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ANALYSIS OF THE SHAKE-SOR ALGORITHM FOR 
CONSTRAINED MOLECULAR DYNAMICS SIMULATIONS* 

DEXUAN XIBt, L. RIDGWAY SCOTT*, AND TAMAR SCHLICK§ 

Abstract. Molecular dynamics integration with bonds constrained to equilibrium values is a 
common approach used to increase the feasible timestep and hence reduce the overall simulation time. 
Here we analyze the widely used numerical iterative scheme for constrained molecular dynamics 
simulations, SHAKE, in a general algorithmic framework, from which SHAKE'S relationship to 
nonlinear solvers can be established. Using the nonlinear SOR-Newton iterative method, we define an 
accelerated variant of SHAKE, called SHAKE-SOR, and prove a fundamental relationship between 
SHAKE-SOR and SOR-Newton. Based on this relationship, the convergence of SHAKE-SOR is 
proved in the framework of nonlinear SOR theory. Numerical results show that SHAKE-SOR can 
significantly improve the performance of standard SHAKE by reducing the number of iterations per 
timestep through an optimal parameter choice. 

1. Introduction. Molecular dynamics (MD) simulations constitute an impor- 
tant tool for exploring molecular motions of chemical and biological systems [1, 16]. 
In the underlying models, macromolecules are represented as chains of atoms linked 
by covalent bonds. Such bonds vibrate at a very high frequency, so that a typical 
timestep for the MD simulation is very small - around one femtosecond (10~15 sec- 
onds) - thereby limiting severely the total simulation time. Many effective techniques 
have been proposed to increase the timestep (see recent reviews in [16, 17, 18]). One 
of the simplest techniques is to freeze the high-frequency vibrational motions by im- 
posing algebraic constraints that fix the bond lengths. The algebraic constraints have 
little influence on the underlying dynamics in most cases [7] and can increase the 
timestep by a factor of two or three, with minimal added cost per step. The cost 
involved is solution of an auxiliary set of nonlinear equations at each timestep. 

Ryckaert et al. [13] described a scheme termed SHAKE for MD simulations sub- 
ject to a set of bond-constraint equations based on the Verlet discretization [21]. Since 
then, SHAKE has become a widely used algorithm in biomolecular simulations. To 
improve the stability of the Verlet discretization, SHAKE has been adapted to the ve- 
locity Verlet scheme, leading to the so called RATTLE algorithm [2]. SHAKE has also 
been extended to handle general constraints (such as of other internal variables) [14]. 
An accelerated version of SHAKE based on the nonlinear successive over relaxation 
(SOR) method [12] has been proposed in [3, 22]. 

Different approaches to analyze the convergence of SHAKE can be found in 
[3, 15, 22]. A recent attractive approach for analyzing SHAKE within the framework 
of nonlinear SOR theory [12] was described in [3]. That work also led to a practical 
improvement of SHAKE. However, the theoretical relationship between SHAKE and 
the Gauss-Seidel-Newton (GSN) method [12] was incomplete due to over simplifica- 
tions in eqns. (23) through (26) of [3] (see details in footnote [24] here). Here we use a 
slightly different approach to couch the SHAKE process in a mathematical nonlinear 
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iteration framework, completing the proof in [3] by adding the conditions under which 
the equivalence of a SHAKE variant and nonlinear SOR holds. 

We first formulate the SHAKE algorithm according to standard routines used in 
the packages CHARMM [4, 9] and GROMOS [6]; these are two widely-used molecular 
mechanics and dynamics programs. We then show that the SHAKE iterates {r(m)} 
generated by the SHAKE algorithm can be formulated in the general form 

(1.1) r^1) = r^ + SA,    m = 0,1,2,..., 

where r(m) approximates the collective position vector of the molecular system at 
each dynamic step, B is a matrix independent of r(m), and the vector A (a function of 
r(™)) is defined by using GSN as an approximate solution of the nonlinear constrained 
equations of motion. The detailed definitions of B and A will be given in the next 
section. 

Expression (1.1) invites definitions of variants that can improve the performance 
of SHAKE (in terms of the convergence at each dynamic step). In fact, if the vector 
A in (1.1) is defined by a more effective nonlinear iterative method than GSN, the 
resulting scheme can perform better than SHAKE of [13]. In this paper, we define A 
by the SOR-Newton method [12], leading to the same accelerated variant of SHAKE 
proposed in [3, 22]. For convenience, we refer to this variant as SHAKE-SOR. 

With the general framework of (1.1), we also easily overcome the difficulty that 
exists in the standard SHAKE algorithm. Namely, SHAKE [13] is thought to fail 
if the inner product between a reference bond vector and a corresponding updated 
bond vector is zero. In [4, 6], this case is interpreted as too large a deviation in a 
SHAKE iteration. This simple treatment to this case seriously affects the robustness 
of SHAKE because this situation happens occasionally during the SHAKE execution. 
In this paper, we show that the setting of A in SHAKE is essentially an approximate 
solution of the nonlinear constrained equations of motion; thus, it is natural to select 
another definition for A in the case of the above zero inner product. We propose a 
modification of A that ensures the convergence of SHAKE-SOR. 

Noting that SHAKE-SOR includes SHAKE as a special case, we analyze SHAKE- 
SOR in this paper. We prove the basic relationship between SHAKE-SOR and SOR- 
Newton, from which the convergence of SHAKE-SOR follows under additional con- 
ditions. We derive these conditions, with which the convergence of SHAKE-SOR is 
equivalent to that of SOR-Newton. These conditions correct the work in [3]. 

Finally, numerical results using CHARMM [4, 9] are presented showing that 
SHAKE-SOR can significantly improve the performance of SHAKE. Examples are 
shown for three biomolecules: the protein BPTI (bovine pancreatic trypsin inhibitor), 
the protein lysozyme, and a DNA dodecamer (i.e., 12 base pairs). These systems have 
582, 2050, and 11510 bond constraints, respectively. Other numerical results that 
demonstrate the good performance of SHAKE-SOR can also be found in [3, 22]. 

The remainder of the paper is organized as follows. Section 2 describes the con- 
strained Verlet discretization, and Section 3 presents a practical SHAKE algorithm. 
Section 4 formulates the SHAKE iterates in the form of (1.1), and Section 5 defines 
SHAKE-SOR. Section 6 presents and proves the fundamental relationship between 
SHAKE-SOR and SOR-Newton. Section 7 presents numerical results for SHAKE- 
SOR, with conclusions following in Section 8. For completeness, the description of 
the SOR-Newton method for solving the constrained equations of motion is given in 
the Appendix. 
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2. The constrained Verlet method. We consider a molecular system of iV 
atoms interacting via a force field F(r(t)), where r(t) denotes the collective position 
vector of the molecular system at time t, i.e., r(£) = (ri(£),r2(£),... ,r/v(£))T with 
r^ (t) being the position vector of atom i in the real space i?3. We often simply write 
r(t) and rj(£) as r and r^ in this paper. The superscript T denotes a vector or matrix 
transpose. 

In constrained MD, a molecular system satisfies the Newtonian equation of motion 

(2.1) Mr = F(r) 

subject to the algebraic constraint condition 

(2.2) g(r) = 0. 

Here r is the second derivative of r with respect to time £, g(r) is a vector function of r, 
M is the diagonal mass matrix defined by M = diag(mi, mi, mi, m2, m2, m2,..., m^v, 
m^jmiv), and rrii is the mass of atom i. To define g, we consider a set of / specified 
nonlinear equations for the / bond constraints1. That is, the vector function g(r) = 
(<7I,02J • • • ,gi)T has component k defined as 

(2.3) gk(r) = \\rik-rjkf-dl    fc = 1,2,...,/,   ■ 

where k labels the rigid bond connecting atom 2& and atom jk of length dk (see Fig. 1), 
and the norm || • || is the standard Euclidean distance norm in R3. 

The system above can be rewritten as unconstrained by introducing the Lagrange 
multiplier vector A = (Ai, A2,..., A/)T. The constraint condition (2.2) can then be 
regarded as an additional force expressed as — J(r)TA, where J(r) is the Jacobian 
matrix (i.e., the first derivative) of the vector g(r). Thus, system (2.1) together with 
(2.2) is equivalent to: 

(2.4) Mr = P(r) - J(r)TA 

provided that A is appropriately chosen so that the solution r of (2.4) satisfies the 
constraint condition (2.2). In the remainder of this paper, we simply denote the 
Jacobian matrix J(r) as J. 

We approximate (2.4) by the following second-order finite-difference equation: 

(2.5) r(t + A*) = 2r(t) - r(t - At) + A^M^F^)) - A*2AT1 J(r(t))TX, 

where Ait is a timestep, and A is a solution of the following nonlinear equation of A: 

(2.6) g(T-Al?M-1JT\) = 0, 

where 

(2.7) f = 2r(t) - r(t - At) + A^M^F^)). 

Together, Eqns. (2.5) and (2.6) are commonly referred to as the constrained Verlet 
method [10, 21]. Setting A = 0 in (2.5) yields the unconstrained Verlet scheme. 

To simplify the notation above, we set A = —2At2X and B = ^M-1 JT. Thus, 
eq. (2.6) becomes 

(2.8) g(r + J3A) - 0. 

1The algorithm can be generalized to other internal constraints [14]. 
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3. The SHAKE algorithm. We describe a practical SHAKE algorithm as 
used by both the CHARMM [4, 9] and GROMOS [6] programs. We then present an 
important modification to SHAKE. 

Let {r(m)} be a sequence of SHAKE iterates that approximate the constrained 
Verlet update r(t + At) and set r — r(t). The initial guess r^0^ is obtained from 
the unconstrained Verlet method, namely, r(0) = f(£), where r(£) is given in (2.7). 
In the computer implementation, the update r(m+1) shares the array for r(m) for 
m = 0,1,2,...; hence, only one array f is required for the sequence {r^m^}. Suppose 
that f holds the m-th SHAKE iterate r(m), i.e., f <- r(m\ To define the SHAKE 
iterate r^m+l\ the array f is updated by considering the constraints successively. 
That is, for k = 1,2,..., Z, the k-ih component A& of the vector A is computed via 

(3.i) A, £dM!  
2(1/™^+!/™^)^)^)' 

where the bond vectors r^) and f ^ are computed by r^) — rik — Yjk and f ^ = 
f ik — fjk, and the position vectors f ^ and fjk of the fc-th bond are then updated via 

(3.2) fik <r- fik + —-r(k)Ak    and   fjk <- fjk - —r{k)Ak. 
rnik 

rrijk 

This completes one iteration of SHAKE, and the updated f holds the SHAKE iterate 
r(m+l)> 

A common convergence (or termination) rule for SHAKE iteration is below 

(3.3). ll<Kr(ro))IU = max\9k(r^)\<e, 
l<k<l 

where e is a small number such as e = 10~10, the default value in CHARMM [4, 9]. 
Clearly, if the inner product r^T f^ = 0 (or small enough in practice), the 

value of Ak defined by formula (3.1) is undefined, leading to the failure of SHAKE. 
This case happens occasionally in the implementation of SHAKE. To overcome this 
difficulty, we first prove the following theorem. 

THEOREM 3.1. The value of Ak defined by formula (3.1) is the first iterate of the 
Newton iteration method for solving the k-th constraint equation 

(3.4) \Kew-r]r\\2-di=0 

with an initial guess of zero. Here f^w and f^w denote the updated f;fc and fjk in 
(3.2), respectively.  That is, f£cw = vik + ^-v{k)Ak    and   f%w = f^ - ^-r{k)Ak. 

Proof. The k-th constraint equation (3.4) can be written as a quadratic equation 
of Ak: 

(3.5) aA^ + bAk + c = 0, 

where a = (l/mik + l/mjk)
2 \\r{k)\\

2, b = 2(1/™^ + !/™^^^), and c = ||f(fc)||
2- 

dfc. For an initial guess p(0\ the first iterate p^1) of the Newton iteration method for 
solving (3.5) is defined by: 

(3 6) p(i)-p(0)_^0)2 + M0> + c 
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If r(fc)Tf(fc) 7^ 0 (i.e., b / 0), we can simply select p^ = 0, leading to pW = —c/6, 
which coincides with Ak as defined by (3.1). This completes the proof of Theorem 1. 

According to Theorem 3.1, we now can easily overcome the difficulty that exists 
in SHAKE. That is, if r^T f^ = 0, we can define A^ as the first Newton iterate 
p^ from (3.6) with a small nonzero value of p^ (such as p^ = 0.001). Since 
T(k)T'r(fc) = 0, 6 = 0, and the formula of A^ defined by (3.6) can be simplified as 
follows: 

(17\ A    - 1(0)   , dl-\\f(k)\\2 

[     ' k~2P     +2(l/mik + l/mjknr{k)\\ipW' 

The complete SHAKE algorithm can now be described in the following algorithm. 
ALGORITHM 1 (An improved SHAKE algorithm).  Let the k-th bond constraint 

connect atoms z& and jk for h — 1,2,..., /. 
1. Set initial guess f = 2r(*) - v{t - At) + A^2M"1F(r(i)) and r = r(t) 
2. Setm = l 
3. One SHAKE iteration: For A; = 1,2,...,Z, compute 

(a) f{k) = fi^ - fjk     and   r{k) = r^ - rjk 

(b) If |r(A.)Tr(A.)| > e (e.g., e = lO"10^, set Ak by (3.1); else, compute Ak 

via (3.7) 
(c) fik <r- fik + ^-r{k)Ak    and   fjk <- fjk - ^-r{k)Ak 

4. Convergence test: If the termination rule (3.3) holds, i.e., all updated bond 
vectors f^) satisfy 

\\\f(k)\\
2-dl\<e,        k = l,2,...,l, 

stop and define the m-th SHAKE iterate as: r(m) = f; else, go to the next 
SHAKE iteration by setting m 4- m + 1 and returning to Step 3. 

As mentioned above, we can use one scalar variable to implement the calculation 
of Ak for k = 1,2,..., / to save memory space for array A. 

Our modification to A^ given by (3.7) ensures convergence; see next section. 

4. The mathematical form of SHAKE iteration. The following theorem 
assigns to SHAKE a common mathematical iterative expression, and shows that such 
SHAKE iterates are essentially defined by using GSN. 

THEOREM 4.1 (SHAKE iterative expression). The SHAKE iterate sequence 
{r(™)} generated from Algorithm 1 is equivalent to the iterative process 

(4.1) r(m+1) - r(m) + ]-M-1 JTA,    m = 0,1,2,..., 

where M is the diagonal mass matrix, J is the Jacobian matrix of the constraint vector 
function g defined in (2.3), and A = (Ai, A2,..., Aj)T with Ak being defined by (3.1) 
or (3.7). Moreover, the vector A is the first GSN iterate for solving the constraint 
equation of A 

(4.2) 9(^m\+^M'1JTA) = 0 

with the initial guess A0 = (Aj, A2,..., A^)T defined by A^ = 0 if \r(k)T r(k)\ > e, and 
Al = p0 (such as p0 = 0.001J otherwise. 
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Proof.  For simplicity, we assume that the inner product r^T
Y^ ^ 0.  Hence, 

from Algorithm 1 it follows that all A^ for k — 1,2,..., / are defined by formula (3.1). 
For gk given in (2.3), the entry dgk/dr^ of the Jacobian matrix J is defined as: 

u„ d9k      /    29
r(*)      **" = <*> 

(4-3) ^r = <    -2r(fc)     for ii = jk, 
M       [       0 otherwise, 

where k = 1,2,..., /, and fi = 1,2,..., N (N = number of atoms). Hence, the SHAKE 
iterate sequence {r(m)} generated from Algorithm 1 can be expressed as 

(4.4) r(-+i)=r(™> + _l_^!jA&)    4 = 1,2,3,...,^ 

where m = 0,1,2,..., and r^ ^ is an initial guess. Writing the above expressions in a 
matrix form gives (4.1). 

To obtain the expression of A in terms of r^    , we introduce vector bjL    = 

h V^Td^T ~ l£~d7f~)' By using (4.3), the vector b^ can be written as 

(4.5) bW = 
i-r(M) if /i G efc 

0 otherwise, 

where 0^,^ denotes the set of bond indices besides k which atom i is involved in; see 
FIG. 4.1 for an illustration. Hence, the vector A*; defined in (3.1) can be expressed by 

(4.6) A kJ
k     ''^t^ L    ^1,2,...,/, 

where r^-r^-r^. 

We next show that the vector A defined in (4.6) is the first GSN iterate for solving 
the constraint equation with an initial guess of zero. 

With (4.4) and notation b^  , we can write r^1 as 

i 

'w^'w + E^V 

where k — 1,2,...,/, so that the constraint equation (4.2) becomes 

i 

(4.7) l|rJS) + 53bli*)AJ2-d*=0,    fc = 1,2,...,/. 

Let /jfc(A) denote the left hand side of the above equation.  Then    g^ ^ = 2(r^x + 

SM=i ^  AM)Tb^ \ Hence, for an initial guess of zero, the first GSN iterate A^1) 
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Bond 3        •    (len: 

FIG. 4.1. Illustration of the index set Ok,i: Qk,ik = {3,5} and Qk,jk = {2,4,7} 

for solving the nonlinear equations /^(A) = 0 for k = 1,2,...,/ has the following 
expression: 

(i) By comparing (4.6) to (4.8), we see that Ak = Ajj,; for fc = 1,2,..., l. This completes 
the proof of Theorem 2. 

5. The SHAKE-SOR method. Theorem 2 implies that the vector A of the 
SHAKE iterative expression (4.1) can also be computed by using a more effective 
nonlinear iterative method. Since SOR-NEWTON is an accelerated variant of GSN, 
it is natural to define the vector A of SHAKE by using SOR-NEWTON. This variant 
of SHAKE is referred to as the SHAKE-SOR method. 

The first iterate of SOR-Newton for solving the nonlinear constraint equations 
(4.7) is defined by 

(^ WD     A(o)        Kg + SabWA^ + EU^AiP^I'-cg 

for k = 1,2,... ,Z.  Hence, for the initial guess A^0) = 0, the value of A& defined by 
(5.1) has the following formula: 

r; (k) + y^-1b(*)A(1)ll2-d2 

2(r^) + E:iib^)A^rb^' 
(5.2) Ak = -u 

Incorporating a relaxation parameter of unity (i.e., to = 1) into (5.2) yields the formula 
(4.6) for SHAKE. Hence, the standard SHAKE method can be regarded as a special 
case of SHAKE-SOR. Its convergence also follows from that of SOR-Newton by the 
arguments outlined in the next section. 

6. The relationship between SHAKE-SOR and SOR-Newton. Another 
approach to update the position vector r(t + At) defined in (2.5) is to directly solve 
the constraint equation (2.8) by SOR-Newton. The sequence {A^m)} of SOR-Newton 
iterates for solving (2.8) is defined by 

(6 1)    A(m+1) = A(m) llrW + 2^=i p^ yV        + Z^=fc PM 
yV   11      ak 

2(fW + Ej=i bWA^+1) + ZU b^A^Fb (*) 
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for k = 1,2,..., /, and m = 0,1,2, — Here f(fc) = rik - Tjk, and f is defined in (2.7). 
See Appendix for details of the classic SOR-Newton iteration. The termination rule 
of SOR-Newton is that ||p(f + \M-1JT\^)\\(Xi < e. 

Although SHAKE-SOR is a different algorithm from the SOR-Newton iteration 
defined in (6.1), we show here that their convergence behavior is equivalent under 
certain conditions. 

THEOREM 6.1 (Relationship of SHAKE-SOR to SOR-Newton). Let {A(m)} be a 
sequence of SOR-Newton iterates defined in (6A), and {r(m)} a sequence of SHAKE- 
SOR iterates defined by (4.1) and (5.2). If K^ = 0, then SHAKE-SOR has the 
following relationship to SOR-Newton: 

(6.2) r(m) = r^ + ^M"1 JTA(m\    m = 0,1,2,.... 

Proof. Clearly, the vector A defined in (5.2) depends on m. For clarity, we denote 
it as p(m). We first show, by induction, that 

(6.3) p(m) = A(m) - A^"1),    m = 1,2,.... 

By the definition of p^, it immediately follows that (6.3) holds for m = 1 because 
pi1) = AW, AW = 0, and r0 = f. Suppose that (6.3) holds for m = j. We show 
that (6.3) holds for m = j + 1 by induction. The induction assumption follows that 
(6.3) holds for m < j, so that we can write the SHAKE-SOR expression (4.1) as (6.2) 
with m = j. Using this p^ expression, we write the term in the numerator of the 
SOR-Newton eq. (6.1) inside the norm function as follows: 

"?*) + E W+1) + E W> = r|fc) + E bW(AW+i) - AW). 
/J,=1 fj,=k 11=1 

Consequently, the SOR-Newton expression (6.1) is written as 

* o+i) _ A(i) _ _, iir(fc)^M=1PM I^M     -^ ;II -»ft 

* "   ~       2(rJt) + ES bift)(Ai/+1) - A«))Xbf • 

Substituting p^+1^ for the above quantity ku - A^, the same expression as (5.2) 
follows. This proves that p^+1) = A^1) -A^. Therefore, (6.3) is true for all integers 
m. 

We can now prove the relationship (6.2) by induction. According to the definition 
of SHAKE-SOR, (6.2) holds for m = 1. Suppose that (6.2) holds for m - 1. Then, 
with (6.3), 

r(m)=r(m-l) + IM-ljTp(m) 

= r(n»-i) + IM"1 JT(A(m) - A^-1)) 

= r(0) + IM-1 jTK(m-l) + IM-1 jT(A(m) _ A(m-1)) 

= r(0) + iM-ljTA(m)_ 

This completes the proof of (6.2) for all m = 1,2,  
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From relation (6.2), the convergence of SHAKE-SOR follows from that of SOR- 
Newton. In fact, if limm^00 A(m) = A^, and A^ satisfies 

p(r(o) + lM-ijTA(*))=0) 

then, with (6.2), 

lim r(m> = r<0> + \M-
X
J

T
 lim A^' = r^ + ^M"1 JTA(*), 

m—>00 2 771—>oo 2 

and 

lim 0(r<m>) = g{v^ + ^M"1 JTK^) = 0. 
m—>-oo 2 

Conversely, the convergence of SOR-Newton does not follow that of SHAKE-SOR 
unless the linear system JTA = 0 has a unique zero solution. This means that if the 
rank of Jacobian matrix JT is larger than or equal to /, and the initial guess A(0) = 0, 
the convergence is equivalent for SHAKE-SOR and SOR-Newton. In general, however, 
the convergence of the two iterative sequences {A^771)} and {r^} is not equivalent. 

7. Numerical experiments. To show that SHAKE-SOR can improve the per- 
formance of SHAKE [13], we experimented in CHARMM [4, 9] with two proteins, 
BPTI and lysozyme, and a DNA dodecamer. The DNA system is the Protein Data 
Bank structure 1D98 with sequence d(CGCAAAAAAGCG)-d(GCGTTTTTTCGC). 
These three systems use 582, 2050, and 11510 bond constraints, respectively. The 
proteins BPTI (568 atoms) and lysozyme (2030 atoms) are simulated in vacuum; hy- 
drogens have been added to the structures using the HBUILD algorithm of CHARMM 
[4, 9]. The DNA model, which has 760 atoms (including hydrogens), is placed in a 
hexagonal prism with 27 crystallographic waters, 22 sodium ions, and 3537 additional 
water molecules [20]. Each water molecule in the DNA system is modeled with three 
constraints in CHARMM. 

We set the timestep to A£ = 2 fs (femtosecond) and performed one step of 
dynamics for all numerical experiments. Default parameters in CHARMM were used 
for computing the force field F(r). The numerical experiments were performed in 
double precision on a single R10000 processor (195 MHZ) of an SGI Power Challenge 
L computer at New York University. CPU times in FIG. 7.2 in seconds were derived 
by using the SGI system routine etimeQ. 

FIG. 7.1 plots the total number of SHAKE-SOR iterations, determined by the 
convergence rule (3.3) with tolerance e = 10-12, as a function of relaxation parameter 
LJ. It compares the convergence performance of SHAKE-SOR for simulating the three 
molecular systems with different numbers of bond constraints. The total number of 
iterations of SHAKE [13] (which can be thought of as SHAKE-SOR using u = 1) 
for BPTI, lysozyme, and DNA are 37, 37, and 44, respectively; SHAKE-SOR with 
u = 1.2 reduces these numbers to 24, 22, and 25. These values are very similar to the 
averages obtained over a long trajectiory (see Table 1). FIG. 7.1 also suggests that 
to — 1.2 is the optimal relaxation parameter for all three molecular systems. 

FIG. 7.2 plots the total CPU time of SHAKE-SOR as a function of a; for simulating 
DNA with 11510 bond constraints. SHAKE-SOR with cu = 1.2 took 0.17 seconds, 
less than half the CPU time for standard SHAKE (0.36 seconds). This implies about 
a factor of two saving in CPU time over a dynamics trajectory. 
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At = 2 fs. 
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FIG. 7.3.  The total number of SHAKE-SOR iterations per timestep as a fuction of time 

FIG. 7.3 plots the total number of SHAKE-SOR iterations as a function of time 
for lysozyme and DNA as obtained over 400 fs. Corresponding CPU times and average 
iteration counts per timestep are listed in Table 7.1. From this figure and table we 
see that the SHAKE-SOR using the optimal relaxation parameter u = 1.2 similarly 
requires about half the number of iterations and also half the CPU time as standard 
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TABLE 7.1 
Performance of SHAKE-SOR for 200 timestep simulations.  The number in parentheses is the 

average value per timestep.  CPU time is measured in seconds. 

SHAKE-SOR Total CPU Time Total Iterations 
Lysozyme 1D98 DNA Lysozyme 1D98 DNA 

u = l 9.59 (0.05) 67.42 (0.34) 7603 (38) 8326 (42) 
w = 1.2 5.98 (0.03) 33.46 (0.17) 4579 (23) 4983 (25) 

adaptive w 6.02 (0.03) 33.53 (0.17) 4651 (23) 4998 (25) 

SHAKE (i.e., w = l). 
To determine the optimal relaxation parameter of SHAKE-SOR, a simple adap- 

tive algorithm has been proposed in [3]. Using that formula, we performed expriments 
for the lysozyme and DNA systems. Very similar performance was obtained as for the 
SHAKE-SOR using u = 1.2 (see FIG. 7.3 and Table 7.1). This shows that the adaptive 
algorithm in [3] also works well for choosing the optimal relaxation parameter. 

Finally, we show by a constructed example that SHAKE-SOR with our modifi- 
cation of A given in (3.7) works well in the case of r^T f^ = 0. The numerical 
example was constructed for lysozyme by modifying the current position vector fjk 

in such a way that the current bond vector f^ satisfies r^Tr^ = 0. Specifically, 
for k — 10 and j& = 23, we set fjk = (l/(4xi)1l/(4yi),-l/(2z1))

T + fzfc, where 
(#1,2/1,2:1) denotes the reference vector IVM. Thus, 

r(fc) (-1/(4x0, -l/(4f,i>, l/M)5 

leading to r(A.)
Tf(A.) = -1/4 - 1/4 -1- 1/2 = 0. With At = 2 fs and u = 1.2, we 

tested SHAKE-SOR for four different numerical values with our modification of eq. 
(3.7). With the convergence criterion (3.3) with c = 10~12, 18, 21, 21 and 29 itera- 
tions were required for the convergence of SHAKE. In contrast, the standard SHAKE 
implementation does not work in this case. 

8. Conclusions. The SHAKE scheme proposed in [13] is a widely-used numeri- 
cal iterative scheme for constrained molecular dynamics simulations. For the purpose 
of analyzing SHAKE, we have presented SHAKE in a well known iterative framework 
and shown that the SHAKE iterates can be defined by using the Gauss-Seidel-Newton 
method or other more efficient nonlinear iterative solvers. By relying on the SOR- 
Newton method, we have derived the same accelerated variant of SHAKE proposed in 
[3, 22], and called it SHAKE-SOR. The basic relationship between SHAKE and SOR- 
Newton was then proven. Convergence of SHAKE-SOR follows that of the nonlinear 
SOR method [12] only when certain conditions hold. 

We have also proposed a simple modification to the standard SHAKE process 
(eq. (3.7)) that ensures convergence even in the case of zero inner product between a 
reference bond vector and a corresponding updated bond vector. 

Our SHAKE description provides many possibilities for defining other efficient 
variants of SHAKE. SHAKE is a sequential scheme since it is defined by the sequen- 
tial GSN (or SOR-Newton) method. To efficiently implement SHAKE on parallel 
computers, efficient parallel versions of SHAKE can be used, mirroring parallel ver- 
sions of SOR-Newton, such as the SOR-Newton using the Red-Black ordering [8] or 
the PSOR ordering [23]. 
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Appendix A. The SOR-Newton method for solving nonlinear con- 
strained equations. A direct way to approximate r(t + At) defined in (2.5) is 
to solve the constraint equation (2.8) approximately for A by an efficient nonlinear 
iterative method. Here we consider the SOR-Newton method [12] for solving (2.8) 
because it is closely related to SHAKE. 

We start by defining the nonlinear Gauss-Seidel iterates {A^m^} for solving a 
system of nonlinear equations: 

/ib(Ai,A2,...,A0 = 0,    k = l,-2,...,J. 

Suppose that iterate A^m^ is available. For k = 1,2,..., /, the nonlinear Gauss-Seidel 
method defines the update A^m+ ^ as a solution of the following nonlinear equation 
of Ak 

(A.l) A(A[m+1\A£m+^ 

Based on the nonlinear Gauss-Seidel method, the nonlinear successive 
over-relaxation (SOR) iterates {A^} are then defined by 

(A.2) A(m+1) - (1 - u;)A(m) + wA,    m = 0,1,2,..., 

where A is the nonlinear Gauss-Seidel iterate, A(0) is an initial guess, and u is the 
relaxation parameter, which is often chosen from the interval (0,2).   Clearly, with 
UJ = 1, the nonlinear SOR method is reduced to the nonlinear Gauss-Seidel method. 

Eq. (A.l) can be solved for A^ approximately by n steps of Newton iteration: 

,  /A(m+1)   A(m+1) A(m+1)    AM   A (m) A (m)\ 

dfk ( K (m+l)   A(m+1) A(m+1)   AM   A (m) A(m)\ 

for \i — 0,1,2,..., n. Here the initial guess A^ = A^m\ Substituting 

An = (A?,^,...,A?)r 

to the term A in (A.2) leads to the n-step SOR-Newton method. Since the asymptotic 
convergence rate of the n-step SOR-Newton method is independent of n [12], a one- 
step SOR-Newton method is often used, and is called the SOR-Newton method. That 
is, the SOR-Newton iterates {A(m)} are defined by 

,  /A(m+1)   A(m+1) A(m+1)   A (m) K (m)x 
A (m+l) _  A (m) _        /fclAl ^A2 '•••'Afc-1     ^Afc     >--->Af      ; 

5/fc/A(m+l)    A (m+l) A (m+l)   A(m) A(m)x 
^--lAl 7

A2 »--->Aife-i     ^H     J---J
A

Z      J 

xk — lvk 

for  fc = 1,2,..., / and m = 0,1,2, A special case of SOR-Newton with u = 1 is 
called the Gauss-Seidel-Newton (GSN) method. 
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In particular, for /^(A) = <7fc(r(£) + BA), where gk is defined in (2.3), we obtain 
the iterative expression of SOR-Newton as below: 

■ (ra+1)_A(TO)_ II^W + K=\hik)Aim+1) + sU^^n2 - ^ 

for A; = 1,2,..., /, and m = 0,1,2,..., where f ^ denotes the bond vector f ik (t) — 

fjk(i) of the A:-th constraint, and the vector b^ ^ is defined by (4.5). 
When an SOR-Newton iterate A^ is sufficiently close to an exact solution of 

eq. (2.8), it can be used to substitute the vector A in (2.5) to obtain a satisfactory 
approximation of r(£ + A£). 
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(1) The notation used in eq. (23) of [3] (p. 1198) is not appropriate for theoretical analysis of 

SHAKE because it is a formula for practical implementation in which the position vector 
is overwritten by the updated vector. See eq. (3.2) in this paper. Thus, the notation in [3] 
cannot be used to prove the identity between SHAKE and GSN. 

(2) In the three equations above (26) of [3] (p. 1198), the scalar A^-1 used in the argument of 
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)...,A*,-1)T. 

Still, even if this simple substitution is made, the equation above (26) does not follow from 
the preceding one because 

Qj:_1 ^ Q - M-1GTAk^-1. 

Here m is the number of bond constraints, and GT is the Jacobian matrix. Therefore, 
the statement "which is precisely SHAKE iteration of eq. (25)" does not follow the line 
of argument presented. Recall that here we show the convergence equivalence between 
SHAKE and GSN only when the initial guess for GSN is zero and the rank of Jacobian 
matrix is larger than or equal to the number of bond constraints. 


