
METHODS AND APPLICATIONS OF ANALYSIS. © 2000 International Press 
Vol. 7, No. 3, pp. 473-478, September 2000 004 

ON THE ACCURACY OF GLIMM'S SCHEME* 

PETER D. LAXt 

Abstract. Glimm's random choice scheme constructs with probability close to 1 an approximate 
solution of an initial value problem for a hyperbolic system of conservation laws. This note describes 
an estimate for the probability of error that is much sharper than the one given by Glimm. A 
nontechnical discussion of this circle of ideas is given in [8] by Cathleen Morawetz, to whom this 
paper is affectionately dedicated. 

In the 1950-s Sergei Godunov devised a finite difference scheme for solving ap- 
proximately initial value problems for hyperbolic systems of conservation laws, in 
particular the equations of compressible gas flow, in one space dimension: 

(1) ut+ /* = (),    f = f(u), 

u and / vectors with k components. The initial value u(x, 0) is prescribed. 
Since solutions contain, in general, discontinuities such as shocks, they must be 

interpreted, as already observed by Riemann, in an integral sense. It is natural to 
make this the sense of distributions: 

(I)7 / w(x,t)u(x,t) dx\Q  - [wtu + wxf(u)]dxdt = 0 

for all differentiable test functions w. 
In this difference scheme the initial data are approximated by one that is piecewise 

constant over x intervals Ij of length A. The first step in Godunov's method is to 
solve this piecewise constant initial value problem exactly. The exact solution is the 
union of centered waves-rarefaction, shock and contact-issuing from each point of 
discontinuity separating intervals of constancy, see figure 1. 

This solution is valid only as long as the centered waves issuing from two adjacent 
points of discontinuity don't intersect. To make sure of that the time step is restricted 
to be less than A/2c, where c is the maximum wave speed. Such restriction is similar 
to the classical Courant-Friedrichs- Lewy condition. 

In the second step of Godunov's method the exact solution is replaced at the next 
time with a piecewise constant one, obtained by taking the average of the exact solu- 
tion over each x interval Ij. Because of the conservation form of the equations these 
x averages can be obtained from the flux at the endpoints, without any integration. 

The two steps are then repeated alternately until a desired time is reached. 
Numerical evidence suggests strongly, almost overwhelmingly, that as A tends 

to zero the approximate solutions constructed by Godunov's method converge to an 
exact solution of the initial value problem. Yet, in spite of strenuous efforts, a rigorous 
mathematical proof of convergence is lacking. 

In 1965 James Glimm showed, by a deep argument, how to estimate the total 
variation of the exact solution obtained in step 1 of Godunov's method in terms of 
the total variation of the initial value. He was unable to derive such an estimate for the 
averaged solutions; therefore he changed the second step of Godunov's scheme: the 
exact solution is replaced at the next time step by a piecewise constant one, obtained 
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Fig.  1. 

as the value of the exact solution in each interval Ij of length A at the point aA, a a 
random variable uniformly distributed over the unit interval. 

The two steps are then repeated alternately; at each new time step a new random 
parameter a is chosen. 

Let's denote the approximate solution obtained by Glimm's scheme as v(x^t^a) 
where a = (ai,..., ajv) are the values of the random parameters chosen in N steps. 
How close does v come to satisfy equation (I)'? Setting v into (I)7 and using the 
fact that between two consecutive time steps v is an exact solution in the distribution 
sense we obtain, integrating by parts. 

(2) 
N    f 
Yl   I  wOMmMMmiS) -V(x,tmx)]dx 

Here tm are the intermediate times; since v is discontinuous at t = tn, v(xyt^n) and 
v{x,t^n) denote the limits of v(x,t) as t approaches tm from above and from below 
respectively. 

For fixed test function w we call (2) the weak residual and denote it as r(a): 

N 

(3) r(a) = 5Zrm(tt),    rm(a) = 5^rmii(a), 

where 

(4) rmj{a) = /   w(trn)[v(t+) - v{tm)]dx . 
Jij 

Glimm has shown that the weak residuals are small, except for a set of a of small 
volume. Here is his argument: 

LEMMA. 

(i) |rm(a)|<0(A). 
(ii) |/rmdam|<0(A2). 
Proof, (i) For x in the interval Ij, v(x,t^n) = V(XJ + amA,i~), where Xj is the 

left endpoint of the interval Ij. We can estimate for each x in Iji 

K^*m)-V(^*m)l = \v(Xj+(xA,t+)-v(x,t-)\ <Vmj, 

where Vmj is the total variation of v(£~) over Ij. Setting this into (4) gives 

|rmJ(a)| <MAVmj 

where M is the maximum of |w(#,£)|. Setting this into (3) gives 

(5) |rm(a)|<MAF 
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where V is the total variation of v(x,tm) which is bounded in terms of the initial 
value. 

ii) We rewrite rmj in (4) as 

(6) rmj = /   w(x,tm)-w(xj,tm)[v(x,t+)-v(x,tm)]dx 

+ w(xj,tm) /  [vix^-vix.t^dx, 

where Xj is the left end point of the interval Ij. In performing the integration with 
respect to a we integrate first with respect to am. Since by definition 

integrating with respect to am the second term on the right in (6) gives zero. The 
first term is estimated as before, giving 

/ rrn^{ani)dar] < dA2Vm 

where d is the maximum of the x derivative of w. Summing we get 

(7) / rm(am)dari < dA2V, 

as asserted in the Lemma. D 
Glimm then estimates the expected value of r2: 

(8) / r2(a)da = / (£ rn)2da = £ / ^da + 2 ^   / rmrnda. 

Using part (i) of the Lemma we see that the first sum on the right in (8) is 
0(A2)7V. In the second sum integrate first with respect to am; since for n < m,rn 

is independent of am, we can estimate the integral using part (ii) of the lemma. 
Estimating rn by part (i) we get 

/ rmrnda <0(A3). 

Summing over all n < m we see that the second sum is < 0(A3)iV2. Adding the two 
estimates we get 

fr2da<0(A2)N + 0{A3)N2
: 

Since the optimal time steps are proportional to A, the number N of time steps 
needed to reach a specified time is 0(A~1). Setting this in the above estimate gives 

(9) fr2da<0{A). 

Denote by m(s) the measure of the set of x for which 

(10) |r(a)| > e. 
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It follows from (9) that 

(11) m(e) < const—. 

It follows from (11) that e has to be large compared to A1/2, i.e. that the order of 
accuracy of the method is less than 1/2. That is not the worst of it. If A is diminished 
by a factor of 2, estimate (11) indicates that m(e) diminishes merely by a factor of 2. 
Therefore, to make m(e) reasonably small one has to take A unreasonably small. 

Fortunately there is a better way to estimate m(e); we consider the expected 
value of esr(a), s a parameter to be chosen later: 

(12) fesr^da= Ies^ir™da=  f f[ esr™ daN ... dai, 

Since for m < N, rm does not depend on ajy, we can rewrite (12) as 

rN-i f 

(^y /  JJ e5r'»daJV_i...dai / esrNdaN. 

Next we use the following simple inequality: for \d\ < 1 

ed < 1 + d + d2. 

We will choose 5 so that sA « 1; according to the lemma this makes |srAr| < 1. 
Applying the above inequality to d = srjy we can estimate the last integral on the 
right of (12)7 as 

f esrNdaN <  [(I + sriv + s2r2
N)da < 1 + sO(A2) + s20(A2), 

where in the last step we have made use of the estimates ii) and i) in the lemma. As 
we shall see, s is greater than 1, so 

(13) [esrNdxN < l + s20(A2) < e*20^. 

We estimate the remaining integrals in (12)' similarly one by one, obtaining the esti- 
mate 

/• 
eardx < es0^N. 

As we have seen, TV = 0(A-1), so we deduce that 

(14) /Vrdz<ea52A, 

a some constant. Denote by m+(e) the measure of the set of x for which 

r(x) > e, 

It follows from (14) that 

m+(£)eS£ <eas2A, 
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the same as 

m+(e) < eas2A-se. 

The optimum value of s is e/2aA, so 

(15) m+(e) < exp(-52/4aA). 

By estimating the expected value of e~sr we obtain a similar estimate for the measure 
of the set where r(x) < —e. So altogether we get that 

(15)' m(e) < 2exp(-£2/4aA), 

an estimate to be compared to the previous estimate (11). In both cases we must take 
e large compared to A1/2. Note that our choice s = e/2aA satisfies the conditions 
imposed previously on 5: 

As « 1, 1 < s. 

Clearly (15)' is a much sharper estimate of the measure m(e) of the set to be avoided. 
If we diminish A by a factor of 2, the right side of (15)' decreases exponentially. 

Of course the weak residual r(a) has to be small not only for a single test function 
w but for as many as are needed to resolve the approximate solution on a A grid. For 
a function of bounded total variation this may be as many as | log A|. 

In nailing down the estimate for the total variation Glimm assumed that the initial 
data differ from a constant by a small amount. These conditions were substantially 
relaxed by Robin Young. 

Although Glimm's method is of low accuracy, it has high resolution. In particular 
it presents shocks sharply, is free of overshoots and artificial oscillations. Chorin and 
Colella have shown it to be a practical method for computing one-dimensional flows. 

Tai-ping Liu has shown how to use Glimm's estimate to prove the existence of 
solutions without resorting to random variables. 
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