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TIME DECAY FOR THE NONLINEAR BEAM EQUATION* 

STEVEN P. LEVANDOSKYt AND WALTER A. STRAUSS* 

Abstract. We derive an analogue of Morawetz' radial identity for the case of a fourth-order 
wave equation. It follows that, for a nonlinear term with repelling sign, all the solutions decay to 
zero in a certain sense as t —>• 00. This is an initial step in the construction of a scattering theory for 
such nonlinear waves. 

Cathleen Morawetz wrote a short but seminal paper in 1968 on the nonlinear 
Klein-Gordon equation in which she proved her important Radial Identity and deduced 
the decay of the local energy of solutions. This identity subsequently had several other 
important consequences. It was the key ingredient in the proof that all states are 
scattering states for the Klein-Gordon equation with nonlinear terms with repelling 
signs, proved in several stages of increasing generality [MS][Br]. Analogues of it were 
also used in the scattering theory for nonlinear Schrodinger equations [LS][GV1], for 
nonlinear wave equations with zero mass [GV2], and for Hartree equations [GV3]. It 
was also recently used to prove the well-posedness of critical nonlinear Schrodinger 
equations [B][G]. A pseudodifferential generalization of it was also used to prove that 
the local energy of a solution of the linear wave equation satisfying the Dirichlet 
boundary condition in the exterior of a non-trapping obstacle decays to zero [MRS]. 

However, nothing of this sort is known for an equation of order four like 

(1) uu + A2u + f{u) = 0, 

the simplest nonlinear perturbation of the classical vibrating beam equation. A general 
theory of such a nonlinear beam equation was considered in two papers by the first 
author, including the following results, (i) The local well-posedness in H2(Rn) x 
L2(En) for f(u) = u + 0(\u\p) with 1 < p < 1 + ^^. (ii) Low energy scattering in 

iJ2(En) x L2(ln) for f(u) = u+ {u^u with p > 1 + |. (iii) Stability and instability 
of solitary and standing waves for the case of a nonlinear term of attractive sign like 
f(u) = u- lu^u with 1< p < 1 + ^. 

In this note we consider the global scattering problem for the fourth-order non- 
linear beam equation. By a rather long but totally explicit calculation, we prove 
an exact analogue of Morawetz' Radial Identity. The integrability in time of certain 
quantities follows automatically. We conjecture that, for the nonlinear beam equation 
for f(u) = u+ \u\p'~1u with l + ^<p<l + ^j- , all states are scattering states. This 
note is a report of work in progress and at the end of it we discuss some supporting 
evidence for the scattering conjecture. 

1. The identity. For equation (1) the energy 

E= [{l^t + liM'+m} dx 
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is a constant, where /... dx means the integral over all of En and F' = /, F(0) = 0. 
THEOREM 1. Let n > 5. Assume that u is a solution of (1) smooth enough, and 

small enough at infinity, to justify certain integrations by parts.  Then 

0=JtIUt   (^ + !^U)   dx 

(2) +  |(n - l)(n - 3) / ^u2
r dx +  i(n2 + 2n - 19) f ^(\Vu\2 - ti?) dx + P 

+  f(n-l)(n-3)(n-5) f-^u2 dx +  ±{n-l)'f l[uf(u)-2F(u)] dx 

where P > 0 un7/ 6e ^zven explicitly below, r = \x\ and ur — - • Vw. 
Proof. We multiply equation (1) by the skew-adjoint expression Bu = ur + ^^ru. 

Then the first and third terms in (1) give 

{d2u + f(u)}Bu = dt{dtu Bu} - ^dtu {dkdtu + dkF{u)} + "^{-{dtu)2 4- uf(u)} 

where dk = d/dxk and we sum over repeated indices fc. We shall also use the symbol 
« to indicate that two quantities differ by pure spatial derivatives. Then we can write 

{d2u+f{u)}Bu * &{ftti Bu}+dk (y) {|(a^)2-F(^)} + ^H5^)2+z//(^)} 

- ft{ftw Bu} + ^ll{ti/(ti) - 2F(w)}. 

Thus we have accounted for the first and last terms in (2).  It remains to calculate 
{&2u){Bu). 

We begin by using the relation 

(3) UiijjUk = (UijjUk - UjjUik)i + {HUii)2)k 

where the subscripts denote partial derivatives, to compute 

(A u)ur = uujjUk— = — (UijjUk - UjjUikJt + — ((Uii) )k 

* ~ W) ■ (UijjUk ~ uJJUik"> ~ 27^)2 

(UijjUk - UjjUik) - '"^    ^(Uu)2 Oik        %i%k  \  /.. \        ^       ■*• /       \2 
ijjUk — UjjUik) ^ 

_£/ _ \   ^ £/      \2 _i_ %ixk , [UaUjj — UijjUi) —       [Ua)      "      ^~7f —      [UaUjj — UijjUi) —       [Ua)      "      ^~Z    [UijjUk ~ UjjUik). 

and 
n — l\_n — 1 _ n ~ 1 

n — 1 /1\   , n — 1 

n — lxi, N     n — 1 

2     i r i. v^w-     ^-/ ■     2r 

-g—^3 (^jiw - ^i/i) + —^r{ui \2 
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Thus 

{A2u){Bu) = (A2u) [ur + 
n-1 

-{UiiUjj — UijjUi) H      ^~\uijjuk ~~ lAjjUik) +       ^ 3 \UijjU      lAjjUi) 
2    r3 

= / + // + ///. 
The first term J we rewrite as 

-u2
ij+2uijui(-J   -Ujimy- 

The second term // becomes 

/I « (itjWijjfe - UijUjk) (-^J + (WjWiJb - UkUij) (-^J . 

and the third term /// can be written as 

n-1 /I 
!// = 

Adding /, // and ///, we obtain 

2     \~ )   (VijjU-UjjUi). 

(A2u)(Bu) « -tt^ - 2uijUjk C-^) + 2wijWi ( - j 

(4) - u^tti- f - j   + (ujUifc - Ufcixy) (-^-J . 

fXiXk\ n-1 /I 

(5) 

The first two terms in (4) simplify to 

£(|2>ati|9 - |(V«)r|
2) = H Y, [lV«ila - l*-(«i)l9] • 

The remaining terms in (4) are 

/1\       n-3 fl 
ZuijUi [ - }   H —UjjUi 

n-1 fl 

2      ^     V^/i 2 

/ v  {XiXfcX /XiXfc\ 
+ (UjUik - UkUij) y—J~) . ~ Ui3U3 \J~) 

We evaluate these five terms as follows. 

I 

1 jj 

r  j    UiJJU 

a w -u7 I - I     = fiUfiiv^ 
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. (n-3)/«n   /l\       (n-3) fl 

(n-3)  2 fl\        (n-3) fl 

(n-3)2 
,2 ,   ("-3),T7.,,2     3(n-3)«; 

2r3 4r3     i- "i    '      2r3    '      ' 

(n-3)(n- 
4r3 -"W-^ul 

(n-l). 
UiiMj      -       + 

(^.1,- 

(n-l). 

4r3 

2    -UijU 

n-1 (\ 
—^—UiUj 

a 

~2r3 

13 

n-1       (V 
T     .. 2 V T 

{n '1)(n "3) [Vni2 + ^-V^i2 - 3(n " ^ • n-1^(1 

2r3 -< + ■ 
4 V r 

iiJJ 

(»-l)2|Vu|2 _ 3(n-l)u2 + 3(n-l)(n-3)(n-5)u2 

4r3 2r3 4r5 

provided n > 5. (The case n — 5 will be treated later.) 

d = ((uiUj)k - (uiUk)j) (-^r) . 

—)jk
+UiUk{—) 33 

(n~2)|Vu|2 I  3(n-2)-2 ■   2^-.2     3(n-l),.2 
ra    ' r^ 

-<";4)iv«r 3    2 
r3 

-< + ^|VwM- 

1    2 (%i%k \ (n-3)(n-2)l„.,2 

2r3 -|v«|2 

Summing the boxed terms leads to the expression 

(6) 
(A2u)(Bu) «  -(|D2

W|2 - |(VW)r|
2) 

r 

+ ^{(^ " 1)|V^|2 - 6K|2} + (n- l)(n - 3)(n - 5) 
3^ 
4r5 * 

The last term in (6) corresponds to the second-to-last term in (2). We wish to rear- 
range the other terms in (6) to be manifestly non-negative. 

For convenience we introduce the notation 

Xi == j      Gy. ::::::: XiOi 5      j'ij — %iOj       XjOi 
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where fi^- and dr commute. We note that any derivative decomposes into radial and 
angular parts 

C/^    -—'   w j, vjip      I u L q ^ 

Xj 

r 

that are orthogonal to each other at each point because the matrix ftji is skew- 
symmetric. The leading expression |D2ii|2 = J2 \djdiu\2 in (6) is decomposed as 
follows. 

diU — Xidru H n^ii 
r 

and 

where 

and 

djdiu = Xidjdru + dj(xi)dru + dj < —fifefix > 

= Xi < Xjdr H O^j > 9r^ 

■  ^^i     XiXj _ _   l x/j 
H ^ar-w + a?- < —Slfciii 

r [ r 

n *   *   o2      i    ^*J       XiXj _ 
itijW = XiXjOru H ^ar^ 

uijU — 
XiXfc 

ttkjdrU + dj <  fifcilX > . 

Squaring, we get 

(7) \D2u\2 - ^ {(iZiiti)2 + 2(Riju)(Siju) + (Siju)2} . 

CLAIM 1. The cross terms contribute 

- ]r(i^)(S^) « 2(n~5)(lVL|2 - (dru)2) > 0. 

Indeed, 4:J2(Riju)(Siju) contains three kinds of terms. The first kind contains the 
expression Y^^j^k^kj , which vanishes by the skew-symmetry of fi. The second kind 
is 

4xiXj ( d2u drU ) • dj 
Xk 

CtkiU 

= 4-x7 few - -a 
r  J \ r ■u) • {< r Oij       ^'ki'M I- 

in which both terms on the right contain ^XiX^ki — 0. The third kind is 

ASij—drU • dj 
Xk 

QkiU = -i?dru • diAiU « —49i ( -7zdru ) • A^ 

where 

r    J 
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Observe that 

S. P. LEVANDOSKY AND W. A. STRAUSS 

XiAi = 0,    Aiifir)) = 0,    Aidr = drAi H- -A,. 
r 

Using this notation, we are left with 

-4:(xidr 4- Ai) I —dru J • Aiu - -AAi ( —drU ) • Aiu 

4 4 1 
—i4x9riz • A^ = -—{drAiU + -AJW) • Aiu 

2 x       4 

2^-13   I™ 

where 
tc = ^(^)2 - |V«|2 - (5rti)

2. 

Thus our expression can be written as 

'xA       4" 2^ 4 
—yrdi - -5- 

This proves Claim 1. 
CLAIM 2. 

2a 2(n-5)        2(n-5),1„ l2     ,.   -2, 
w =   K        'w =   K (|VM|

2
 - {druY). 

Indeed, 

2 I  ,  2(n__5)(|Vu|2_(5ru)2)> 

[Riju]2 = ( XiXjd^u + (Sij — XiXj)-dru j 

= xjx'jffiu)2 + 2xiXj(5ij - XiXj)d2u • -dru + (% - XiXj)2 ( -dru j 

When summed, the middle term vanishes while XX^.?' -XiXj)2 = n-1. Thus Ys(Riju)2 

= (d2u)2 + ^(<9ru)2. Thus Claim 2 follows from Claim 1. 
CLAIM 3. 

|(Vu)r|
2 = \dr\7u\2 = (d2u)2 + J2(xJSiJu)2' 

Indeed, 
dr di u = Xj 9j 9^ = ajj ( JRJ J W + Sij u). 

This expression must be squared and then summed over i. Now 

XjRijU = Xj I XiXjd2u + — —dru j = Xf^-u , 

while 
XjSijU = Xj(xiAidru + djAiu) = drAiU. 

Therefore 
XkRikU - XjS^u — Xid^u • 9rAiW = <9;?u • dr(xiAiu) = 0 



TIME DECAY FOR THE NONLINEAR BEAM EQUATION 485 

because the operators dr and ii commute and X{Ai = 0. Upon summing and squaring, 
we end up with Claim 3. 

By (6), together with Claims 2 and 3, we conclude that 

(A2w)(£u) 

I \ (W + ^^uf  +Y,(SiJu)2 - {dluf - £ [ 5>S«« 

(8) 
+ 2(n - 5) {\VU\2 - {druf) 

n-1 
2r3 4r5 

'2r3' 

n2 + 2n - 19 
= (n - l)(n - 3)^(aru)2 + —^ {|VU|2 - (arn)2} 

2r3 

3w2 

+ (n-l)(n-3)(n-5)-^ + P 

where 

r X;(s««)a-E E*A > . 

We note that, by a form of Schwartz' inequality, P > 0. 
In case n = 5, the calculation of the term c given above must be modified.  In 

fact, in that case 

IIJJ 

= A2 [ - ) - 16n26{x). 

Thus the last term of c does not vanish but instead equals 

(9) -2uiU (-}      = 167r2[u(*,0)]2 > 0. 
^ r ' ijj 

If n = 5, this non-negative term should be included in P. This completes the proof of 
Theorem 1. D 

2. Time decay.  The following explicit bounds follow from the identity. 
COROLLARY 2.  Let n > 5.   Assume u is a solution that is smooth enough and 

small enough at spatial infinity. Assume 

uf(u) > 2F(u) > c0u
2 

for some c0 > 0.  Then there is a constant c such that 

(10) 

(11) 

/      / -[uf(u) - 2F(u)] dxdt < cE 

/      / -j\Vu\2dxdt < cE 
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(12) /      / -^M2 dxdt < cE   provided n > 6 

(13) sup up /     |i/|2^ < cE   provided n = 5. 
x    Jo 

Proof. From (1) we get the boundedness of u in iJ2(En). Therefore the first 
integral in (2) is bounded by a multiple of E. Each of the other terms in (2) is non- 
negative. We integrate (2) over a time interval [0,T] and then let T -> oo. The last 
term in (2) then gives (10), while the second and third terms in (2) give (11) and the 
fourth term in (2) gives (12). The estimate (13), special to n = 5, follows from the 
term (9) in the proof of Theorem 1 where the origin is shifted to an arbitrary point 
x. U 

In the typical example f(u) = u + l^-1^ where p > 1, we have the integrability 
in space-time of r-1|i/|p+1. 

We conjecture that the local energy, that is, the norm in H2(Ct) x L2(fi) for any 
bounded domain ft C En, is integrable and tends to zero as t -> oo. This conjecture 
ought to be demonstrable by the same kind of technique as in [M] and [SI]. 

A solution u of (1) is called a scattering state if there exists a solution v of the 
linear equation (linearized around the zero solution) such that \\u(t) — v(t)\\ ^ 0 in 
the energy norm as t -¥ +oo. If /'(0) = 1, the linear equation is 

(14) vtt + A2v + v = 0. 

We conjecture that under certain conditions all the states are scattering states. Two 
main ingredients for proving this conjecture are already known. The first one is 
a statement that there is some weak decay of solutions of (1). If n > 5 and the 
nonlinear term has the repelling sign, this is Corollary 2, especially estimate (10). By 
the method of [N] we ought to be able to extend this estimate to a similar one for the 
lower dimensions n < 4. The second ingredient is an appropriate decay estimate for 
the linear equation (14). This too is known, in the form 

MmLq{Rn)<c(i+tr^-n^vm\x 
where X = H2 x L2 is the energy space and 2 < q < 2 + 8/(n - 4). The upper bound 
on q can be improved to oo if n < 6. Furthermore, there is the space-time estimate 

\\V\\L*(R»+I)<C\\V(0)\\X 

for 2 + 8/n < q < 2 + 12/(n - 4). We also note that equation (1) is globally well- 
posed in energy space if the sign is repelling and p < 1 + 8/(n — 4). Using these 
ingredients we believe it is possible to prove the scattering conjecture at least for 
1 + 8/n < p < 1 4- 8/(n - 4), following the method of [MS] or a variant of it, for 
smooth solutions and probably also for arbitrary finite-energy solutions. The second- 
order analogue is discussed in Chapter 6 of [S2]. 
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