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A VARIATIONAL RESULT IN A DOMAIN WITH BOUNDARY* 

YANYAN Lit  AND LOUIS NIRENBERG* 

When looking for critical points of a function, which are neither minima nor 
maxima, the function is sometimes defined in a domain with boundary. For example, 
M. Struwe (see section 11 in [2]) treats functions in convex bodies. P. Majer proved a 
number of very nice results in [1] on Finsler manifolds with boundary. In this paper 
we present a rather simple result for a real function F in a bounded domain. Under 
some conditions on the boundary values 0 of F we prove that F has a critical point 
in the domain. 

For simplicity we always assume that F is in C2. We start first with domain in 
En, Theorem 1, while Theorem 1' considers a domain in a Hilbert space. 

THEOREM 1. Let F be a real C2 function in the closure ft of a smooth bounded 
domain in W1. Assume that 

has only two critical values, max and min.   Denote by m the set where (j) takes its 
minimum. Assume: 

(i) m is contractible to a point in ft. 
(ii) In some a-neighborhood on 90 of m, 

m is not contractible to a point. 
Then F has a critical point in Vt. 

As one would expect, the proof relies on a deformation lemma. It is a modification 
of the usual one, since we are working in a bounded domain; it is close to several in 

LEMMA 1. Let Cl be a smooth bounded domain in W1 and let F be a real C2 

function on ft having no critical value in O in the interval [a, 6], a <b. Assume also 
that 

has no critical value in [a, b]. Set 

fh — {critical points of F in O where F < a} U {critical points of (j) where (j) < a} 

Consider the sets 

W = {xe^F(x) <b} 

V = {xe n;F(x) <a}. 

Then, there is a continuous deformation ofW to V, keeping fh pointwise fixed, that 
is, for some T > 0 there is a continuous map rj: W x [0,T] —> Q such that 

rr](x,0) = x VxeW 

(1) <ri(x,T)eV        VxeW 

Kri(x,t)=x Vz<Era,    V£e[0,T]. 
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Proof. Near dVt we make an orthogonal decomposition of VF: 

(2) VF = Ui + V2 

where vi is the component of VF pointing normal to dVt. By our hypotheses, there 
is a neighborhood N of dQ, and there exists 5 > 0 such that 

(3) MaO|><J   for   xe(W\V)nN. 

In addition, by possible reducing 5, we have 

(4) \VF(x)\>8   for   x e W \ V. 

Let C be a real function in C^iil) with 0 < C < 1 and C = 1 on ft \ N. Consider 
the flow r)(x, i) for x G W, £ > 0 defined by 

^ = -((r?) VFCTJ) - (1 - Cfa)) ^(a:),    T?^,0) = z. 

Clearly 

7^(2;, t) = z   for    z G m,   ^ > 0. 

Note that on 90, drj/dt is tangential to 90, so r](x, t) always lies in O. 
Next, 

jt F{f,{t)) = -CW iv^)!2 - (1 - Cfa)) h(i7)|2 < 0. 

Thus, where ((r)(t)) = 1, we have by (4), 

On the other hand, if ((r)(t)) < 1 and if 77(2) lies in W \ V, then (3) holds and so, 
again, 

IFM*))^-*2. 

It follows that if a; G W, then rj(x, t) eW and, after time t = T = (b — a) S~2, 

r](x,t)  lies in V. 

D 
Proof. [Proof of Theorem 1] We may assume that the set M where 0 achieves its 

maximum is different from m. Otherwise there is nothing to prove. In addition we 
may suppose 0 = 1 on M, 0 = — 1 on m, and that 

|F| < 1 in Q. 

For otherwise F would have a maximum or minimum in ft and again there is nothing 
to prove. 

Let U be an a-neighborhood of m on 9fi, in which m is not contractible to a 
point. For possibly smaller a, let Vi be the set of points in ft whose distance to dft 
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is less than a and such that for each x in Vi its projection Px to its closest point on 
<9f2, lies in U. Now, 

(5) for 0 < 1 + a small,  V := {x G H;    F(a;) < a} lies in Vi. 

By condition (i), there is a continuous map 

R : m x [0,1] -> 0 

such that 

iJfx.O) = a; Vx € m. 
(6) _ 

jR(x, 1) = XQ 6 ft    Vx € m. 

Since we may move i?(x, £) a bit for t > 0, we may also suppose that 

(7) R(x,t) en     Vxem, v*e(o,i]. 

In particular, we can ensure that the closed set 

J    K — {R(x, t);   x E m, 0 < t < 1} 
[    lies in ft \ W where PV := {x G ft ;  F(a;) < 1 - r}     for some r > 0. 

We now argue by contradiction. Suppose that F has no critical point in ft. 
Using V and W as defined in (5) and (8), we apply Lemma 1 and find a deformation 
T)(',t) of ft \ W into V. Thus for y G K, rj(y,T) G V, i.e., Vx G m, V* G [0,1], 
(rj(R(x,t)),T) eVcVx. Hence 

D(x,t) :=Pfa(iJ(M)),r) ^^ 

provides a deformation in U of m to the point r)(xQ,T)—contradicting (ii). D 

REMARK 1. Condition (i) in Theorem 1 may not be dropped, as we see from the 
example 

ft = {1 < |x| < 2}   in E2; and F(x) = \x\. 

REMARK 2. The function F in Lemma 1, and hence in Theorem 1, need not be 
in C2(ft). It suffices that it is in C1(ft). One then uses the pseudo-derivative (see for 
example [2]). 

We now take up an extension of Theorem 1 and of Lemma 1 to a Hilbert space H. 
Here ft is a bounded domain (open connected set) in H with smooth boundary. In ft 
we consider a real function F belonging to C2 (ft) and satisfying the strong condition 
on its Frechet derivative F'\ 

(9) F' is uniformly continuous in some /? - neighborhood of 9ft. 

With 

0: = F|aQ^R, 
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we assume that 

(10) F satisfies PSfJi) and 0 satisfies PS(dti). 

Here PS means the Palais-Smale condition holds, i.e., for F, any sequence {XJ} G fi 
such that |F(a;j)| is bounded and Hi^Ofy-)!! -> 0, has a strongly convergent subse- 
quence. (Similarly for (j> on dQ). See for example [2]. 

THEOREM I7. Let fi and F be as above. Assume that </> has only two different 
critical values, its max and min; denote by M and m the sets where these are taken 
on. Assume 

(i) m is contractible to a point in fi. 
(ii) In some a-neighborhood on dCt of m, 

m is not contractible to a point. 
Then F has a critical point in H. 

The proof makes use of an extension of Lemma 1: 

LEMMA I'. Suppose that F and </> satisfy the conditions of Lemma 1. Then the 
conclusion of the lemma holds. 

Proof. The proof is the same as that of Lemma 1. But we have to ensure that 
(3) and (4) hold. We see first that since </> satisfies PS(dfl), for some 5' > 0, 

(11) IIV^I^^    on   diln(W\V). 

From the uniform continuity of F' we infer that there is a /3-neighborhood iV of dfl 
and 3 5 > 0 such that (3) holds: 

(3') IMaOII><J   for   xe{W\V)nN. 

In addition, by possibly reducing 5, since F satisfies PS (ft), we find 

(4') \\F'(x)\\>6   for   xeW\V. 

The proof of Lemma 1' then follows that of Lemma 1 and we consider Lemma I7 

to be proved. D 
Proof [Proof of Theorem V] We suppose, as before, that 

max<^=l,        mm(f) = — 1. 

Then \F\ < 1 in H, otherwise there is nothing to prove. 
We follow the proof of Theorem 1. However, we have to ensure that (5) and (8) 

hold. These both follow from 

LEMMA 2. Under the conditions of Theorem V, outside of any (relatively) open 
neighborhood W of M, and V of m, in D, there exists a constant 5' > 0 such that 

(12) -1 + 5' <F(x)<l-8'. 

This clearly ensures (5) and (8); hence the proof of Theorem 1' is complete once 
Lemma 2 is proved. 

Proof. [Proof of Lemma 2] Suppose W and V are open neighborhoods of M and m 
in Q. Since (/> satisfies PS(<9fi), M and m are compact. So, for some /? > 0, W and V 
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contain a /?—neighborhood of M and m respectively. We prove the second inequality 
in (12) by contradiction argument. Suppose that for a sequence {XJ} C fl \ W, 

After passing to a subsequence (still denoted as {XJ}), there are two cases: 
Case 1. For some 0 < /?' < (3/2, distix^dQ) > (3' for all j. 
Case 2. dist(xj,dil) -» 0. 

In Case 1, we consider the flow 

*~\\F'm'   m-x>- 
Let Tj be the largest number in (0, f3'/2} such that ||.F'(??(i))|| > 1/j for all 0 < t < T,. 
Pick 0 < tj < Tj with 

^{^tjM^ Qmm\\F'inmY 

Clearly, 

F(v(W) -* !       and       distiFiriitj)), M) > ft/2. 

We will show that 

(13) wnvtoM -> o. 
This would lead to contradiction since from the PS property for F we would find 
a subsequence of F(r)(tj)) converging to a point y with F(y) — 1 (i.e. y £ M) and 
dist(y, M) > ft 12. Impossible. 

If Tj < ft 12, then ll-F'MT,-))!! = 1/j and (13) follows immediately. Otherwise, 
Tj = /?72, then the flow is well defined in [0,/?72], and 

/       HF'^WJHcft = Ffa(/J72)) - F^) < 1 - F^-) ^ 0. 

This yields (13) as well. 
In case 2, since F' is uniformly continuous near dVt and (j> satisfies PS(dQ), there 

exist 5 > 0 and 0 < r < /3/2 such that 

IMaOlf><J>0     V||x-^||<r, Vj. 

Consider the flow 

^ -   ^^ «(())=*• 0<i<r 

Since 

^F(T,(t)) = |Mf,W)||>*   V0<^<r, 

we have 

F{r)(r)) > F{xj) + 8r = 1.+ <Sr -h o(l). 
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Impossible for large j. 
The right hand inequality of (12) is proved, and the other is similar. 
The proofs of Lemma 2 and of Theorem 1' are complete. D 
EXAMPLE. Let fi be a ball, ||a:|| < 1, in a Hilbert space H. Suppose H has the 

orthogonal decomposition 

H - Hi 0 H2    with    dim Hi < 00. 

Let F be a C2 function in ft satisfying (PS) and F' uniformly continuous in fi. 
Suppose that 

0::=F|an=|M2-INI2; 
here x = xi + £2, ^1 € ifi, #2 € #2- Then F has a critical point in ft. 

Proof. Condition (i) in Theorem 1' is obvious, while condition (ii) is easily verified, 
since m = {#1,0}; ||xi|| =1} is a finite dimensional sphere. Finally, it is easy to see 
that cf) satisfies PS on dCt. D 

QUESTION. In the preceding example suppose that both Hi and H2 are infinite 
dimensional. Does the conclusions hold? 

We suspect not. 
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