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SELECTIVE DECAY FOR GEOPHYSICAL FLOWS* 

ANDREW MAJDAt, SANG-YEUN SHIM*, AND XIAOMING WANG§ 

1. Introduction. The emergence and persistence of large scale structure is a 
common phenomena to many geophysical flows. A well-known example of such large 
scale coherent structure is the big red spot on Jupiter. One way of predicting the 
emergence of such large scale structures is to invoke empirical equilibrium statistical 
mechanics where one postulates some maximum entropy principle and then calculates 
the most probable state. The equilibrium statistical theory usually utilizes a few 
conserved quantities of the underlying (inviscid) dynamics (see the references in Majda 
and Holen (1998), Majda, Embid and Wang (1999)). In this paper we intend to 
explain the emergence of large scale structure using the so-called selective decay theory 
based on the so-called quasi-geostrophic equations with dissipation, and discuss its 
limitations. 

Early numerical investigation of the evolution of coherent structures for freely 
decaying two dimensional Navier-Stokes flows indicated that the enstrophy decays 
much more rapidly than the energy (see for instance the work of Matthaeus et al 
(1991) and Montgomery et al (1993)). This suggests that one might find a suitable 
intermediate time scale over which the energy changes slightly so as to be regarded 
as nearly conserved, while the enstrophy sweeps down much more sharply. This lead 
physicists to hypothesize the following selective principle to characterize the large 
time asymptotic states of the flow. 

Physicist's Selective Decay Principle for Two Dimensional Navier-Stokes 
Flows: After a long time, solutions of the two-dimensional incompressible Navier- 
Stokes equations approach those states which minimize the enstrophy for a given en- 
ergy. 

The appeal of such principle is that it reduces the calculation of the asymptotic 
states of the Navier-Stokes system to a simpler problem in the calculus of variations. 

The purpose of this paper is to consider extensions and applications of this selec- 
tive decay principle to geophysical flows, and also study the limitation of its applica- 
bility. Throughout this paper we will emphasize geophysical effects, more specifically 
we will study the impact of the (3 effect, stratification, F-plane, and various types 
of dissipation including Ekmann drag, Newtonian viscosity and hyper-viscosity, and 
anisotropic diffusion in the vertical direction. 

The paper is organized as follows 
A In section 2 we introduce the basic equations for geophysical flows under inves- 

tigation in this paper.  They include barotropic quasi-geostrophic equations 
(or the one layer model) with F-plane and /3-effect, continuously stratified 
quasi-geostrophic equations and the two layer equations (with a derivation 
using two mode vertical Galerkin truncation of the continuously stratified 
model). 
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B In section 3 we study the one layer model and prove that a similar selective 
decay principle holds either under the presence of Newtonian viscosity or 
hyper-viscosity, or in the presence of Ekmann drag and F-plane. The effect 
of hyper-viscosity is to enhance the selective decay process, and the effect of 
/? plane is to generate Rossby waves in the final states. The mathematical 
proof follows from the work of Foias and Saut 1984 on Navier-Stokes equations 
with some technical complications. We also present some numerical results 
illustrating many facets of the selective phenomena. For instance the numerics 
demonstrate that while the selective decay states are the same as with /? = 0, 
nonzero (3 strongly influences the geometric nature of selective decay states 
by creating zonal shear flows along the z-axis. 

C In section 4 we study the continuously stratified models. First we remark 
that vertically anisotropic diffusivity is natural under appropriate physical 
circumstances (see Embid and Majda (1998)) for continuously stratified flow. 
For this kind of continuously stratified flows we have mixed results on the 
validity of the selective decay principle. More precisely we have 

— Failure of the selective decay principle with anisotropic diffusion. The 
failure is illustrated with an explicit example. 

- Success of the selective decay principle with isotropic diffusion. The 
proof is a simple modification of our proof for the barotropic quasi- 
geostrophic models. 

D In the last section (section 5), we study the selective decay phenomena for 
flows on the sphere based on the one layer model on the sphere. We establish 
the validity of a selective decay principle for this model. Due to the special 
geometry of the sphere, we establish special exact nonlinear dynamics for 
initial data involving superpositions from the first two eigenspaces. This fact 
leads naturally to two versions of selective decay. 

2. The Basic Equations for Geophysical Flows. In this section we recall 
several mathematical models suitable for mid-latitude large scale motion of the at- 
mosphere and oceans. The equations that we introduce are quasi-geostrophic equa- 
tions which models the large scale fluctuation of the geophysical flows away from the 
geostrophic balance (balance between the Coriolis force and the pressure gradient). 
Two types of models will be introduced. One is the single layer model with F and 
(3 plane effects. This is the simplest model. The other is the continuously stratified 
quasi-geostrophic equations. We then derive the two layer model as the two mode ver- 
tical Galerkin truncation of the continuously stratified model. The interested reader 
should consult the book of J. Pedlosky (1979) for more physical background. 

2.1. Single Layer Model with F-plane and ^-effect. The single layer model 
is the simplest model among all quasi-geostrophic models that has the potential of 
capturing the large scale motion. For F — 0 it is simply the one mode (the barotropic 
mode, or the ^-independent mode) vertical Galerkin truncation of the continuously 
stratified model. It is also called the barotropic quasi-geostrophic equations (for F = 0) 
and takes the form 

(2.1) ^M+^ + J(^A^)=2)(A)^ 
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where 

k 

(2.2) P(A):=^(-Ay,    d^O, 
i=i 

is the dissipation operator, x is the longitude direction and y is the latitude direction, 
P is the beta-plane approximation of the sphere geometry in mid-latitude, F — l-^- 
is the square of the ratio of the geometric length scale L to the Rossby deformation 
radius R (see the book of Pedlosky 1979 for more details), 

(2-3) J(f,9) = V±f-V9, 

is the Jacobian of the two functions / and g. In the dissipation operator, j = 1 repre- 
sents Ekmann drag, cfe is the inverse of the Reynolds number related to the classical 
Newtonian viscosity, and j > 3 are hyper-viscosities. Hyper-viscosities have no direct 
physical background. However they are frequently used in numerical simulations of 
various geophysical fluid flows where there is uncertainty regarding the small scale 
dissipative process. 

For the sake of simplicity, we will assume fully periodic geometry, i.e., 

(2.4) i;{x + 27r, y) = ^(x, y + 27r) = ip(x, y), 

or flow on a two dimensional torus T2 = [0,27r] x [0,27r]. We will also impose the zero 
average assumption 

(2.5) /   ipdxdy = 0. 
JT

2 

It is easy to check that this zero average condition is preserved under the one layer 
quasi-geostrophic dynamics (2.1). Hence it makes sense to talk about flows with zero 
average. 

The interested reader is referred to the book of Pedlosky (1979) for a formal 
derivation of this one layer model with F ^ 0 from the rotating shallow water equation, 
and for more physical background. 

Alternatively, the barotropic model with F = 0 can be viewed as the one mode 
vertical Galerkin truncation of the continuously stratified quasi-geostrophic model 
that we shall introduce in the next subsection. 

2.2. The Continuously Stratified Quasi-geostrophic Model. In this sub- 
section we introduce the continuously stratified quasi-geostrophic equations. In the 
continuously stratified, model, the stream-function ip depends not only on the longi- 
tude x and latitude y but also the height z. 

Once again we will assume fully periodic geometry in the domain 

[0,27r] x [0,27r] x [O,27r0] 

with period 27r in x and y and period ^ in z for the sake of simplicity. We also 
impose the zero horizontal average constraint, i.e., 

(2.7) / ilj{x,y,z,t)dxdy = §. 
./[0,27r]x [0,27r] 
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It is easy to check, via taking the horizontal average of the equation (2.6), that this 
constraint is preserved under the continuously stratified quasi-geostrophic dynamics 
(2.6). This zero horizontal average constraint eliminates those stream function with 
trivial (zero) velocity field. 

The continuously stratified model can be derived from the rotating Boussinesq 
equations using Ertel's theorem (see for instance Pedlosky (1979)) and the idea of 
Charney, as the asymptotic limit of fast rotation (Rossby number = Ro = e « 1) 
and strong stratification (Froude number small) and the balance between rotation and 
stratification (F = 0(1)), and utilizing the /?-plane approximation. The interested 
reader is referred to the book of Pedlosky (1979) for a formal derivation, and the 
recent work of Embid and Majda (1998) for a rigorous justification. Indeed, Embid 
and Majda (1998) proved that the viscous dissipation operator should take the form 

(2.8) ^ = iA^ + lF2d^ 
where 

A3 = A + ^ 

is the three dimensional Laplacian. The Reynolds number 

PbUL 
Re = 

» 

is the relative strength of inertial term with respect to the viscosity term, with 
Pb,U, I/,/i being the reference density scale, typical velocity, typical length and the 
Newtonian viscosity of the fluids respectively. The Prandtl number 

PbD 

is the relative strength of the kinematic viscosity with respect to the thermal diffusivity 
D. 

Fr 

Ro 

is the ratio of the Froude number Fr and the Rossby number Ro with the Froude 
number measuring the relative strength of stratification defined as 

U 
Fr = . 

LN 

The Froude number is the ratio of the buoyancy time scale Tn = TV-1 (iV is the 
constant buoyancy frequency, or the Brunt-Vaisala frequency) and the eddy turn over 
time scale Te — L/U, and the Rossby number 

U 
R°=Lf 

is the ratio of the rotation time scale Tr = Z-1 and the eddy turn over time scale. In 
another word, F is the relative strength of stratification with respect to the rotation. 
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Alternatively we may propose the following higher order dissipation operator to 
incorporate hyper-viscosity 

3=1 

One important point for this continuously stratified model with dissipation is 
the anisotropic diffusivity in space. We will see in section 4 that the validity of the 
selective decay principle for this continuously stratified model depends on whether 
this anisotropic property is there, more precisely we will show the validity of selective 
decay if we have isotropic diffusivity and failure of the selective principle in other 
cases. The anisotropic diffusivity comes naturally from the nature of the physical 
problem. In general we have 

Pr^l. 

For instance we have for salt water, Pr ~ 200. The interested reader is referred to 
the work of Embid and Majda (1998) for more details. 

Next we are interested in deriving the one and two layer models as the one and 
two mode vertical Galerkin truncation of this continuously stratified model. 

2.3. Derivation of the One Layer Model. In order to derive the one layer 
model we propose the following one mode vertical truncation of the continuously 
stratified model: 

(2.9) il>(x,y,z,t)=il>b(x,y,t). 

Substitute this into the continuously stratified model (2.6) we deduce 

« '-& + '%+ >l*-*H-fc'* 
which is exactly the barotropic quasi-geostrophic model (2.1) with infinite Rossby 
deformation radius (or F = 0) and the dissipation consists of Newtonian viscosity 
only. 

2.4. Derivation of the Two-Layer Model. Next we derive the two-layer 
quasi-geostrophic equations by taking a two mode vertical Galerkin truncation of 
the continuously stratified model (2.6). Such models are prominent in studies of the 
dynamics of the atmosphere and ocean (see Pedlovsky's book). The intuition behind 
is that the z independent vertical mode gives the barotropic mode and thus we need 
a vertical shear to incorporate the baroclinic mode associated with the transport of 
heat. For simplicity in exposition, we neglect diffusion in the derivation below. 

Without loss of generality we assume 0 = 1 and we approximate the stream 
function ip with the first two modes in the vertical Fourier expansion 

(2.11) ilj(x,y,z,t)= ^b(x,y,t) + ipt(x,y,t)y/2smz. 

Substitute this into the continuously stratified model (2.6) and notice for the Jacobian 
we have 

J(il), Aip + F2
-Q^) = J&b + iptV2smz,Aipb + (Aipt - F2^t)V2smz) 

= J(V>6, AVfc) + y/2sinz(J(^, A^) + Jtyb, Mt - F2^t)) 

+2sm2zJ(ipt,Aijt-F2ipt). 
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The projection of the right hand side onto the first two vertical Fourier bases 
{1, V2smz} yields, following components for each modes: 

(2.12) -AV6 + J(il>b, Ail>b) + J(tj>t, Aipt - F2^t) + d—ipb = 0, 

(2.13) -(A^ - F2^t) + Jfa, Aipb) + J(^, A^ - F2^t) + /?—^ = 0. 

These two equations can be reorganized (addition and subtraction) to the following 
form 

(2.14) ^(A(V'6 + i>t) - F2^) + J{il>b + Vt, A(^ + Vt) - F2^t) 

(2.15) di^b - ^) + F2^ + J^ - i>u A(V6 - ^) + F2^t) 

+{3—(ipb-i>t) = 0. 

The well-known (inviscid) two-layer model then follows once we define the stream 
function ^ for each layer as follows 

(2.16) . tyi = ifrb + ifru    fa = ifrb - ifru 

and the two layer model takes the form 

(2.17) ^(A^i - F'^ - fo) + Jtyu A^i - F'^ - fo)) + /3 A^ = o, 

(2.18) -(AV2 + F'(Vi - V2)) + J(^2, AV2 + ^(Vi - ^2)) + /3^V2 = 0, 

where 

F2 

Since our derivation is different from the classical approach of considering two layers 
of homogeneous fluids superimposed on each other (see for instance Pedlosky (1979) 
and Gill (1982)), we need to check if F' = —- can be interpreted as the rotational 
Froude number. For this purpose we recall the the square of the buoyancy frequency 
N (or the Brunt-Vaisala frequency), can be approximated as 

(2.i9) A^-^-^f1. Pbdz pL/2 

We then deduce 

F2        f2 f2pL 
(2.20) 

2       2Ar2      gfa-pi)' 

This implies that F* = ^- can be interpreted as the rotational Froude number. This 
ends the derivation of the two layer model. 

It is easily observed that ipb is the barotropic component of the stream functions 
since it is the average of the stream functions in the two layers, and ipt is the baroclinic 
component of the stream functions since it is the difference of the stream functions in 
the two layers. 
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3. Selective Decay for the Simplest Geophysical Model. In this section we 
study the selective decay phenomena associated with the simplest geophysical model, 
namely the one layer model (2.1) or the barotropic quasi-geostrophic model, both 
analytically and numerically. We prove rigorously that the selective decay principle 
remains valid for this simple model. However the presence of geophysical effects 
greatly alters the long time dynamics. More precisely we will show that 

1 The presence of hyper-viscosity enhances the selective decay process. 
2 The presence of the /?-plane approximation generates Rossby waves. More 

precisely, for non-zero /?, the long time dynamics is the superposition of a 
zonal flow and Rossby waves. This is in contrast to the case when there is 
no (5 effect and the long time dynamics are steady states only. Elementary 
numerical simulations show that non-zero (5 can lead to highly anisotropic 
behavior in selective decay through the emergence of jets and shear flows 
primarily along the x-axis. 

3 When there is a non-trivial F-plane effect, i.e. F ^ 0, then Ekmann drag 
has the selective decay effect. This is in contrast to normal fluid flows where 
zero order dissipation has no selective decay effect (see for instance Majda 
and Holen (1998)). 

In the first subsection we will state our theorem and present a rigorous proof. 
Then in the second subsection we present out numerical results illustrating many 
facets of this selective decay phenomena. 

3.1. Statement and Proof of the Selective Decay Principle for the One 
Layer Model. The purpose of this subsection is to derive and prove the selective 
decay principle for our one layer model (2.1). 

Recall that the physicists' selective decay principle suggests that the long time 
behavior of the system are those states which minimize the enstrophy with given 
energy. For conciseness we refer to such a critical point of the enstrophy at constant 
energy as a selective decay state. We do not know a priori that selective decay states, 
so defined, are bona fide solutions to or invariant under the underlying equations. At 
the moment, a selective decay state is just a velocity or vorticity profile satisfying the 
variational principle. The selective decay hypothesis is that arbitrary initial velocity 
fields somehow approach the flow configuration of a selective decay state in the long 
time limit. It is hard to imagine the selective decay principle being valid unless the 
selective decay states turned out to be invariant under the dynamics of the one layer 
quasi-geostrophic equations (2.1). More precisely, we are interested in asking if under 
time evolution via the one layer quasi-geostrophic equations a selective decay state 
continues to minimize the enstrophy at its energy level at later times. Such a property 
will at least render the Selective Decay Principle meaningful. If such selective states 
are invariant under the one layer quasi-geostrophic dynamics, we then need to check 
if an arbitrary solution converges to some selective state. This is the key part of the 
selective decay principle. We also need to explain the numerical fact that all flows 
converge to the largest coherent structure allowed by the geometry. This is most likely 
to be explained using a stability argument. We also need to identify the geophysical 
effects (in our case it is the beta plane, F plane and the artificial hyper-viscosity) since 
we are interested in geophysical applications. To summaries, we have the following 
issues 

• Invariance. This is the one that makes the selective decay state meaningful 
• Convergence. This is needed to justify the the selective decay principle. 
• Stability. This is useful in interpreting the numerical results which indicates 
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all flows converge to some ground states. 
• /3-plane effect, hyper-viscosity and F-plane effect.   This is useful since we 

would like to identify the geophysical effects. 
For the case of Navier-Stokes equations (no beta-plane, no F-plane, no hyper- 

viscosity) the selective decay phenomena were studied by Matthaeus et al (1991), 
Montgomery et al (1993), A. Majda and M. Holen (1998), C. Foias and J-C. Saut 
(1984) among others. In particular, the work of Foias and Saut rigorously established 
the validity of the selective decay principle for two dimensional Navier-Stokes flows. 
Our proof in this section will be a modification of their original work. 

Next we proceed to compute the selective decay states. The computation is a 
simple application of the Lagrange multiplier method. First we recall that the total 
kinetic energy E and the total enstrophy £ is defines as 

(3.1) E^l-j{\VH?+F^) = -l-j^q 

(3.2) £=\Jq2'    Q = A^-F^ 

where the integration is over the torus T2 = [0,27r] x [0,27r]. 
The variational problem we have is to minimize £ with the following energy 

constraint: 

(3.3) JS(^) = E' 

According to the Lagrange multiplier method we deduce the following simultane- 
ous functional relations 

(3.4) Efa) = E', 

(3-5) ^i*-=v**- 
The derivatives of the quadratic energy and enstrophy functionals are 

(3.6) ^ = _A^ + ^> 

(3.7) g = (A - F) V 

Hence we end up with a simultaneous system 

(3.8) Ety*) = E', 

(3.9) (A - F)>* = -A(A - F)il>*. 

This implies that the stream function V* for the selective decay state must satisfy 

(3.10) £(V*) = E1, 

(3.11) -A^ = (A-F)V*. 

Hence it must be one of the eigenfunctions of the Laplace operator. 
It is interesting to notice that such eigenvalue-eigenfunction problems also emerge 

in the classical energy-enstrophy statistical mechanics in predicting the most probable 
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states (see for instance D. Montgomery and G. Joyce (1974), A. Majda and M. Holen 
(1998) and Majda, Embid and Wang (1999) among others). 

The eigenfunctions of the Laplacian in the periodic setting can be easily calculated 
as the generalized Taylor vortices: 

(3.12) il>j=    ][]   A^'t + cc 

|£|2=Ai 

where Aj = |£;|2, k G Z2 are the eigenvalues. 
Recall that 

(3.13) e(rj>i) = (Aj + F)E(il>j), 

hence we may conclude 
1. The ground states are the actual minimizers of the enstrophy with given 

energy. Other Taylor vortices are saddle points. 
2. All flows will approach a Taylor vortex of the lowest eigenvalue A = A* 

permitted by the symmetries if the physicists' selective decay principle is 
true. 

Of course these statements still need to be verified. 
We check the first issue for selective decay states, i.e., the invariance of these 

states under the barotropic quasi-geostrophic dynamics. 
The first thing we notice is that the nonlinear term drops out for selective decay 

states, i.e., 

J(^, Aif;) - 0 

since 

A?/; = -Ajip. 

Hence we end up with a linear equation 

dt        dx 
(-Ai-^ + z^^HW 

The solutions can be computed easily as 

ik-x    ik\t A _. 4.pi _      A+F (3.14) ^(t) =   J2   M0)6 7^TFe 

provided 

(3.15) tf(0)=    ][]   ^(O)e^ 

iSl^A,- 

It is then reasonable to speculate, based on this representation, that 
• The (3 plane generates dispersive Rossby waves 
• The Rossby waves degenerate into generalized Taylor vortices at vanishing /3 

effect 
• For Ekmann drag where P(-Aj) = ofoAj, there are equal decay rates for all 

wave numbers for F = 0 but rather weak selective decay effects for F ^ 0. 
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Of course these statements still need to be verified. 

Since we are studying freely decaying flows, it is natural to study the normalized 
(in H1) stream function 

(3.16) m=  m 

wmo' 
Since the numerical results suggest the consistently more rapid decay of the en- 

strophy over the energy, we introduce the generalized Dirichlet quotient A(t): 

(3.17) AW = || 

We now state our selective decay principle for barotropic quasi-geostrophic flows 
with arbitrary geophysical parameters 

THEOREM 1 (Math Form). Assume the existence of Newtonian viscosity or hyper- 
viscosity,i.e., 

k 

(3.18) YldJ>0 

i=2 

or the presence of a non-trivial F-plane approximation and Ekmann drag, i.e., 

(3.19) di > 0,    F > 0 

the following selective decay principle holds for the one layer model (2.1): For arbitrary 
initial data, the generalized Dirichlet quotient A(£) monotonically decreases to Aj +F 
for an eigenvalue Aj of the Laplace operator, i.e. 

(3.20) lim A(t) = Aj + F. 

There exists a solution rjj(t) of the linearized barotropic quasi-geostrophic equation 
with motion restricted to the jth energy shell (this implies that it is a superposition of 
a zonal flow and Rossby waves) such that 

(3.21) V$(t)-Vr)j(t) 0 as t —)• oo. 

The Rossby waves degenerate into generalized Taylor vortices in the absence of the 
geophysical (5 plane effect. 

We first present a proof of the decay of the generalized Dirichlet quotient. The 
original proof of the decay of Dirichlet quotient in the presence of hyper-viscosity is 
due to Z.P. Xin (1998) and the original proof of the decay of the Dirichlet quotient 
for two dimensional Navier-Stokes flow is due to Matthaeus et al (1980). Here we 
incorporate more geophysical effects and we present an alternative proof. 

LEMMA 1. 

(3.22)   ^ = _il(^^^g^w||(_A)^^_Mt)(_A)^^ 

^  ) 3=1 1=0 
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where 

(3.23) A, =   "-*?"% 

is the Dirichlet quotient for the velocity field v = V1"^, and 

(-A)^||§ 
(3.24) A^ = 

is the Dirichlet quotient for the stream function. In particular, —^- < 0 with equality 
obtained only for the selective decay states. 

It seems worthwhile to point out two simple consequences of this lemma 
• Hyper-viscosity enhances selective decay process, 
• Ekmann damping di has no selective decay effect unless there is a non-trivial 

F-plane effect. 
For the proof of this lemma we recall the definition of fractional powers of the 

Laplacian. Let 

(3.25) V' = EV ik-x 

k 

we then define 

(3.26) (-A)^ = X)   E   AfAje***, 
/    \k\2=Ai 

(3.27) (-A + F)> = 5^   ]r   (Az+FJMge**'*. 
'    \k\2=Ai 

It is easy to see that the energy and enstrophy are conserved in the case without 
damping. In the general case with damping we have 

d (3.28) -E = Y/dj\\(-Ay/^\\l, 

k 

(3.29) ±£ = J2 dill(-A + F)^(-Ay^\\l. 

We then deduce the equation satisfied by the generalized Dirichlet quotient: 

(3 30)  ^ - I (W) {6-60)     dt    - dt\E{t)) 
1   -m)E{t) - £{t)E{t)) 

E2(t) 
k 

-^r)(T/dj\\(-A + F)i(-A)h\\l\\(-^ + F)h\\l 

k 

-Wi-A + FMl^TdM-^hWl) 
3=1 
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k 

E2(t) 
^dM-^+FfH-^mu-^+F^ni 

-||(-A + F)^||g||(-A)iV||§) 
k 

-W77TE^((ll(-A)^^lo+i;,|l(-A)^llo)(ll(-A)^ll^+i;,|iV'll^) 
E W ^ 

-(II - A^||§ + 2F||(-A)^||g + F2||V^)||(-A)iv€) 
k 

x; ^(iK-Aj^viigiK-Aj^Hg - ii - A^iigiK-Ajmig 

+F(||(-A)^iVII^IIV'll^ - ||(-A)^||§||(-A)^||§)). 
We observe (this is the key part of the proof of this lemma) that for j > 1 and 

arbitrary constant C, 

(3.31) ||(-A)^VIIo - C|l(-A)Mlo - IK-A)^ - Ct-A^llg 
+2C((-A)i*1V,(-A)ii1^) 

-c^K-A^nl-cu-^ini 
= ||(-A)i*i^-(7(-A)^||§ 

+2C((-A)^,(-A)^) 

-C^IK-AJ^Ilg-CIK-A)^!!? 
= ||(-A)i*1V-C(-A)iii^||§ 

+C(||(-A)^||§-C||(-A)ii1VII§), 

and 

(3.32) H-A^llg-A.WIK-AjMl^O, 

and 

(3.33) ||(-A)Mo-A*(t)IHI§ = 0. 

Thus 

(3.34) IK-A)i*iVII^II(-A)"V||^ - || - AVC||(-A)Mlo 
= IK-A^VIIgaK-A^llg - A,(i)||(-A)^||2) 

= ||(-A)Ml§EA«(*)ll(-A)i±*=i^ -At,(t)(-A)i=^^||g, 
1=0 

and 

(3.35) ||(-A)i*iVll^llV'll^ - ll(-Ai&)||§||(-A)M|3 
= IHI§(ll(-A)i*1VII§-A^(t)ll(-A)^||g) 

gEA^WIK-A)4^^ -A4i)(-A)i^VII^ 
/=0 
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This completes the proof of the lemma. 
Notice that 

(3 36) m = 11A^ + 2F11(-A)^|l^ + F2ll^llg 

\\(-A)iiP\\2o + F\mt 

__||A^||§ + F||(-A)l#g 

\\(-A)H\\l+F\mi 
> Ai+F 

+ F 

by Poincare inequality. 
With this and the lemma in hand, we deduce the following 

1-     MT - 0' ^dt    — ^ ^ and only if tfj ^ one 0f the selective decay states, and 
A(£) = Aj + F for all succeeding times. 

2. A(*) >A1+F = l + F. 
3. Hence 

lim A(t) =A* > Ai +F 
t—too 

must exist. 
Our goal now is to prove that this limit A* must be the sum of an eigenvalue Aj 

of the Laplacian and F. We consider the case F ^ 0 only. The case F = 0 is much 
simpler. 

For this purpose we notice that the Lemma and the lower bound on the generalized 
Dirichlet quotient implies that 

(3-37)       jTI^lMlK-A^-M-A)^ 

+F£
0
 Sll-A)* - A,,* < co. 

Thanks to interpolation inequality, we have 

'"-AMIS 
(3.38) A„ = 

> 

-A)Mlg 
-A)M|§ 

A,/ 

Thus 

(3.39) A(t)= 1^118 +F||(-A)M|8 
ii(-A)mi§+FiHi§ 
A^ + F 

1 + F/A^ 
+ F 

>   ^ + F   +F 

= A^, + F. 

This together with Poincare inequality implies the following bound on A^ 

(3.40) Ai < A^(t) < A(*) - F < A(0) - F. 
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Likewise we have the following bound for A,,, 

(3.41) Ai < Av(t) 

= (A(t)-F)(l + F/A^)-F 

<(A(0)-F)(l + F/Ai)-F. 

With these in hand we deduce 

II(-A)MIS_       ll(-A)Ml^ 
VO.t.&j 

E2(t) 

mo / i\ 

(\\(-A)h\\i+F\\m2 

\\(-*)h\\t 
"(||(-A)Ml3 + ^ll(-A)MlS/Ai)2 

A? 

and 

(3.43) 

(Ai+F)2- 

IIV'II^ 

> II(-A)MI3 
(\\(-A)H\\2o + F\\(-A)h\\2o/Ai)2 

Af        1 

> 

(Ai+F^A^ 

Af 1 
(Ai + F)2 (A(0) - F)2 

by (3.40). 
We now define 

(3.44) 5 = inf inf maxflAj - A„(t)|, |Aj - A^^)!}. 
*    j 

We would like to show that 5 = 0. 
It is easy to see that either 

(3.45) ||(-A)^-M-A)m|g^ 
-A)^||. 2 

110 

or 

(3 46) ||(-A)^-A^ (3-46) j^Hg >    • 

When this combined with (3.42) and (3.43) we have 

(3.47) jT M^I|,(_A)l^M_A)m|.+F jT M|||(-A)^A^||2 

r*       Af        ||(-A)SV>-AP(-A)^||§ F ||(-A)^-A^||§ 
-J0    (Ax+F)^ ||(-A)i^||§ +(A(0)-F)2 ||^||§ ; 

F A2 Z*00 

^^^'(AM^F1?^:^^ 62- 
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Since the improper integral converges, we must have 

(3.48) 5 = 0. 

This implies there exists sequences {tk} and {Ajk} such that 

(3.49) Ajk -Av(tk)-*0, 

(3.50) Ajk -A^)->0. 

Since Av(t),A^(t) are uniformly bounded, thanks to (3.41) and (3.40), we may choose 
a subsequence still denoted {tk} and {Ajk} such that 

(3.51) Ajk -4 A,-. 

Hence 

Ai + F 
1 + F/Aj^ 

= Aj + F. 

Since A(t) is monotonic, the whole sequence converges. 

We now proceed to prove the main part of our theorem.  In order to prove our 
theorem we assume Newtonian viscosity for simplicity in exposition i.e. 

(3.53) d2 = Re'1 > 0, and dj = 0 Vj £ 2 

and infinite Rossby deformation radius, i.e., 

(3.54) F = 0. 

Our intuition is that the motion is concentrated on the jth energy shell. To verify 
our intuition it is useful to introduce the following projection operators 

• PAJ • projection onto the jth energy shell; 
• QA

-
 • projection onto the lower modes; 

3 

• QA+: projection onto the higher modes. 

The normalized flow is 

*     IIW'llo' 

Our main theorem is now equivalent to the combination of the following three 
properties 

• Decay of the lower modes 

QA-^(*)->0    in    H1 

• Decay of the higher modes 

QA+#)->0    in    H1 
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• Linear dynamics on the jth energy shell, i.e., there exists ^ (solution to the 
linear barotropic quasi-geostrophic equation) such that 

PAMQ-rijW-tO    in    H1 

To start with, we recall the well-known optimal (initial data dependent!) decay 
estimates for energy and enstrophy. 

Indeed, thanks to the energy equation 

(3.55) l±\m\\l + vMt)\\l = ~||tr(t)||§ + i/A(t)||ir(t)||§ = 0, 

we have 

(3.56) ^lll^Wllo + ^H^II^O. 

Since A(t) is non-increasing and the limit is Aj (F — 0!), we have 

(3.57) |Kt)||o < \\v{to)\\oe-v^(i-to)■ 

Thus the enstrophy is bounded by 

(3.58) ||a;(i)||o < ||w(io)||oe-^(f-<o), 

since 

(3.59) IK*)llo = A(t)ll«(*)llo 
< A(toMto)||§e-2,'A'<t-*''> 

= ||w(to)||§e-2,'A^t-t''). 

A lower bound on the energy decay rate can be derived as well.  In deed, since 
the Dirichlet quotient is non-increasing we have, thanks to the energy equation, 

(3.60) \jt\\v{t)\\l + ^{h)\W)\\l > 0, V t > t0 

Hence we have 

(3.61) Hi)||2 > lltrftOllge-2"^")'*-*0), V t > to 

We may also derive a decay rate for VA^.   For this purpose we multiply the 
barotropic quasi-geostrophic equation (2.1) by -A2^ and integrate over T2. 

Notice for the nonlinear term we have 

(3.62) | f Jty, Ait)A2V| < ||W>||L~IIV^AVHollA2V||o 

^cUVVlllllV^A^IllllA^II2 

<c||V^||l||AV.||of||AV||l 

<^||AVllg + c||V^*)||Sl|A^t)||S 

< ^||A2V||^ + c\\Vtl,(h)\\t\\W(to)\\le-10,'Wt-to) 
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where we employed classical Sobolev imbedding, Agmon inequality, interpolation in- 
equality, Holder inequality and our decay estimates on the energy (3.57) and enstrophy 
(3.58). Thus we deduce 

(3.63) |||VA^||§ + i/||AVll§ < c||V^(^o)||4ol|A^(^o)||^-10^^). 

Notice, by interpolation inequality, we have 

(3-64) ||AV||2>||V^||2i!j^jP 

> ||VA^II2^M 
-l|VA*llol|Vifli8 

= A(t)||VAV»||§ 
> A^-HVA^Hg. 

Utilizing this estimate in (3.63) we deduce 

(3.65) |||VAV>||2 + ^HVAtfllg < c||V^(*o)|l3l|A^(to)||ge-10''A^t-*'') 

Applying a Gronwall type inequality we deduce 

(3.66) HVAVWIIJi < e-^^-'^HVAV^o)!^ + c||VV(io)||^||AV(io)||^-^('-t°) 

This is the decay rate that, we will use in the sequel. 

In order to carry out our three tasks regarding the normalized stream function it 
is useful to recall the equation satisfied by the normalized (in H1) stream function tp. 
It is easy to check that 

(3.67) ^A#) +P^ + \W)\\oJ$, AVO - ^2i> - vA(t)A$(t) = 0. 

We notice that the nonlinear effect decays as the time evolves for this normalized 
problem. However we have the destabilizing term i>A(t)Aip(t). 

We start the process with the simplest task among the three, namely the decay 
of higher modes. This is intuitively clear since we anticipate that higher modes decay 
faster if the nonlinear effect is negligible. 

Notice for the nonlinear term we have 

(3.68) \Jj$,A$)QA+$\ = \Jj$,QA+i>)W\ 

< UWiMiv^+ySiMiA^iio 

< c||V^llJ||VVilli||V-LQ^IIO*IIV-LQA+^H* x||A^lo 
3 3 

<C||V^||O||V^||HI||A^||O 

< cA(t). 

Hence we have (since A(£) is uniformly bounded), 

(3.69) l-^\\VQx^\\l + i/||AQA+^||§ - vAmVQ^Wl < cA(t)||tr(t)||o. 
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Thanks to Poincare inequality, we have 

(3-70) l|AQAt^llo>Ai+i||VQA+$lS. 
3 3 

Utilizing this in (3.69) we deduce 

(3.71) ~||VQA^||§ + i/(Ai+1 -A(t))||VgA^||§ ^ce-^C-*"). 

Now we take £o large enough so that 

(3.72) A(t)<-(Aj+1+Aj),    V   t>to 

we have 

(3.73)   ^||VQA^||g + i/(Aj+1-Ai)||VQA+^||g<Ce-'A^t-*«>)>    V   *>*«,. 

This further implies, by a Gronwall type inequality, 

(3.74)3 

This proves the decay of the higher modes. 
We now proceed with the proof of the decay of the lower modes. This is less 

obvious. We employ here a Lyapunov-Perron type technique which is frequently used 
in the study of long time behavior of dynamical systems (see for instance J. Hale 
(1988) and R. Temam (1997) among many others) 

Notice for the nonlinear term we have 

(3.75) \J J$,^)Q^\<ck{t) 

just as in the case of higher modes (3.68). Hence we deduce 

(3.76) \±\\VQ^nl + i/||AQA-« - I/A(t)||vgAr ^||§ > -cAWPWHo 
Z (It 3 3 3 

Thanks to a reversed Poincare inequality on the range of QA- we have 
3 

(3-77) IIAQ^II^A^xllVQ^IIJj. 

We then deduce 

(3-78) ^HVQA^HO > "(AW - Aj-imQ^Wl - ce-^-'o) 
2 _      -vA.jtf-to) > uiAj - Aj-^WVQ^^ - ce 

or 

(3.79) jt(e-2''{A>-Ai-l)t\\VQA-m\\l) > -ce-"^'-2^-^. 
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Integrating this inequality from t to T (T > t > to) we obtain 

(3.80) e-^'-A'-^llVQ^Cnilg 

i 

or equivalently 

(3.81) e-2''^-^-»)(r-t)||VgA-^(T)||§>1|VQA-^(t)||g-Ce-'A^ 
3 3 

Letting T approach infinity (||VT/S||O = 1) we get 

(3.82) WVQ^mWl^ce-"^. 

This proves the decay of lower modes. 
We now concentrate on the dynamics on the jth energy shell. 
For convenience we introduce the notation 

(3.83) ^j = PAjip 

We notice that ipj satisfies the equation 

(3.84) -A,- J^J + p^ + PAi Jty, AVO = vAty 

or equivalently 

!*-£g+'M,=.-*. (3.85) — fy - f--~f + v/Ljipj = e-^'V. 

where 

(3.86) / = ^_pA.j(V,!A^. 

The equation can be written in the following form 

It is easy to see that / satisfies the following estimate 

li/Wllo^ce^'IIV^IUcollVA^Ho 

< oe^*!!A^||o(l + log |^|)*IIVAV>||o 

< cc^*||A^||o(l + log -f^^e-^*'2 

<c(A{0)-Aj)it$e-''Ait'2 

where we applied the Brezis-Gallouet (1980)inequality , the optimal decay rate for 
the enstrophy (3.58) and the lower bound on the decay rate for energy (3.61). This 
estimate implies that 

feL1. 
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To better understand the situation, we invoke the Fourier series representation. 
Let 

|A|2=Ai 

/= E /; 
|fcP=Ai 

ik-x 
k^ 

We then have 

(3-88) ^-^ + ^ = e-^4, 

which is equivalent to 

(3.89) .i^-^v.,^-^.;.. 

This suggest that we make a mode dependent phase shift and introduce the following 
new variable 

(3.90) *= E ^Ai" ^tj'k-Z 

The new variable satisfies the equation 

(3.91) 
d * 

with 

(3.92) g(t)=    Y,   e    Ai 

|fc|2=Ai 

*&*■*. 

We notice that 

(3.93) gel1, 

since 

(3.94) \\g{t)\\n = ||/(*)||o. 

This implies that the long time behavior of the shifted problem can be characterized 
in the following way. Let 

poo 

(3.95) <t>oo = Mto)+ /    g(')ds, 
Jto 

we have the convergence of the shifted problem as 

(3.96) \\<l>j(t)-<l>oo\\o<cth-vA^2. 
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To translate the result back to our original variable we assume that ^oo has the 
representation 

(3-97) 4>co=     £    t^j 
|fc|2=A; 

and we define 

m** 
(3.98) w) =  E e Ai 'Lr^'"' 

Notice that £j solves the linearized one layer inviscid equation 

and satisfies 

(3.100) (I-PAJ^O, 

and 

(3.101) ||V^(t)||o = llVVoollo- 

Thus we have the following convergence result 

(3.102) He^'ViW - SMU < cth-'^2 

which further implies 

(3.103) e^||V^mo -+ /nn ||V^(t)\\o - ||V0oo||o, 

or 

(3.104) e^^HV^IIo = 1^00110 + 0(1). 

To complete the proof of our main theorem it remains to prove 

(*m*\                                        ||     ^iW ^iW     ||      vn (3-105J ..       , ... T7=-—17- o -+ U, IIV^WHo      HV^oollo 
since all norms on E^ are equivalent and we already have the decay of the higher 
modes (3.74) and the decay of the lower modes (3.82). Our estimates of the decay of 
motion off the jth energy shell (3.74 and 3.82) imply 

(3.106) ||V^||o = ||V^||o + i.o.t. 

where Lo.t. represents lower order terms. Thus 

||V^(t)||o     .e^'UV^Ho       HWoollo' 

This completes the proof of the main theorem with 

(3-108) Vj = ,,v% ■■  • 
IIV'Poollo 
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Thus the only thing left is to study the stability of the ground energy shell and 
the instability of higher energy shells. The stability of the ground energy shell and 
the instability of the higher eigenstates is a well-known result (see for instance Majda, 
Embid and Wang (1999)). The basic idea to prove the instability of the ^h energy 
shell for j > 1 is to consider a small perturbation from the ground energy shell. No 
matter how small the perturbation is, the generalized Dirichlet quotient will be less 
than Aj + F and hence the corresponding selective decay states must live on lower 
energy shells. 

3.2. Numerical Study of Geophysical Effects in Selective Decay. In this 
subsection we present various numerical simulations which verify our selective decay 
principle and illustrate interesting facets of the selective decay process with geophysi- 
cal effects. In particular we will see that even though the selective decay states are the 
same with or without the /3-plane, ft often strongly influences the geometric nature 
of selective decay states. 

The numerical method used here for the simulations is a standard pseudo-spectral 
method used by Majda and Holen (1997), Grote and Majda (1998). For the nonlinear 
term (Jacobian), the code computes v — V1-^ and VA^ in Fourier space with an 
exponential filter for de-aliasing high frequencies, and then computes the nonlinear 
product v-VAi/j = J{ip, Aip) in physical space. An explicit fourth-order Runge-Kutta 
method with adaptive time stepping is utilized for the time evolution. The resolution 
of the numerical grid is 64 x 64. The reader is referred to the work of Majda and 
Holen (1997) or Grote and Majda (1998) for more details on the numerical method. 

3.2.1. Measure of Anisotropy. We are particularly interested in the ^-effect. 
It seems that (3 often changes the geometric feature of the long time asymptotic 
dynamics. In order to give a quantitative measurement of the anisotropy in the flow, 
we recall the Rhines (1975) measure of anisotropy which is defined as 

II       112 11^112 

(3 109) n = ™ =    9v 

(i    ' M8 + M8    living- 
For R = 1, we have a purely zonal flow along the x-axis. 

3.2.2. Three Numerical Examples. In this subsection we describe three types 
of numerical simulations. For all our numerical simulation, there will be no F-plane, 
nor hyper-viscosity or Ekmann drag. We assume Newtonian viscosity only. The 
Reynolds number of the problem is then defined as 

^       LmaxltTI 
(3.110) Re = —l-1 

«2 

where L is the typical length which is 27r in our case. We use cfe = 0.01 which yields 
an initial Reynolds number, Re = 200 for the results below. 

The initial data for the first simulation is a perturbation by two vortices of a 
special steady state solution to the inviscid problem with no /?-plane. These steady 
states are solutions of the so-called sinh-Poisson equation. For more detailed discus- 
sion about these solutions to the sinh-Poisson equation, the reader is referred to the 
original work of Ting, Chen and Lee (1987), or Majda and Holen (1998), or Grote 
and Majda (1998) or the book of Majda, Embid and Wang (1999). More specifically 
the initial data takes the form 

2 

(3.111) A^(f,0) =CJO =UJC,I + ^AA(|f-£i|), 
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where 

(««>        w>-{(1-(},,,;£:^ 
and 

TT 

(3.113) xi = (7r,7r),f2 = (T^
71

") 

(3.114) i4i =5, A2 = -5 

(3.115) r = TT/IO 

where c<;c?i is the vorticity of the sinh-Poisson solution. The initial Reynolds number 
is about 260. Figure 3.1 illustrates the numerical results on energy, enstrophy and 
Dirichlet quotient decay, Rhines measure for anisotropy and selective decay states 
with and without /?. We emphasize the difference in the measure of anisotropy and 
the difference in the geometric feature of the decay states. For the case with ft = 5 
we observe complete anisotropy with zonal flow in the limit in contrast to /? = 0. 

The initial data for the second simulation is a perturbation by nine random vor- 
tices of the same solution to the sinh-Poisson equation. The random vortices are of 
the same form and same magnitudes with random location and random radius. The 
initial Reynolds number is about 179. Figure 3.2 illustrates the numerical results on 
energy, enstrophy and Dirichlet quotient decay, Rhines measure for anisotropy and 
selective decay states with and without /?. This times the selective decay states with 
/? looks like horizontal translation of the selective decay states without /?, and for 
these initial data, the selective decay state shows no effect of /?. 

The initial data for the third simulation is the following stream function used by 
Rhines (1975) 

(3.116) ^(£, 0) = cos(a; + 0.3) + 0.9 sm(3(y + 1.8) + 2x) 

+0.87sin(4(x - 0.7) + {y 4- 0.4) + 0.815) 

+0.8 sin(5(z - 4.3) + 0.333) + 0.7 sm(7y + 0.111) 

Note that the various modes superimposed here result in a broad spectrum of the 
stream function. The initial Reynolds number is about 8046. Figure 3.3 illustrates the 
numerical results on the decay of energy, Dirichlet quotient (the difference in enstrophy 
decay is almost indistinguishable), Rhines measure of anisotropy for different f3 and 
the difference in geometric nature of the selective decay states for different values of 
/3. For /? = 3, the final state is roughly 75% zonal flow and has a large zonal jet. The 
cases with (3 — 0 and /? = 5 are more isotropic. These results point to very subtle 
development of zonal jets in the final state. 

4. Selective Decay for Stratified Flows. The purpose of this section is to 
study the selective decay phenomena associated with stratified flows using either the 
continuously stratified model (2.6) or the two layer model (2.18). The situation 
with the continuously stratified model is quite subtle. In fact the validity of the 
selective decay principle depends on whether we have anisotropic diffusivity. In the 
case of isotropic diffusivity, the selective decay principle remains valid while for the 
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FIG. 3.1. Decay of an exact solution of the sinh-Poisson equation perturbed by two-vortices. 
Solid lines: {3 = 0. Dashed lines: P = 5. Upper Left: Energy vs. Time (t = 0 ~ 500,). Upper 
Right: Enstrophy vs. Time (t — 0 ~ 500,). Center Left: A(t) vs. Time (t = 0 ~ 500). Center 
Right: Anisotropy Measure vs. Time (t = 0 ~ 500/ Lower Left: Snapshot of the stream function 
at t = 500, with (5 = 0. Lower Right: Snapshot of the stream function at t = 500, with {3 — 5. 
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FIG. 3.2. Decay of an exact solution of the sinh-Poisson equation perturbed by nine-vortices. 
Solid lines: /3 = 0. Dashed lines: 0 = 5. Upper Left: Energy vs. Time (t = 0 ~ 500/ Upper 
Right; Enstrophy vs. Time (t = 0 ~ 500/ Center Left: A(t) vs. Time (t = 0 ~ 500/ Center 
Right: Anisotropy Measure vs. Time (t = 0 ~ 500/ Lower Left: Snapshot of the stream function 
at t = 500, with (3 = 0. Lower Right: Snapshot of the stream function at t = 500, with (3 = 5. 



536 A. MAJDA, S.-Y. SHIM, AND X. WANG 

Energy The ratio of enstrophy to energy 

10        20 30 40 
Time 

10        20        30        40 
Time 

100 

20 

60 

i-1 

h 
4U Kirii': I 't :\ 'I •' :\ ,. 

';/'■ /^  • !• r- A 

!;!;';\/"VV^^-'VvV^ 

0 10 20 30 40 
Time 

t = 50, beta = 0 

t = 50, beta = 3 t = 50, beta = 5 

FIG. 3.3. Decay of the QG flow specified in (3.116). Solid lines: (3 = 0. Dashed lines: (3 = 3. 
Dashdot lines: (3 = 5. Upper Left: Energy vs. Time (t = 0 ~ 50). Upper Right; A(t) vs. Time 
(t = 0 ~ 50). Center Left: Anisotropy Measure vs. Time (t = 0 ~ 50). Center Right: Snapshot 
of the stream function at t = 50, with (3 = 0 Lower Left; Snapshot of the stream function at t = 50, 
with (3 = 3. Lower Right; Snapshot of the stream function at t = 50, with (3 = 5. 
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anisotropic diffusivity case we have an explicit counter-example indicating the fail- 
ure of the selective decay principle.  For the two layer problem, the selective decay 
principle is never valid and it is also illustrated via explicit counter-examples. 

Recall that the energy for the continuously stratified model is defined as 

(4.1) jB=iy(|v^|2 + JF
2|^|2), 

and the corresponding enstrophy is defined as 

(4.2) e=
1„J\Alp + F2^1pf 

The generalized Dirichlet quotient is defined as 

(«) A«) = ||. 

We have the following theorem 

THEOREM 2. Selective decay of the continuously stratified quasi- 
geostrophic flows For the continuously stratified quasi-geostrophic equations (2.6) 
the following are true 

(A) Selective decay with special parameter // 

(4.4) Pr = F2 = 1, 

then the selective decay principle holds. More precisely, the generalized 
Dirichlet quotient monotonically decreases to some eigenvalue of the three 
dimensional Laplacian and all flows approach asymptotically to the superpo- 
sition of Rossby waves and a steady state zonal flow. 

(B) Failure of selective decay with anisotropic vertical diffusion // 

(4.5) Pr • F2 £ 1 

then the selective decay principle fails. More precisely , we can build explicit 
counter-examples consisting of superposition of a Rossby wave and a vertical 
shear such that the generalized Dirichlet quotient increases as time evolves. 

(G) Failure of selective decay for two layer model For the two layer quasi- 
geostrophic model (2.18), the selective decay principle fails for all geophysical 
parameters F ^ 0. 

In the special case of exact balance of stratification and rotation i.e., F — 1 the 
theorem leads to 

COROLLARY 1. In the special case of exact balance of stratification and rotation, 
i.e. 

(4.6) F = 1 

the necessary and sufficient condition for the validity of the selective decay principle 
for the continuously stratified quasi-geostrophic flows (2.6) is 

(4.7) Pr = 1, 
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or the kinematic viscosity equals to the thermal diffusivity. 

We separate the proof of the theorem into two parts. In subsection 4.1 we con- 
struct explicit counter-examples illustrating the failure of the selective decay princi- 
ple for the continuously stratified quasi-geostrophic model with anisotropic diffusivity 
(4.5). We also present an explicit counter-example illustrating the failure of the se- 
lective decay principle for the two layer model. In section 4.3 we sketch the proof of 
the selective decay with isotropic diffusion. 

4.1. Counter-examples to Selective Decay with Vertical Anisotropic 
Diffusivity. We consider a counter-example taking the form of a Rossby wave plus 
a vertical shear, namely 

(4.8) ip(x, z, t) = e-At sm(lx + 0t/l) + coe'31 sin(fcz/0) 

With this ansatz, we see that 

(4.9) A^ + F2|^ = -l2e-Atsm{lx + pt/l) - (^)2F2coe-Bt sin(]fez/0), 

and 

(4.10) J(^A^ + F2 J^/O^O. 

Thus for this special ansatz, the continuously stratified quasi-geostrophic equation 
(2.6) with dissipation operator in (2.8) takes the form 

(4.11) Al2e-At sm(lx + 0t/l) + B(^)2F2coe-Bt sm(kz/Q) 

-l(3e-At cos(lx + pt/l) + I0e-At cos(lx + 0t/l) 

= -^r(l4e-At sm(lx + pt/l) + (^)4CoPr-1F2e-Bt sin(Jfez/0)). 
Re K) 

This implies 

Al2=Re-1l4, 

B(^)2F2=Re-1(^)4Pr-1F2. 

This is equivalent to 

(4.12) A = l2/Re; 

(4.13) B = (t)2/(Re-Pr). 

We thus conclude that the ansatz (4.8) gives exact solution to the continuously 
stratified quasi-geostrophic equations (2.6) with arbitrary choice of/, k and the special 
choice of A,B given by (4.12) and (4.13). 

Now for this chosen ansatz we compute the energy, enstrophy, generalized Dirich- 
let quotient and its dynamics. 

d2 

(4.14) 2S{t) = Ji&iP + F2^)2 

=  [(-Pe-At siniix + ^/i) _ ^jti^e-Bt sin ^) 

= h^Qil'e-^ +c2F\^)ie-2Bt) 
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(4.15) 2E(t) = - J^A^ + F2^) 

= - f{e-At sm(lx + fit/I) + coe-Bt sin ^) 

(-/2e-Ai sm{lx + dt/l) - c0JF
2(|)2

e-
B' sin ~) 

= h^Q{l2e-2Ai + c2F2(i)2e-2B() 

and hence 

(4-16) A(t) = 4 E 
_l4e-2M+clF4(±)4e-2m 

-  l2e-2At+c2F2^2e-2Bt 

= l2 
l + c2(Ek)ie-2(B~A)t 

l + c2(^)2e-2(B-^ 
,1 +f2f 

= ZJ ;l + ^(w)4e'2(B"A)f 

den 

where 

(4.17) den = 1 + cl{^e-2(B-A)t 

Hence 

^"U^npr-Hh2 - '2)((S)2 - i)«2(A-B)t 
den2RexlQ' v v0' MV/e 

_ 2/  C0     ,Ffc,2,       fc IW^S2       1\   2(^-.B)t 
den^eWe^ l02;2Fr      ;u/0;        ; 

Under the anisotropic vertical difFusivity assumption (4.5) we either have 

(4.19) FPr* > 1 

or 

(4.20) FPr* < 1. 

Since we have the freedom of choosing I and k, we can choose these two integers 
so that their rational ratio is approximately, 

(4.21) 

This implies 

(422) m^PrPrhF' 

(4-23) {Ehf^pr\R 

k2 

e2i2 
Pri 
F 

k2 1 
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When these estimates are combined with (4.18) and either (4.19) or (4.20) we have 

(4.24) Jt
A^>0- 

Hence the selective decay principle fails here. 

4.2. Counter-examples to selective decay for the two layer model with 
arbitrary parameters. In this subsection we present a counter-example to selective 
decay for the two layer model (2.18) with arbitrary parameters with the same diffusiv- 
ity from (2) acting on each layer. The example we have in mind is the superposition 
of a barotropic Rossby wave and a baroclinic Rossby wave of the form 

(4.25) </>i = e~At sin(z + fit) + e-23' cos(£ + fit), 

(4.26) </>2 = e"A* sm(x + fit) - e'31 cos(z + fit) 

with the constants A, B given by 
k 

(4.27) A = YJdj, 
J=I 

(4-28) B = E2^I- 

It is easy to check that this is an exact solution to the two layer model (2.18). The 
sin part of the solution is the barotropic component and the cos part of the solution 
is the baroclinic component. 

The energy and enstrophy of the flow can be calculated easily as 

(4.29) E(t) = \{e-2At + (1 + 2F)e-2Bt) x 47r2, 

(4.30) £{t) = \(e-2At + (1 + 2F2)e-2Bt) x 47r2. 

Thus the generalized Dirichlet quotient takes the form 

e-2At + (1 + 2F2)e-2Bt 

-  e-2At + (l + 2F)e-2Bt 

el+(l+2.F2)e-2<B-A" 

= 1 + (1 + 2F)e-2(B-^t 

Hence we deduce, via direct differentiation, 

d 2F{2F + l)2{A-B)e2^-^ 
^■6Z) dt   [) ~     (1 + (1 + 2F)e-2(s-A)t)2 

Since 

(4-33) A-B = ^FTlJ2d^>0 

3=1 

we conclude that selective decay fails for F > 0. 
The physical mechanism behind this failure of selective decay is again 

the anisotropy of diffusivity. Notice for the barotropic part ^(V>i +^2) the dissipation 
rate is A while for the baroclinic part |(^i - ^2) the dissipation rate is B. 
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4.3. Proof of Selective Decay with Special Parameters. In this subsection 
we give a sketch of the proof of the validity of the selective decay principle for the 
continuously stratified quasi-geostrophic model (2.6) with special choice of parameters 
given in (4.4). We will give a proof of the decay of the generalized Dirichlet quotient 
only. The fine detail of convergence and long time behavior can be derived in pretty 
much the same fashion as in subsection 3.1. We omit the details here. 

For the special choice of parameters (4.4) we have 

(4.34) E = ±j\V3ip\2, 

(4.35) £=i||A3V|2. 

The time evolution of energy and enstrophy are given by 

(4.36) ^(i) = -JRe-
1||A3^||^ 

(4.37) |5(t) = -iJe-1||(-A3)Mlo- 

Thus 

d k' d £(t) 

1 -X^m - m^-rn)) 
E(tydt   w        wete 

1      "'(-A3)^-A(t)(-A3)^llg E(t)ReKUK      *'   r        wv      OJ2 

+A(*)(||A3^||2-A(*)||(-A3)^||2)) 

:(||(-A3)i^-AW(-A3)^). 
E{t)ReyuK      *'   *        wv      OJ2 

This proves the decay of the Dirichlet quotient under the assumption on special pa- 
rameters (4.4). The case with hyper-viscosity can be treated in pretty much the same 
way as in the proof of Lemma 1. 

4.4. Ground States. We now focus on computing the ground states since these 
are the long time behavior of the continuously stratified model under this special 
parameter choice and generic initial data. 

It is easy to see that the eigenvalues of the three dimensional Laplacian takes the 
form 

(4.39) kl + kl + 02/c!,    kl + kl> 0, 

where kj are integers. The non-degenerate condition k\ + k^ > 0 is to ensure that we 
do not have a flow with zero velocity field. This is also equivalent to impose the zero 
mean in the horizontal (#, y) average. Of course the zero horizontal mean is preserved 
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under the dynamics of the continuously stratified quasi-geostrophic equation (2.6). It 
is then easy to see that the first eigen value is 

(4.40) Ai = 1, 

and the ground energy shell has the base 

(4.41) sin x, cos x, sin y, cos y. 

This is the same situation as for the one layer model (2.1). Thus the long time 
dynamics of the continuously stratified quasi-geostrophic equations with dissipation 
and special choice of parameters (4-4) is independent of the vertical direction. In fact 
the long time dynamics coincides with that of the one layer model, i.e., a superposition 
of a zonal flow and two Rossby waves. 

5. Selective Decay for Flows on Sphere. In this section we study the se- 
lective decay phenomena related to the barotropic quasi-geostrophic equation, or the 
one layer model on sphere. The study of flows on sphere is of great importance due 
to the geometry of the earth and other planets. 

5.1. The Basic Equation and Some Useful Calculus on Sphere. In this 
subsection we introduce the barotropic quasi-geostrophic equations (one layer model) 
on sphere. We also recall some useful calculus formulas on sphere for the purpose of 
the understanding the proof of our theorems below. 

We first recall the basic dynamic equations, the barotropic quasi-geostrophic equa- 
tions on the unit sphere S2 in surface spherical coordinates 0, 0, with 0 being the 
longitude and 0 being the latitude 

(5.1) ^ + JW>, A^ -I- 2fi sinfl) - P(-A)^, 

where if; is the stream function, A is the Laplace operator on scalars on the unit 
sphere, 

k 

(5.3) 2>(-A) = £<*,■(-A)',   ^>0, 
3=1 

(5.4) q = Ail; + 2fLsm0 

is the potential vorticity. 
The barotropic quasi-geostrophic equations on the unit sphere can be written in 

terms of the potential vorticity 

^ + J(^q)=V(-A)ij. 

It is easy to see that the mean of the stream function Js2 ip does not play any role 
in the dynamic equations. Hence without loss of generality we may assume that the 
stream function has zero mean, i.e. 

(5.5) [   rl> = 0. 
s2 
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Thus we may recover the stream function from the vorticity UJ or the potential vorticity 
q by solving the Laplace equation 

Aif) = LJ = q — 2fl sin 9, 

together with the zero mean condition on ip. 
We also notice that 

(5.6) JOMin0) = ||, 

and hence we may rewrite the basic dynamic equation as 

(5.7) ^ + j(V,iAV,) + 2fi^=P(-A)</>. 

This form of the barotropic quasi-geostrophic equation on the unit sphere is very 
much the same as the one in the flat geometry case introduced in section 2.1 except 
the horizontal independent variable x is replaced by the longitude variable </>. Thus 
we could expect similar behaviors of solutions for the two different cases. In particular 
we are able to prove that the selective decay principle remains valid for barotropic 
quasi-geostrophic flows on sphere. However due to the difference in symmetry groups, 
we will also witness difference in solution behaviors. In particular there is very spe- 
cial nonlinear dynamics on the subspace spanned by the first two eigenspaces as we 
indicate in section 5.2. 

5.1.1. Common Differential Operators and Integration by Parts For- 
mulas on the Sphere. For the sake of convenience we list here some of the commonly 
used differential operators and integration by parts formulas on the sphere. These are 
standard materials and can be found in any standard textbook on differential geom- 
etry. 

The surface element on a sphere with radius a is 

(5.8) ds = a2cosed(f)d6. 

At each point of the space (outside 9 = —7r/2 or 7r/2), we define the usual local 
orthonormal system, {e^, ee}, corresponding to increasing values of </> and 0. We 
define ft = er as the unit vector corresponding to the increasing values of the radius. 

Let ip be a scalar field on S2 and v = v^e^ -f veee be a tangent vector field on S2. 
We recall several common differential operators and integration by parts formulas on 
the sphere. 
The gradient operator on scalar field is defined as 

5.9 W> = grad </> = -^e0 + -^^. 
a cos 0 ocj) a 80 

The perpendicular gradient operator, or the curl operator on A scalar field is defined 
as 

(5.10) V^ = curl ^ = VV> x ft = -j^e^ ^757^. 
a 80 a cos 0 ocf) 

The divergence operator on vector field is defined as 

V5-11) div v = V • i; = --~f + ^ . 
a cos 0 ocj)      a cos 0       00 
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(5.12) curl v =  div (v x n) = -jr- ^-^Z "• 
acosv ocp      a cos 6       ov 

The Laplacian operator on scalar field is defined as 

(5.13) A^ = div grad ^ = - curl curl ^ = —2 ^{ ^^TT + ^(cos6,^•)}• 
a2 cos 8  cos 6 a</>2     a^ a^ 

We recall here one of the alternative definitions of Av, i.e. the Laplacian operator 
for tangential vector fields on the unit sphere 

(5.14) Av = grad div v— curl curl v 

-/A 2sinfl   dve v^     ^     f 2sin<9   dv^ VQ 

~ i     *    a?cos>e dcj)     a2cos2^e0 + i     *a2cos20 d(j)      a^cos^O^9' 

We also recall Stokes formulas 

(5.15) /    div v ipds = — /   v- Vilids, 
Js2 Js2 

(5.16) /   curl v ifids —I   v- curl ipds, 
Js2 Js2 

(5.17) - /   Aip'ipds = - /   ^A^rfs = /   V^ • V^^5, 
Js2 Js2 Js2 

(5.18) -/   Av-$ds= /   (Vif-V^+-o-tf-i7)ds. 

5.1.2. Eigenfunctions of the Laplacian operator and the Legendre func- 
tions. As in the flat geometry case, the Laplace operator will play an important role 
in studying the behavior of solutions to the barotropic quasi-geostrophic equations 
on the unit sphere (5.1). For the doubly periodic domain we have witnessed that 
the eigenfunctions of the Laplacian operator, the trigonometric functions, played an 
essential role in our analysis of the behavior of solutions. For spherical geometry, the 
trigonometric functions are replaced by the following Legendre functions 

(I _ ^2\f Am+nM _ z2\n 
(5-19) Pnm(Z) = [-^J d

[
zn+m   )   , for 0 < m < n. 

These functions enjoy the following orthogonal property: 

2     (n+ 771)!. 
(5.20) /   Pnm(z)Pntm(z)dz = 

2n + l (n-ra)! 

The eigenfunctions of the Laplacian operator on the unit sphere can be repre- 
sented using the Legendre functions. Indeed the eigenvalues must be in the set 

(5.21) {-n(n + l)    |    n G Z+} 
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and for each eigenvalue — n(n + 1) the associated eigenfunctions are 

(5.22) Pnm(sm9) exp(im^),    for 0 < m < n. 

or their normalized form 

(5.23) Ynrn = A^nmPnm(sin^) exp(im^), 

where 

_,(2n + l)(n-H)!a 
ivnm-t ■47r(n + |m|)!   ; » 

or their real valued form (not normalized) 

(5.24) wn = Pn(sin0), 

(5.25) Wanm = Pnm(sin^) cos(m0); 

(5.26) ^nm = Pnm(sin0) sin(m^); 

for 1 < m < n. 
Roughly speaking, these functions will replace the trigonometric functions in this 

spherical geometry. 

5.2. Exact Nonlinear Dynamics on the First Two Eigenspaces. In this 
section we present the exact nonlinear dynamics of the barotropic quasi-geostrophic 
equations on sphere with dissipation (5.1) on the first two eigenspaces, i.e. all eigen- 
functions corresponding to the eigenvalues -2 and -6. 

Due to the special geometry of the sphere, the dynamics on the first eigenspace 
(corresponding to -2) is independent of the motion of higher eigenspaces. The first 
two eigenspaces form an invariant subspace of the whole dynamics. We recall the 
exact dynamics here and leave the proof in the Appendix. 

For exact solutions which span the first two eigenspaces, this will delineate some 
special structure of solutions with spherical geometry and also yield two natural ver- 
sions of selective decay. 

5.2.1. Independent Dynamics on the First Eigenspace. We recall (see 
subsection 5.1.2) that the first eigenspace (corresponding to the eigenvalue -2) has a 
basis of the form 

(5.27) wi = sin 9 

(5.28) Wall = cos 6 COS (j), 

(5.29) Wbn — cos6sm(p. 

The dynamics on the first eigenspace is given by 

(5.30) dai          3 v^ . oi 

3=1 

(5.31) 

(5.32) 
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ift = alWl+all'Wan+bllWbn+'lp, = ai(t)sm9+aii(t)cos6cos(l)+bii(t) cos8sin(j)+1/1' 
(5.33) 
with 

(5.34) Ip' _L Wx , Ip' ± Wall, i/)' -L ^611 • 

The solutions can be written out explicitly as 

l(*) = ai(0)c-*^1
di2i*j (5.35) Gil 

011W = (aii(O) cos(m) 4- 6ii(0) sin(nt))e   8- ^=1 dj23\ (5.36) 

(5.37) ftnW = (-aii(O) sin(m) + bnfi) cos(fi*))e"* ^-^ dj23t 

Thus the projection onto the first eigenspace of the stream function takes the form 

(5.38) e~^ £;=i di2,t(ai(0) sintf + aii(O) cosl9(cos(nt) cos^ - sin(fit) sin^) 

+611 (0) cos ^(sin(n^) cos (f> + cos(fl£) sin </>)) 

+011 (0) cos 9 cos(ftt + </>) + bn (0) cos 0 sin(fi* + 0)) 

and the associated velocity field takes the form 

(5.39) E:=1^ (ai(O)(cos0,O) 
4-aii(0)(- sini9cos(0^ + 0), - sin(ni + 0)) 

+611 (0)(- sin 19 sin(n^ + 0), cos(^ + (/>))). 

This implies that the velocity field we have is a zonal flow plus two Rossby waves. 
These Rossby waves travel in the opposite direction to the earth's rotation with the 
same velocity magnitude as the rotation. 

Since the dynamics on the ground energy shell is independent of motion on higher 
energy shells, we see that the space spanned by all eigenspaces except the first one is 
invariant under the barotropic quasi-geostrophic dynamics (5.1). 

5.2.2. Exact Nonlinear Dynamics on the First Two Eigenspaces. The 
first two eigenspaces of the Laplacian form an invariant subspace of the barotropic 
quasi-geostrophic dynamics on the sphere and is given in the following form. For 

2 2       n 

(5.40) 1p(t) = ^ anifiWu + XI S (anm WWanm + bnrn{t)whnm) 
n—1 n=l 77i=l 

where Wa2m,'Wb2m,W2 are given by the following table 

l-3sin2<9 cos 9 sin 9 cos (j) cos 9 sin 9 sin (j) cos2 9 cos (20) cos2<9sin(20) 
1-Sz2 zx yz sa-l/* 2xy 

W2 Wa21 Wb21 Wa22 Wb22 
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we have 

(5.41) 
7-> K 

where 

(5.42) o = (02,021,621, a22,b22)T, 

and the coefficient matrix is given by 

(5.43)    A = 

(    0 
4&ii 

-4aii 
0 

V    0 

-5611 
0 

-ift-fai 
-i&n 
|aii 

3aii 
|n + |oi 

0 
— gfflll 

-j6ll 

0 
LI 

3-aii f6» 

3^ roi 

0 
— 3ai1 

I&11 
ffi + fo! 

0 / 

For the special case of initial data with zero projection down to the first eigenspace, 
the motion on the first eigenspace has to be identically zero by the independent 
dynamics that we presented in the previous sub-subsection. This situation is often 
studied in the geophysical literature. Thus the coefficient matrix of the dynamics on 
the second eigenspace becomes 

/ 0       0 
0       0 

(5.44) A = 

0 

0    -|ft     0 
0      0 

V 0      0 

0 
0 
0 

0        0       2 

2 

0  \ 
0 
0 

3" 
0    -ffi   0 / 

and hence the stream function takes the form 

(5.45)    ^(t) = eT £*-» dj'6J (O2(0)w;2 

+(021(0) cos(-m) + &2i(0)sin(-Oi))wa2i 

+(-021(0) sin(-m) + 621(0) cos(-fii))w62i 

+(022(0) cos(-nt) + 622(0) sin(-m)K22 

2 2 
+ (-022(0) Sin(-nt) + 622(0) COS(-fit))«'622) 

= e- Ej=id^ (a2(0)(l - 3 sin2 0) 

+021(0) cos#sin#cos(—t + (/>) + 621(0) cos0sin0sin(—t + </>) 

-f 022(0) cos2 <9 cos(—t + 20) + 622 (0) cos2 (9 sin(—* + 20)) 

Thus the corresponding velocity field consists of one zonal flow and four Rossby 
waves with frequencies fi/3,20/3. 



548 A. MAJDA, S.-Y. SHIM, AND X. WANG 

5.3. Selective Decay on the Sphere. In this subsection we state and prove 
the selective decay principle for barotropic quasi-geostrophic flows on sphere in the 
presence of dissipation. 

THEOREM 3. Suppose that there exists Newtonian viscosity or hyper-viscosity or 
both, i.e. 

k 

(5.46) E^>0 

i=2 

then the Dirichlet quotient monotonically decreases to one of the eigen-values of the 
Laplacian, say Aj — j(j + 1), and the flow approach asymptotically to the superpo- 
sition of a zonal flow and 2j Rossby waves on the jth energy shell. Under generic 
circumstances we have 

1. General initial data For generic initial data, the Dirichlet quotient mono- 
tonically decreases to the first eigenvalue 2, and the asymptotic behavior of 
the solution is on the first eigenspace of the Laplacian and it consists of one 
zonal flow and two Rossby waves. 

2. Initial data with zero projection onto the first eigenspace For generic 
initial data with zero projection onto the first eigenspace (i.e., initial data 
from the invariant space spanned by all eigenspaces except the first one), the 
Dirichlet quotient monotonically decreases to 6, and the asymptotic behavior 
of the solution is on the second eigenspace of the Laplacian and it consists 
of one zonal flow and four Rossby waves. In another word, if we restrict to 
the space with zero projection onto the first eigenspace, then the ground states 
are those eigenfunctions on the second eigenspace, and they are the stable 
selective decay states. 

The proof of the theorem is very much the same as for the flat geometry case 
which we studied in detail in section 2. We shall only present a proof for the decay 
of the Dirichlet quotient and omit the details for other arguments. 

It is easy to see that the energy E and enstrophy £ satisfy the following equations 

(5.47) « = _2di||(_A)MlS. 

d£(t) 

dt . , 

(5.48) ^ =-Em-^^wi 

Hence the Dirichlet quotient A(t) satisfies 

dA(t)      d £{t) 
(5.49) 

dt        dt E{t) 
1 -{±£(t)-k(t)±-E{t)) 

E{tydt   w        v ' dt 

-l^£^(ll(-A)^l§-A(t)||(-A)Ml§) m ^i 
k    7—2 

££diA'(t)||(-A)iti=iV-A(«)(-A)i=^i^||g 
*(«)££ 
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where we have used the same recursive argument (3.32) with C = A(£) as in the proof 
of Lemma 1. 

This completes the proof of the decay of the Dirichlet quotient. 

Appendix. 

Derivation of the Independent Dynamics on the First Eigenspace in 
Spherical Geometry. An interesting phenomenon in the spherical geometry case 
is that the dynamics on the ground modes are independent of motions on the higher 
modes at least in the case when there is no topography (or more generally when the 
topography lives on the ground modes). This fact has no analogy for the flat geometry 
case and it has a consequence on the nonlinear stability problem in the marginal case. 

To derive this property we first notice that there is a simple correspondence 
between the Cartesian coordinates and the base of ground shell 

(5.50) z = sin 0, x = cos 6 cos 0, y = cos 8 sin </>, 

and hence 

(5.51) /   J(ip,Aip)z = - [   J{ip,z)Aip 
Js2 Js2 

= - /   Jft/ssinflJA^ 
Js2 

= - [ w 
Js2 
Is2 OQ 

= 0. 

This implies, by rotation invariance, 

(5.52) [   Jty, A</0* = 0, /   Jty, A^)y = 0, 
Js2 Js2 

or 

(5.53) /   J(^, Aip) cos 6 cos </> = 0, /   J(^, A^) cos 6 sin </> = 0. 
Js2 Js2 

Thus if we denote an,feu the coefficients of ip for Waii = cos9cos0 and Wbn — 
cos6sin (f) respectively, i.e., 

il){<j),0,t) = ai(£)sin0 4- aii(t)cos0cos0 + bnCOcosflsin^ + ^'^fl,*), 

we have, combining the equation for ai and taking inner product of the barotropic 
quasi-geostrophic equation (5.1) with x and y, 

(5.54) 

(5.55) 

(5.56) 

dai 

dt 

dan 
dt 

= nbll-—yjdj2
:>all, 

dau 
dt 

= -001!- —);diy'6i1 
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This implies that the motion on the ground states is independent of motion on higher 
energy shells, and it consists of a zonal flow and two Rossby waves. 

This is in contrast to the flat geometry case where we have the first energy shell 
an invariant subspace of the dynamics. However if the initial data contains modes 
outside the ground energy shell future dynamics on the ground energy shell will have 
interaction with higher modes in the flat geometry case. 

Derivation of the Exact Nonlinear Dynamics on the First Two Eigen- 
spaces in Spherical Geometry. It is known that each energy shell (eigenspace), 
i.e., all eigenfunctions associated with one fixed eigenvalue of the Laplacian operator, 
is invariant under the barotropic quasi-geostrophic equation without forcing in the 
flat geometry since the Jacobian drops out in this special case. This is also true 
for the sphere geometry. Moreover we are able to deduce more invariance due to 
the special sphere geometry of the sphere. We observe from the computation above 
that the interaction (through the nonlinear convection term) of z — sin # with other 
eigenfunctions is to make a rotation of 90° around the z axis combined with a scalar 
multiplication. Similar results hold for x — cos 9 cos (f) and y = cos 9 sin 0. This 
is easily generalized to eigenfunctions corresponding to higher eigenvalues (An,n > 
2). And if we consider the dynamics on the space spanned by all eigenfunctions 
corresponding to the eigenvalues Ai and An (for fixed n), we will see that this form 
an exact nonlinear dynamics of the full quasi-geostrophic equations in the absence 
of topography. These exact dynamics exhibit periodic and possible quasi-periodic 
motions. This phenomena is not present for the flat geometry even if we make the 
analogy between the ground shell motion in the spherical geometry case to the large 
mean motion in the flat geometry case. Notice we always have nonlinear dynamics on 
the first two shells for the spherical geometry case while we have nonlinear dynamics 
for the flat geometry case only if there is nontrivial topography. 

To derive the exact dynamics on the first eight eigenfunctions, or the first two 
shells, we start with the following simple observation 

bnm-) (5.57) J(Wanm, z) = -mwb7] 

(5.58) J(wbnm,z) = mWanm, 

(5.59) J(wn,z) = 0. 

Denoting 

(5.60) Wn = span{wn,wanm,w&nm,l <m < n}, 

the nth energy shell, or the nth eigenspace, we have 

(5.61) J(^n, Z) e Wn,   if ^n € Wn. 

Thanks to the rotation symmetry, the same result holds with z replaced by x or y, 
i.e., 

(5.62) J(^n, X) G Wn, J(^n, V) e Wn,   if ^n G Wn. 

This implies 

(5.63) JW>n,0l) € Wn,   if ^n € Wn,   </>l  € Wi. 

Now let 

(5.64) ^ = ^1+^^ Wi+Wn, 
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with ^i G Wi^n E Wn, we have 

(5.65) J(^, A^) = J(^i + ^n, -2^i - n(n + l)^n) 

= -n(n + l)J(^i,^n) - 2J(ipn,ipi) 

= (n(n + l)-2)J(^n,^i) 

This proves that the dynamics on Wi + Wn is an exact dynamics for the original 
equation (in the absence of topography). 

Next we work out the details for the special case of n = 2, i.e., the motion on the 
first eight eigenfunctions of the Laplacian operator. 

For this purpose let us recall the following tables 
Eigenfunctions corresponding to Ai = -2 (n = 1) 

sin0 cos 6 cos cj) cos 9 sin <f) 
z X y 

W! Wall Wbll 

Eigenfunctions corresponding to A2 = — 6 (n = 2) 

l-3sin20 cos 8 sin 9 cos 0 cos ^ sin ^ sin 0 cos2^cos(20) cos2 6> sin(20) 
l-3z2 zx y* x'-y* 2xy 

W2 Wa21 ^621 /Wa22 ^622 

It is easy to see ( or follow from the calculations above) 

J(w2,z)       =0, J(l-Sz2,z)    =    0, 
«/(tya2i,^)    =    -W&21,        J(zx,z) =    -yz, 
J{Wb21,z)      =     Wa21, J{yZ,z) =     ^X, 
J(^a22,^)    =    -2w;6225       J(x2-y2,z)    =    -2(2x2/), 
J(wb22,z)    =    2iya22, J(2xy,z) =    2(a;2-2/2). 

This implies, since x2 = 0.5(a:2 - y2) + 0.5(1 - z2), 

J(x2,2) = -2a:t/;   J(2/2, *) = 2xy. 

This further implies, thanks to the rotation symmetry of the sphere and the 
eigenfunctions (which are homogeneous polynomials of degree 1 and 2), 

J(w2,x) = J(-32;2,x) = -S(2yz) = -6W&21, 

J(wa2i,x) = J(zx,x) = xy = Q.5wb22, 

J(wb2i,x) = J{yz,x) — y1 - z2 = 0.5u;2 - 0.5'^a22, 

«/(wo22,a?) = J(-y2,x) = 2yz = 2wb2i, 

J('Wb22,x) = J(2xy,x) = -2zx = -2w02i, 

J{w2,y) = J(-3z2,y) = 6xz = 6iy02i, 

J{'Wa2i,y) = J{zx,y) - z2 - X2 - -0.5^22 - 0.5^2, 

J{wb2i,y) = J{yz,y) = -xy = -0.5^22, 

J(Wa22,y) - J(x2,y) = 2X2 = 2^a21, 

J(wb22:y) = J(2xy)y) = 2yz = 2w62i. 



552 A. MAJDA, S.-Y. SHIM, AND X. WANG 

Thus we have for 

^W - Yl anitfWn + X! XI (anm{t)wanm + bnm(t)wbnm), 
n=l n=l m=l 

J(</>, A^ + 20^) = 20 J(^, ^) + J(^, A^) 

= 2fiJ(^,z) + 4J(^2,^1) 
2       n 

= 2fi 5Z 5Z (-manm(t)wbnrn + mbnrn(t)wanm) + 
n=l m=l 

4aiJ(^2,^) +4aiiJ(V>2,z) +46iiJ(^2,2/). 

We observe 

J{^2,Z) = -^21^621 + 621^o21 - 2a22W&22 + 2622'^a22 

= b2lWa21 - a<2l'Wb21 + 2622^a22 " 2a22^&223 

J(lp2,x) = -6a2^621 + 0.5a2llf;622 + 0.5&21W2 - 0.5621^a22 + 2a22^621 - 2622'^a21 

= 0.5621^2 - 2&22^a21 + (2a22 - 6a2)w&21 - 0.5621^22 + 0.5021^622, 

J{^2,y) = 6a2Wa21 — 0.5a21^a22 - 0.5a2lU>2 — 0.56211^622 + 2a22^a21 + 2b22Wb21 

= -0.5a2iif;2 + (602 4- 2a22)w;a2i + 2&22W&21 - 0.5a2iWa22 - 0.5621^622. 

Hence the dynamics of the coefRcients are given by 

da2 1 1 
-rr - -^hi^i + -aii&2i, 
at 6 0 

da2i      12 4 4 
—— = -ftfoi + oai&2i - oaii622 + 46iia2 + -611022, 

—— = --S2a2i - -01021 + -011022 - 4aiia2 + 0^11^22, 
at o o o o 

^a22       2 4 1 1 
-^7- =  o J^22 + oal&22 - oall621 " o&lla2l5 

^22 20 4 a.1 ^     7, —rr = -o^a22 - oaia22 + -aiia2i - -O11O21. 
at 3 6 6 0 

Denoting 

(5.66) a = (a2,a2i, 621,0^22,622)T, 

(5.67)    A = 

we have 

(5.68) 

/     0 
4&ii 

-4aii 
0 
0 V 

0 
■in-fax 

|oii 

3O11 

in + fd 
0 

-|aii 

-hn 

da — = Aa. 
dt 

0 

3all 
0 

|6ii 
ffi + fo! 

In general the above matrix A is periodic in t with period ir/Ct (since an, 611 are 
periodic in t with period TT/O) and Floquet theory is needed to solve such system. 
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