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ENDPOINTS OF THE SPECTRUM OF PERIODIC OPERATORS 
ARE GENERICALLY SIMPLE* 

FREDERIC KLOPPt  AND JAMES RALSTON* 

Abstract. In this note, we prove that the edges of the spectral bands of a periodic Schrodinger 
operator are generically simple. 

RESUME. Cette note est consacree a la preuve de ce que, pour un operateur de Schrodinger periodique 
generique, les bord de bandes spectrales sont simples. 

0. Introduction. In this note, we prove that the edges of the spectral bands of 
a periodic Schrodinger operator are generically simple. 

More precisely, on Rn, consider the Schrodinger operator H(V) = — A + V where 
V is a real valued, measurable, Zn-periodic potential. For the sake of simplicity, let us 
assume that V is bounded. Then it is well known (see e.g. [10, 11]) that the spectrum 
of -H'(V') can be constructed in the following way. Let Tn denote the (flat) n-torus, 
Tn = Rn/Zn. In L2(Tn) consider the operators 

H(k, V) = -{d + 2mk)2 + V, k e Tn, 

with common domain H2(Tn). As V is real-valued and bounded, for each k, H(k,V) 
is a self-adjoint operator with eigenvalues {Xj(k,V)}<jl1 which we list in ascending 
order with multiplicities, Aj(fc, V) < Xjjri(ky V). Then, the spectrum of H(V) is given 
by 

a(ff(y))=UAicr>n 
3 = 1 

Since the spectrum of H(V) is a closed subset of M, its complement in M is a count- 
able union of disjoint open intervals, called gaps in solid state physics. The Floquet 
eigenvalues Xj(k,V) are continuous in k, and hence their ranges 

Bj = {\j(k,V):keTn} 

are closed intervals which are called bands of the spectrum. In this note we are 
concerned with the ends of the gaps, i.e. the endpoints of bands which are also 
endpoints of the spectrum. 

Let A be a point in the spectrum of ^"(V). We say that A is simple if there exists 
a single Floquet eigenvalue that assumes the value A, i.e. there exists a unique j > 1 
such that for some k G Tn, \j(k,V) = A. Note that, since the Floquet eigenvalues 
are continuous with respect to k and the torus Tn is compact, if A is simple, in a 
neighborhood of A, energies either do not belong the a(H(V)) or are simple. Moreover, 
if they are simple, they are assumed by the same Floquet eigenvalue. 
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Let Vk denote the set of bounded Zn-periodic potentials, V, for which the spec- 
trum of the Schrodinger operator H(V) has at least k open gaps. This is open in the 
topology of L00^™). Our main result then states 

THEOREM 0.1. The set of potentials V for which the endpoints of at least k gaps 
in the spectrum of H(V) are simple is a dense, open subset of Vk in the topology of 

The assumptions on the potential used in this note were chosen for the sake of 
technical simplicity; they are not optimal and may be relaxed (see e.g. [10]). 

In dimension 1 i.e. if n = 1, Theorem 0.1 is well known; endpoints are always 
simple Floquet eigenvalues (see e.g [6]). In dimension larger than 1 it was known that 
the lower end of the lowest band, i.e. the bottom of the spectrum, is simple (see [1, 3]), 
and that the Floquet eigenvalue assuming this value has a non degenerate minimum 
at that value. As far as we know, without any further assumptions, the structure of 
the higher bands is unknown. 

Simplicity of spectral endpoints plays an important role in many problems on 
periodic and perturbations of periodic Schrodinger operators. We give some references 
concerning the scattering theory ([2, 5]), the theory of resonances ([7]), and the study 
of the counting functions for eigenvalues in a gap ([9, 4]) for perturbations of periodic 
Schrodinger operators. 
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1. The proofs. We keep the notation of section 0, Consider now AQ, the upper 
endpoint of a gap for a(H(Vo)). Hence, there exists m G N and e > 0 such that 

Am (fc, Vo) < Ao - e < Ao < Am+i (fc, Vo) 

for all k e Tn. Then Theorem 0.1 is a consequence of the following. 

THEOREM 1.1. There is a continuous curve, V(t), in L00(Tn) with V(0) = VQ 

such that for 0 < t < e the eigenvalue Am+i(&,£) of H(k,V(t)) is simple whenever 
^m+i(k,t) is sufficiently close to minfcGTn Am+i(&,£). 

Of course, an analogue of Theorem 1.1 holds for the lower ends of gaps. Now assume 
Theorem 1.1 is proven. By the continuity of the Floquet eigenvalues of H(V), the 
simplicity of a band edge is stable under small perturbations. Starting from a potential 
VQ, one can then first perturb it so as to make its first gap endpoint simple, then its 
second gap endpoint and so on for k of the open gaps for Vb , proving Theorem 0.1. 

Proof of Theorem 1.1. We begin by noting that comparison with 

-(9 + 2mk)2 + rnrnVvix) 

shows that there is an M such that AM^Vb) > AQ + 1 for all k e Tn. For each 
/fa € Tn we choose a simple, closed contour in the complex plane, C(ko), enclosing 
{^j(ko,Vo)}jLm+1, which crosses the real axis between Am(fco, VQ) and Am+i(&o,Vo) 
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and between eigenvalues of H(ko,Vo) above \M(ko,Vo). Then for |fc - feo| and \\V — 
VQWOQ sufficiently small, the orthogonal projection 

P*o(*>t0 = 9^ /    (H(k,v)-ziy 
2m JCikn) fC(ko) 

is real analytic in k and V. Hence, we can choose an orthonormal basis {^+1,.. •, 

^RCk )3" ^or ^e range 0f P(kiV) which is real analytic in (k,V) on a neighborhood 
of (ko.Vo). Here and elsewhere we use neighborhoods in Tn, and \p - po\ stands for 
the Euclidean distance between po and the closest conjugate of p under Zn. Thus we 
have a cover of Tn by open sets, and, selecting a finite sub-cover, we have open sets 
Oi,..., Op with the following properties: 

1. for each Oi we have an orthonormal set {^+i(fc, V),... ,<^(fe, V)} suc'1 

that the 0's are analytic in (fe, V) on Oi x {\\V - Vo|| < 5}, and 

2. the span of {</>^+1 (&, V),..., <^.(fe, V)} contains all eigenfunctions of il(/c, V) 
belonging to eigenvalues greater than or equal \m+i(k,V) and less than or 
equal to AQ + 1.    . 

Next we choose k and </>o, ||0o|| = lj such that H(k, Vo)0o = AQ^O- Since ||</>o|| = 1, 
we can choose xo E Tn such that |0o(^o)| > 1- The idea behind this proof is to set 
V(t) = Vb — ty, where V is an approximate delta function at XQ. It requires a little 
work to show that V(t) will have the desired properties. To simplify notation we will 
suppress the index i = 1,..., P which specifies the open set Oi until the final steps of 
the proof. We will assume that k G O, one of the Oi, with the understanding that all 
estimates which involve k hold for all i, and that all constructions are done for each i. 

First, we need the estimate 

R 

(1.1) E   l0i(^^,yo)-^(a:o,^^o)|2<l/3 
j=m+l 

for fe € O when \x — xo\ < eo- Since the 0j's are finite linear combinations of 
eigenfunctions of iJ, and multiplying these eigenfunctions by exp(—2'irik • x) makes 
them eigenfunctions of —A + V, standard results on elliptic regularity (see, e.g. [8], 
Chapter 3, Section 14) imply that the C^-norms of the ^-'s are uniformly bounded in 
fc, giving (1.1). This would hold for Vb € Lp(Tn) for any p > n/2. We assume 
that €0 is also small enough that |0o(^)|2 > 2/3 for \x - xo\ < eo- We choose 
V1 e C^Hx - xo\ < eo) such that V^x) > 0 and / Vxdx = 1, and set V(t) =Vo- tVi. 

To see that the lowest eigenvalues of H(krV(i)) above the gap have the desired 
behavior we will use the variational characterization (Max-Min Principle). This re- 
quires some careful choices. First we will modify {(/)m+i(k, V(t)),..., 0ij(fe, V(i))} so 
that 

(1.2) 

-(Uk, V(t)),H(k,y(t))^(fe, Vm = (MK V(t)), -H(k, VitMjik, vm 

for all choices of i and j.   Letting / denote df/dt, we see that (1.2) will hold if 
{<j)i,<pj) = 0 for all i and j. Setting (/>, = 53. Uij<j>j, we have 

(4>r,4>s) = ^UrjUsj + ^ UriUsj {4>i, <Pj)• 
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Hence, setting U equal to the matrix with entries uij and A equal to the matrix with 
entries -(</>;, 0j), (1.2) will hold when the ^'s are replaced by the ^'s provided that 

(1.3) tf = UA. 

We solve (1.3) with 17(0) = /. Note that U{t) is unitary because the orthonormality 
of the (^'s makes A skew-symmetric, and it depends analytically on k on O Hence, 
assuming that the </>'s are the ^'s just constructed, both (1.1) and (1.2) hold for 
V — V{t) when t is sufficiently small. The analytic dependence of the <^'s on V 
implies that all derivatives of (</>;(&, V(£)), E(k, V(t))(j)j(k, V(t))) with respect to t are 
uniformly bounded in k for t sufficiently small.  Fixing an Oi containing k, we can 

write 0o in terms of the ^'s associated with this d, fio = J2j ^'^'(^^b), and then 

define </>o(£) = J2j cj<l>j(k,V(t)). Then by construction 

jt{Mt),H{k, V(t))to(t)>|t=o = -(0o(O),V^m < -2/3. 

Hence 

(1.4) (Mt), H(k, V(t))Mt)) < Ao - 2t/3 + 0(t2). 

On each Oi, define 

#(fc,t) = ^ffo,*, wffon*)). 
j 

Given 0(A:, t) = J^j arff {k, V(t)), we have (0(*:, *), ^ (fc, *)) = 0 if and only if 

(1.5) £a>f(zo,W = 0. 

Assuming (1.5) and \\<t>\\ — 1, we have for k G Oi 

d-Mk,t),H{k,V{t))4>{k,t))\t^ dt 
= -((f>(k,0),V1<fr(kM 

= - [ | £>(#(*> fc,^) - tfHxo^VoVfVtix. 
J\x—xo\<eo 

)dx 

> -1/3- 

Hence for k £ Oi 

(1.6) (</>(£, t),H(k, V{t))(j>{k, t)) > Ao - */3 + 0{t2), 

where the 0{t2) is uniform in both k and </> for ||<^|| = 1. In view of the variational 
characterization of the eigenvalues of H{k) V(t)) the estimate (1.4) implies that 

Am+i(*,V(*))<Ao-t/2 

for 0 < t < e with e sufficiently small, and, since  (1.6) bounds the minimum over the 
subspace defined by (4) from below, 

Am+2(*,^W)>Ao-*/2 

for 0 < t < e, where e is independent of k.  Thus we have the desired result.  This 
completes the proof of Theorem 1.1. 
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