(2z1))

T + fzfc, where
(#1,2/1,2:1) denotes the reference vector IVM. Thus,

r(fc) (-1/(4x0, -l/(4f,i>, l/M)5

leading to r(A.)
Tf(A.) = -1/4 - 1/4 -1- 1/2 = 0. With At = 2 fs and u = 1.2, we

tested SHAKE-SOR for four different numerical values with our modification of eq.
(3.7). With the convergence criterion (3.3) with c = 10~12, 18, 21, 21 and 29 itera-
tions were required for the convergence of SHAKE. In contrast, the standard SHAKE
implementation does not work in this case.

8. Conclusions. The SHAKE scheme proposed in [13] is a widely-used numeri-
cal iterative scheme for constrained molecular dynamics simulations. For the purpose
of analyzing SHAKE, we have presented SHAKE in a well known iterative framework
and shown that the SHAKE iterates can be defined by using the Gauss-Seidel-Newton
method or other more efficient nonlinear iterative solvers. By relying on the SOR-
Newton method, we have derived the same accelerated variant of SHAKE proposed in
[3, 22], and called it SHAKE-SOR. The basic relationship between SHAKE and SOR-
Newton was then proven. Convergence of SHAKE-SOR follows that of the nonlinear
SOR method [12] only when certain conditions hold.

We have also proposed a simple modification to the standard SHAKE process
(eq. (3.7)) that ensures convergence even in the case of zero inner product between a
reference bond vector and a corresponding updated bond vector.

Our SHAKE description provides many possibilities for defining other efficient
variants of SHAKE. SHAKE is a sequential scheme since it is defined by the sequen-
tial GSN (or SOR-Newton) method. To efficiently implement SHAKE on parallel
computers, efficient parallel versions of SHAKE can be used, mirroring parallel ver-
sions of SOR-Newton, such as the SOR-Newton using the Red-Black ordering [8] or
the PSOR ordering [23].

Acknowledgments. T. Schlick is indebted to Cathleen Morawetz for her guid-
ance and spirit. We thank Dr. Dan Strahs for providing the 1D98 DNA system for our

588 D. XIE, L. R. SCOTT, AND T. SCHLICK

numerical experiments. This work is supported by the National Science Foundation
(ASC-9157582 and BIR 94-23827EQ) [to T.S] and ASC-9217374 [to L.R. Scott], the
National Institutes of Health (R01 GM55164) [to T.S.], and the University of South-
ern Mississippi (#2221709006) [to D.X.]. T. Schlick is an investigator of the Howard
Hughes Medical Institute.

Appendix A. The SOR-Newton method for solving nonlinear con-
strained equations. A direct way to approximate r(t + At) defined in (2.5) is
to solve the constraint equation (2.8) approximately for A by an efficient nonlinear
iterative method. Here we consider the SOR-Newton method [12] for solving (2.8)
because it is closely related to SHAKE.

We start by defining the nonlinear Gauss-Seidel iterates {A^m^} for solving a
system of nonlinear equations:

/ib(Ai,A2,...,A0 = 0, k = l,-2,...,J.

Suppose that iterate A^m^ is available. For k = 1,2,..., /, the nonlinear Gauss-Seidel
method defines the update A^m+ ^ as a solution of the following nonlinear equation
of Ak

(A.l) A(A[m+1\A£m+^

Based on the nonlinear Gauss-Seidel method, the nonlinear successive
over-relaxation (SOR) iterates {A^} are then defined by

(A.2) A(m+1) - (1 - u;)A(m) + wA, m = 0,1,2,...,

where A is the nonlinear Gauss-Seidel iterate, A(0) is an initial guess, and u is the
relaxation parameter, which is often chosen from the interval (0,2). Clearly, with
UJ = 1, the nonlinear SOR method is reduced to the nonlinear Gauss-Seidel method.

Eq. (A.l) can be solved for A^ approximately by n steps of Newton iteration:

, /A(m+1) A(m+1) A(m+1) AM A (m) A (m)\

dfk (K (m+l) A(m+1) A(m+1) AM A (m) A(m)\

for \i — 0,1,2,..., n. Here the initial guess A^ = A^m\ Substituting

An = (A?,^,...,A?)r

to the term A in (A.2) leads to the n-step SOR-Newton method. Since the asymptotic
convergence rate of the n-step SOR-Newton method is independent of n [12], a one-
step SOR-Newton method is often used, and is called the SOR-Newton method. That
is, the SOR-Newton iterates {A(m)} are defined by

, /A(m+1) A(m+1) A(m+1) A (m) K (m)x
A (m+l) _ A (m) _ /fclAl ^A2 '•••'Afc-1 ^Afc >--->Af ;

5/fc/A(m+l) A (m+l) A (m+l) A(m) A(m)x
^--lAl 7

A2 »--->Aife-i ^H J---J
A

Z J

xk — lvk

for fc = 1,2,..., / and m = 0,1,2, A special case of SOR-Newton with u = 1 is
called the Gauss-Seidel-Newton (GSN) method.

ANALYSIS OF THE SHAKE-SOR ALGORITHM 589

In particular, for /^(A) = <7fc(r(£) + BA), where gk is defined in (2.3), we obtain
the iterative expression of SOR-Newton as below:

■ (ra+1)_A(TO)_ II^W + K=\hik)Aim+1) + sU^^n2 - ^

for A; = 1,2,..., /, and m = 0,1,2,..., where f ^ denotes the bond vector f ik (t) —

fjk(i) of the A:-th constraint, and the vector b^ ^ is defined by (4.5).
When an SOR-Newton iterate A^ is sufficiently close to an exact solution of

eq. (2.8), it can be used to substitute the vector A in (2.5) to obtain a satisfactory
approximation of r(£ + A£).

REFERENCES

[1] M. P. ALLEN AND D. J. TILDESLEY, Computer Simulation of Liquids, Oxford University Press,
Oxford, 1987.

[2] H. C. ANDERSEN, Rattle: a 'velocity' version of the SHAKE algorithm for molecular dynamics
calculations, J. Comp. Phys., 52 (1983), pp. 24-34.

[3] E. EARTH, K. KUCZERA, B. LEIMKUHLER, AND R. D. SKEEL, Algorithms for constrained molec-
ular dynamics, J. Comp. Chem., 16 (1995), pp. 1192-1209.

[4] B. R. BROOKS, R. E. BRUCCOLERI, B. D. OLAFSON, D. J. STATES, S. SWAMINATHAN, AND

M. KARPLUS, CHARMM: A program for macromolecular energy, minimization, and dy-
namics calculations, J. Comp. Chem., 4 (1983), pp. 187-217.

[5] W. F. VAN GUNSTEREN AND H. J. C. BERENDSEN, Algorithms for macromolecular dynamics
and constraint dynamics, Mol. Phys., 34 (1977), pp. 1311-1327.

[6] W. F. VAN GUNSTEREN AND H. J. C. BERENDSEN, GROMOS: GROningen molecular simulation
software, Technical report, Laboratory of Physical Chemistry, University of Groningen,
Nijenborgh, The Netherlands, 1988.

[7] W. F. VAN GUNSTEREN AND M. KARPLUS, Effect of constraints on the dynamics of macro-
molecules, Macromolecules, 15 (1982), pp. 1528-1543.

[8] L. A. HAGEMAN AND D. M. YOUNG, Applied Rerative Methods, Academic press, New York,
1981.

[9] A. D. JR. MACKERELL, ETAL, An all-atom empirical potential for molecular modeling and
dynamics of proteins, J. Phys. Chem. B, 102 (1998), pp. 3586-3616.

[10] J. A. MCCAMMON AND S. C. HARVEY, Dynamics of Proteins and Nucleic Acids, Cambridge
University Press, Cambridge, 1987.

[11] J. A. MCCAMMON, B. M. PETTITT, AND L. R. SCOTT, Ordinary differential equations of
molecular dynamics, Comp. Math. Applic, 28 (1994), pp. 319-326.

[12] J. M. ORTEGA AND W. C. RHEINBOLDT, Rerative Solution of Nonlinear Equations in Several
Variables, Academic press, New York, 1970.

[13] J. P. RYCKAERT, G. CICCOTI, AND H. J. C. BERENDSEN, Numerical integration of the Cartesian
equations of motion of a system with constraints: molecular dynamics of n-Alkanes, J.
Comput. Phys., 23 (1977), pp. 327-341.

[14] J. P. RYCKAERT, Special geometrical constraints in the molecular dynamics of chain molecules,
Mol. Phys., 55 (1985), pp. 549-556.

[15] J. P. RYCKAERT, On the convergence of the SHAKE algorithm, Comp. Phys. Comm., 62 (1991),
p. 336.

[16] T. SCHLICK, E. BARTH, AND M. MANDZIUK, Biomolecular dynamics at long timesteps: bridging
the timescale gap between simulation and experimentation, Ann. Rev. Biophys. Biomol.
Struc, 26 (1997), pp. 179-220.

[17] T. SCHLICK, Some failures and successes of long-timestep approaches for biomolecular simula-
tions, in Computational Molecular Dynamics: Challenges, Methods, Ideas - Proceedings
of the 2nd International Symposium on Algorithms for Macromolecular Modeling, P. Deu-
flhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and. R. D. Skeel, eds., Lecture
Notes in Computational Science and Engineering 4, Springer-Verlag, Berlin and New York,
1998, pp. 227-262.

[18] T. SCHLICK, R. D. SKEEL, A. T. BRUNGER, L. V. KALE, JR. J. A. BOARD, J. HERMANS, AND

K. SCHULTEN, Algorithmic challenges in computational molecular biophysics, J. Comp.
Phys., 151 (1999), pp. 1-8.

590 D. XIE, L. R. SCOTT, AND T. SCHLICK

[19] J. SHEN AND J. A. MCCAMMON, Molecular dynamics simulation of superoxide interacting with
superoxide dismutase, Chem. Phys., 158 (1991), pp. 191-198.

[20] D. STRAHS AND T. SCHLICK, A-Tract bending: Insights into experimental structures by com-
putational models, J. Mol. BioL, 301 (2000), pp. 643-666.

[21] L. VERLET, Computer 'experiments' on classical fluids. I. Thermodynamical Properties of
Lennard-Jones Molecules, Phys. Rev., 159 (1967), pp. 98-103.

[22] D. XIE, New Parallel Iteration Methods, New Nonlinear Multigrid Analysis, and Application
in Computational Chemistry, Research Report UH/MD - 208, Ph.D. thesis, University of
Houston, 1995.

[23] D. XIE AND L. ADAMS, New parallel SOR method by domain partitioning, SIAM J. Sci. Corn-
put., 20 (1999), pp. 2261-2281.

[24] Note: The following two technical inaccuracies arise from the analysis in [3]:
(1) The notation used in eq. (23) of [3] (p. 1198) is not appropriate for theoretical analysis of

SHAKE because it is a formula for practical implementation in which the position vector
is overwritten by the updated vector. See eq. (3.2) in this paper. Thus, the notation in [3]
cannot be used to prove the identity between SHAKE and GSN.

(2) In the three equations above (26) of [3] (p. 1198), the scalar A^-1 used in the argument of
the function gi should be replaced by the vector

A*'*-1 = (A}IA5>...IA*_1)A*-1
)...,A*,-1)T.

Still, even if this simple substitution is made, the equation above (26) does not follow from
the preceding one because

Qj:_1 ^ Q - M-1GTAk^-1.

Here m is the number of bond constraints, and GT is the Jacobian matrix. Therefore,
the statement "which is precisely SHAKE iteration of eq. (25)" does not follow the line
of argument presented. Recall that here we show the convergence equivalence between
SHAKE and GSN only when the initial guess for GSN is zero and the rank of Jacobian
matrix is larger than or equal to the number of bond constraints.

