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WEIGHTED ESTIMATES FOR NONSTATIONARY 
NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS* 

CHENG HE+  AND ZHOU-PING XIN* 

1. Introduction. Let ft be an exterior domain in R3 with smooth boundary dfl. 
We consider the nonstationary Navier-Stokes equations on the space- time cylinder 
Q x [0,+oo) : 

du 

~dt' 
vAu + (u - V)u = -Vp, in H x (0, oo), 

divu = 0, in ft x (0,oo), 

(L1) { w = 0, ondft x (0,oo), 

u —> 0, as \x\ —>• +oo, 

u(x:0) = a(a;), in ft. 

Here u = u(x,i) — (^1,^2,^3) and p — p(x,i) denote the unknown velocity vector 
and the pressure of the fluid at point (x,i) G ft x (0,00) respectively, while u > 0 is 
the viscosity, a(x) is a given initial velocity vector field. For simplicity, let u = 1. It 
is well known that system (1.1) models a viscous incompressible fluid flow. For more 
details about the physical meaning of (1.1), see [1]. 

There is an extensive literature on the existence of weak solutions and strong so- 
lutions to the nonstationary Navier-Stokes equations. Hopf [12] proved the existence 
of a square-summable weak solution for an arbitrary square summable initial velocity 
a(x). Later on, Galdi and Maremonti [5] constructed a class of weak solutions with 
second order spatial derivatives and one order time derivative with 5/4 power sum- 
mmability. Other properties of weak solutions were discussed in [7]. Also see [21]. As 
far as the strong solutions of (1.1) is concerned, Hey wood [11] proved the existence of 
global strong solution under the assumption that ||a||#-i(Q) is small, by using a variant 
of the Faedo-Galerkin approximation. Applying the theories of semigroup generated 
by Stokes operator A and some estimates of the Stokes operator with fractional pow- 
ers, Miyakawa [20] improved Heywood's result for three dimensional exterior domain 
only assuming m1/4a||//2(Q) small. On the other hand, Iwashita [13] extended the re- 
sults of Kato [14] to n(> 3) dimensional exterior domain and established the existence 
of Lp(p > 3) strong solutions, by making use of the Lp — Lq estimates of semigroup 
generated by Stokes operator A. By completely different method in [8], he showed 
the existence of global strong solutions only needing ||a||i,2(n) or HVaH^^) small, or 
i/ large. For other works, see [3, 4]. 

However, the fundamental problems, the uniqueness of weak solutions, up to an 
additive constant for pressure p, and the global existence of strong solutions without 
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any restriction on given initial data, still remain open. To solve such problem, some 
new a priori estimates, for smooth solutions, such as sup^>0 ||VW||Z,2(Q), supn><[oj00) \u\ 
or for any one of certain other quantities are needed, to serve in a continuation ar- 
gument via well known existence theorems. In this paper, we will try to establish a 
kind of new estimates. 

We will establish some new estimates in some weighted space. Then a class of 
strong solutions are showed in the weighted spaces for problem (1.1). Similar weighted 
weak solutions and strong solutions were shown in [9] for the Cauchy problem of the 
Navier-Stokes equations. One of the main ingredients of the analysis in [9] is to derive 
the weighted estimates about the pressure function p. For the Cauchy problem, the 
pressure function p satisfies that 

1,3=1 J 

By the fundamental solution of the Laplace's equation, the pressure function p can 
be expressed as 

(1.3)      p(x,t) = £ (0^^ -^fR3 d^-.(i^)^y)vMdy). 

Then employing the singular integral theory (cf. Stein [23]), they deduced the neces- 
sary weighted estimates. For details, see [9]. But for the exterior domain, a series of 
new difficulties appear due to the appearance of the boundary. The main difficulty is 
the weighted estimates about the pressure function p. In order to overcome these dif- 

ficulties, we use the singular integral expression of the operator P : L2(Q) —>J 2(0) 
in [17], then give the integral expressions of the approximate solutions, as do in [17]. 
Therefore, we obtain the weighted estimates for the solutions of (1.1), and show the 
existence of a weighted strong solution in the class (1 + \x\2)a/2u G Loo(0, +oo; Lp(ft)) 
and ^(l + \x\2)a/2X7u € Z/^O, +oo;LP(Q)) for 7 < p < +oo and a = 3/7 - 3/p. 
It seems that our results are completely different from any one previously known for 
the exterior problem. 

It should be to point out that a is smaller than that of the Cauchy problem. 
This is due to the appearance of #, which come from the boundary. Owing to the 
same reason, we can not obtain the weighted estimates of weak solutions, as doing 
for Cauchy problem in [9]. For details, see section 5. However, Farwig and Sohr [5] 
showed a class of weighted (\x\a) weak solutions with second derivative about the 
spatial variables and one order derivative about time variable in Ls(0,oo;Lq(ft)) for 
1< q < 3/2, 1< s < 2 and 0 < 3/q + 2/s - 4 < a < min{l/2,3 - 3/q}. 

Meanwhile, the large time behavior of weak solutions has been studied in details 
by Galdi and Maremonti [5], Borcher and Miyakawa [2], Maremonti [18] and Kozono, 
Ogawa and Sohr [15], also see [19, 21]; while that of strong solutions with small initial 
data has also been studied in details by Hey wood [11], Miyakawa [20], Iwashita [13] 
and Kozono and Ogawa [16] etc. Thus this problem is well understood. But there 
is no results about the decay properties at large distances. For the Cauchy problem, 
the decay properties of weak solutions and strong solutions are implied, in some 
sense, by the corresponding weighted estimates in [9]; that of weak solutions for the 
Navier-Stokes equations in exterior domains was studied in [4]; while for the steady 
state Navier-Stokes equations in exterior domains, Galdi and Simader [6] showed a 
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velocity field decaying at large distances as \x\~2 under the assumption of small given 
initial data. Similar decay properties of the Stokes equations in exterior domains were 
obtained in [22]. For other works, see [3] and the literature in [22] and [6]. In this 
paper, our weighted estimates imply the decay properties at large distances for the 
strong solutions of the Navier-Stokes equations in an exterior domain in some sense. 

The rest of the paper is organized as follows: In section 2, we introduce the 
notations and state the main results. The approximate solutions are constructed 
and some basic estimates are given in section 3. The integral representations of the 
approximate solutions are given in section 4. Finally, we deduce the main weighted 
estimates in section 5. 

2. Notations and the main results. Let ft be an exterior domain in i?3 with 
smooth boundary dQ. Without loss of generality, we assume that the complement of 
fl, nc, is contained in B(0,R), the ball centered at 0 with radius R. Let Lp(ft), 1 < 
p < +oo, represent the usual Lesbegue space of scalar functions as well as that of 
vector functions which norm denoted by || • \\p. We will use || • ||p5D to denote the 
norm of the function in LP(D).   Let 0^(0.) denote the set of all C00 real vector 

o 
functions </) = (</>i,</>2,</>3) with compact support in H, such that divcf) = 0. J p(fi), 
1 < p < oo, is the closure of C™a(n) with respect to || • ||p. Finally, given a Banach 
space X with norm || • ||x, we denote by Lp(0, T; X), 1 < p < +oo, the set of function 
f(t) defined on (0,T) with values in X such that f^ \\f{t)\\pxdt < +oo. Let P be the 

o 
Helmholtz projection from ^(fl)) to J p(0). Then the Stokes operator A is defined 

by A = -PA with D(A) = #2(ft)n J 2(ft). Let < x >= (1 + |£|2)1/2 and £(•, •) 
denotes the beta function. Finally, by symbol C, we denote a generic constant whose 
value is unessential to our aims, and it may change from line to line. 

Before stating our main results, we first give the definition of strong solutions. 

DEFINITION.  A vector u is called a strong solution of (1.1) if 
1) u, Wu e ^^(CTj^fi)) for 7 <p < +oo and any T > 0, 
2) u satisfies the equations (1.1) in distribution sense, i.e., 

/     / (- -J-™ + Vw • V0 + (w • V)u • (fidxdT = / <l)(x, 0)a(x) 
Jo    Jn     vT Jn 

for every 0G C^R x SI). 
3) divu = 0 in distribution sense, i.e., 

/ u(x,t)Vip(x) =0 
Jn 

for every ip G C^ft). 
Then our main results are stated in the following two theorems. 

THEOREM 1. Let a ej l(n) and (1 + \x\2)a/2a G Lp(n) for 7 < p < +oo and 
a = 3/7 — 3/p. Then there exists a constant 5 such that if ||a||p < 5, there exists a 
unique solution u to (1.1) such that 

(2.1) (1 + |£|2r/2u,   ^(l + \x\2)a^Vu G L00^, +oo; 2/(11)), 

(2.2) \\u\\2<CN(r)t-i^-2\ 
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where iV(r) is a constant depend only on ||a||2 and ||a||r (see Lemma 3.2). 

THEOREM 2. Let a ej 1(n) and (1 -f \x\2)^2a e Lp(n) for 3 < p < +oo and 
P < 1 - 3/p. Then there exists a constant 5 such that if ||o||p < 5, there exists a 
unique solution u to (1.1) such that 

(2.3) (1 + \x\2)^2u,   t^il + \x\2)V2X7u G L^c(0,+oo;^(ft)). 

REMARKS. 

1. The decay property (2.2) for weak solutions was already obtained by Borchers 
and Miyikawa [2]. 

2. A class of weighted weak solutions (1 + \x\2)a/2u G Loo(0,+oo;L2(R3)) was 
obtained for Cauchy problem for 0 < a < 3. And with small assumption on initial 
data, the weighted strong solution ^/2(1 + \x\2)u G Z^O, +oo; LP(R3))(S < p < oo) 
also was obtained for Cauchy problem in [9] with f3 -f- a = 3 - S/p or 4 — 3/p . 

3. Far wig and Sohr [5] showed a class of weighted d^l") weak solutions with 
second derivative about the spatial variables and one order derivative about time 
variable in Ls(0,oo]Lq(n)) for 1 < q < 3/2, 1 < s < 2 and 0 < 3/q + 2/s - 4 < a < 
min{l/2,3-3/g}. 

Applying the weighted estimates obtained in section 5, the proof of Theorem 1 
and Theorem 2 is standard. So we will only deduce the necessary weighted estimates, 
and omit the details of the procedure of the proof. 

3.    The Construction of approximation solutions and its basic esti- 
mates. We first define the approximate solutions by using the linearized Navier- 

o o 
Stokes equations in £1   Let a GJ p(fi)n J q(tt)(l < P,q < +oo).  By Lemma 1 in 
(Maremonti [18]), we select ak G Co^ft), such that 

a     in  Jp(ft)n Jq(ft) strongly 

and 

(3.1) < 2||a|| < 2||a|| 

in ft 
We now consider the exterior problems for the linearized Navier-Stokes equations 

du0 

(3.2) 

and 

(3.3) 

ua 

dt 
Au0 = -Vp0, in fi x (0, oo), 

divu0 = 0, in H x (0,oo), 
< 

u0=0, on dQ x (0,+oo), 

u0 —>0, as |a;| -)■ +00, 

< uo(x,0)=ao(x), in n 

duk 

dt 
-    Auk +(uk-1 ■ V)uk = ■ -Vpk,      in fix (0,oo), 

divu" = 0, in fl x (0,oo), 

uk = o, on 80, x (0,+oo), 

uk- -^o, as |x| ->• +00, 

uk(x ,0)=ak(x). in Q 
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for k > 1. It is well known (cf. Ladyzhenskaya [17]) that there exists a unique solution 
uk(k > 0) to (3.2) and (3.3) satisfying 

for i, j = 1,2,3, A; > 0 and any T > 0. An easily computation shows that the following 
Lemma holds. 

LEMMA 3.1.  If a e J 2(n), then the estimates 

(3.5) \\uk(t)\\2 <2||a||2     Vt>0 

and 

(3.6) /     ||Vtifc(8)||lcfa<4||a||l 

hold uniformly for k > 0. 

LEMMA 3.2.  Let a eJ 2(ft)n J r(n) for 1< r < 2. Then 

(3.7) ||ti*(t)||2<CJV(r)t-^i-i) 

holds uniformly for k > 0 and £ > 0. Where 

JV(r) = < 

Nlr + ||a||2 + ||o||l, if 3/2 <r < 2, 

IHIr + l|a||2 + ||a||2 + ||a||2 + \\a\\i    if 6/5 < r < 3/2, 

2 3 

^2 \\a\\t + J2 Ilall2i' if 1< r < 6/5. 
i=l i=0 

Proof. Similar to the discussion of (5.8) in Borchers and Miyakawa([2],P22i)j we 
can deduce that the inequality 

(3.8) 
hkm22 <  cr™ f 

Jo 
m*,n-1||e-"1a*||!ds. 

Jo Jo 

holds uniformly for k > 0. Here m is a sufficiently large number and e € [0,1/4]. 
The Lp — Lq estimates of semigroup generated by the Stokes operator in the 

exterior domain ft (cf. Iwashita[13]) is 

(3.9) l|e~syla||g < C||a||pfl-2(i-i>,     Vs > 0 

for 1 < p < q < -hoo. 
If 3/2 < r < 2, (3.8) implies us, with the help of (3.5) and (3.9), that 

(3.10) \\uk(t)\\l < c\\a\\2rt-w
r-iw + ciHUr1/2 

holds uniformly for k > 0 and t > 0. By inequality 

(3.11) (c + d)1'2 < c1/2 + d1'2     for any c, d > 0, 
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(3.10) implies (3.7) for t > 1, since 3(l/r - 1/2) < 1/2 so far as 3/2 < r < 2. When 
t< 1, (3.5) gives (3.7). 

Let 6/5 < r < 3/2, then (3.8) implis us that 

, 4(3-2r) 

Will <c(l|aft|l23(2~r) ||o*||p8(a:r) +||o*|||)t-1/2. 

4(3-2r) 

Let Ai = ||a||2
3(2-r) ||a||r

3(2-r) + ||a|||. It follows from (3.1), that 

(3.12) ||u*M < CAir1'2     for^>0. 

Substituting (3.12) into the second term at the right hand of (3.8), we deduce that 

(3.13) \\ukm2
2 < CMlt-Wr-W + CM^+^Al-^t-1**. 

By the Young inequality and (3.11), we have (3.7) for 6/5 < r < 3/2. 
Let 1 < r < 6/5. We substitute estimate (3.12) into (3.8) to get 

(3.14) \\uk(t)\\22 < ^(ll^llf^^ll^ll?^1 + ||a*||^(1+2e)Al-2e)r1+e. 

Due to (3.1) and the Young inequality, the constant at right hand side of (3.14) can 
be estimated as 

||a*||2  
8(2-)    Ho*!!^2-" +||afc||f+2e)^-^<c(||a||2 + ||a||2r + ||a||| + Af)^C7A2. 

Substituting (3.14) into (3.8), one show that 

II^WIIl    < C||a*||^-i(i-i) + ||a*||?(1+2e)Aj-2e*-i+3e-2e2 

< C||a*||2*-§(±-i> + C(\\a\\* + A2)rt+3^2^. 

As 1< r < 6/5 and 0 < e < 1/4, (3/2)(1/r - 1/2) < 3/2 + 2e2 - 3e. So (3.7) follows 
from the last fact and (3.5). D 

o 
LEMMA 3.3.  Let a G J p(£l)(3 < p < +oo). Then there exists a positive constant 

Si such that, if ||a||p < Si, then the estimate 

^ f  II^WH, < C||a||p> 

I *1/2l|Vu*||p<C||a||p 

holds uniformly for k > 0 and t >0. 

The proof is completely similar to that in (Iwashita [13]).   Here we omit the 
details. 

4. The Integral Representations of the Approximate Solutions. In this 
section, we deduce the integral expressions of the approximate solutions. At first, the 

singular integral expression of the projection operator P : L2(R3) —>J 2(R3) is: 

(4.1) P0 = 0+J_vdiv/   j^dy 
ATT JR3 \X - y\ 
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for any 0 G L2(i?3)(cf. Ladyzhenskaya[17]). By the fundamental solution of the heat 
equation, the solution for the Cauchy problem of the Stokes equations 

can be written as 

(4.2) vi= f   [   V'ix-y^-^-fiyrfdydT,      i = 1,2,3, 
Jo JR3 

where 

(4.3) 
Vi(x,t)=r(x,t)ei + ]-V^- [   r^l   

Z^dz 
47r    dxi JR3        \z\ 

and e1 is the unite vector along Xi— axis. It is easy to see that 

V^x, t) = cur^curkj*) = -Aa/ + Wdivuj\   i = 1,2,3 

with 

(4.4) 

,v     x       !    /"   r(a;-z,i) ,   , 1       „, |a;| , ; 
4n JR3        \z\ ^Ixlir6/2    2vi 

^ Jo 47r Ji?3        Fl 

For the details about the deducement of (4.3) and (4.4), see Ladyzhenskaya[17]. 
Now we deduce the integral expressions of the approximate solutions uk, as do 

in Ladyzhenskaya[17]. For this purpose, let £ G CQ
0
^) such that £ = 0 for x G 

{x\0 < dist(x,dUL) < A} and C = 1 for x G fU = {a;|dzst(a;,5n) > 2A} with some 
given positive constant A, here dist{x,dVt) denotes the distance function from x to 
5n. Then 

f curly(curly[w*(re - y,t - r)C(y)]) = C(y)^(« - 2/,* - T) + i2i(a:, J/,*,r), 

| R\(x,y,t,T) = VC x curlyw* + VC ■ diva;* - a;*AC + («;* • V)VC - (VC • V)^. 

Let 2/ and r denote the variables in equations (3.3). In the following, we drop the 
right upper label k of the solution uk of (3.3) and use b to denote i^-1 for convenience' 
sake of writing. We multiply both sides of (3.3) by curlyCurly[C(2/)cjz(x - y,t - r)], 
then integrate for y G B? and r G [0, t - e\ for arbitrary 0 < e < t, to get that 

/ Y3(S~A^)(^r)(c(y)yi(x"y't~r)+^i(x^,^r))^r 

= /        /   (-Vj,p - (6 • V)i0(2/,T)curlyCurly[^(x -y,t- T)((y)]dydT. 
Jo     JR

3 
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Let i2j(a;,2/,*,T) = -2(VC ■ VJF* - AC • V1. Since {-d/dr - A^JV* = 0, it follows, 
with the help of the integration by parts, that 
(4-5L 

/       /   u(y,T)R^(x,y,t,T)dydT- /       /   u(y,T)(—+ Ay)R\(x,y,t,T)dydT 
Jo      JR* Jo      JR* dT 

+ /   u{y,t - e^^V^x - y,e)dy + /    u{y,t - e)R\(x,y,t,t - e)dy 
JRZ JR

3 

-J 3a(y)[ay)Vi(x-y,t)^Ri (x,y,t,0J)dy 

= -J   £ 13(b-V)u(y,T)^ay)Vi(x-y1t-r)+Ri(x,y,t1T))dydT. 

Since (V'l(x — y,t — r) is continuous, then one obtains 

here (uQi denotes the i-th component of vector uC,. Thus, (4.5) implies that 

(*& = - [   [  (b-VMy.^ayW'ix-y^-^dydr 
Jo JR* 

- [   [  (b.V)u(y,T)Ri(x,y,t,T)dydT+ [   a(y)ay)Vi(x - y,t)dy 
Jo JR

3 JR
3 

+       a(y)R[(x,y9t,0)dy - /   /   u(y,T)Ri(x,y,t,T)dydT 
JR

3 JO JR
3 

l__d_ r   div(C(y)TiiO 
47r dxi JR3 \y\ 

Substituting (4.3) into above equation, we get that 

(4.6) (uQi = - [   f  (b ■ V)u(y, T)C(y)T(x -y,t- r^dydr 
JO   JR3 

-ft (b-V)u(y,T)C(y)V-£-9{x-y,t-T)dydT 
Jo JR? dVi 

+ /    /     Y\ biUk(y,T)—(R\(x,y;t,T))kdydT 

+ [   a(y)C(y)T(x-y,t)eidy+ [   a{y)C{y)V-?-6{x - y,t)dy 
JRS JR* OVi 

+ [   a(y)Ri(x,r,t,0)dy + f   f   u(y,T)(—+ Ay)R\(x,y;tT)dydT 
JRS JO JR3 OT 

f* f     t      wif       +   ^ A        
1    d    f   div(C(yK(a:-2/,0)^, - ^ J^ u(y, r)Rl(x, y; t, r)dydr -^^J^ ^ *• 
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Integration by parts several times yield 
(4.7) 

(u0i= /    /    y]bjUi(y,T)C(y)^—r(x-y,t-T)dydT 
Jo  JR*   j uVj 

+ f   [   yjbjui{y,T)^^T{x-y,t-T)dydT 
JO   JRS; oyj 

+ fl t 
JQ JR3l,k=l 

biUk(y,T)C(y) 
d3 

dyidyidyk 
8(x — y,t — r)dydT 

+ /    /     y^*Wfc(^r)~fl   a    8(x-y,t-T)dydT 
Jo JR* , ,_-, i,k=i 

dyi dyidyk 

0 
biUk(y,T) — (R\(x,y,t,T))kdydT 

oyi '0 JR3i,k=i 

+ /   a(y)Ci(y)T{x-y,t)eidy+ f   a(y)((y)vj^-6(x-y,t)dy 
JRS JRS oyi 

+ 1   a(y)Ri(x,y,t,0)dy+ I    [   u(j/,r)(— + Ay)Ri{x,y,t,T)dydr 
JR

3 JO JR
3 VT 

It is obvious that 

(4.8) suppijj and suppi^l C {y\X < 6ist{y,dCt) < 2A} = D. 

Thus, the actual integral region of J|, J^T^/g - /^ is D. Moreover, 

(4.9) 

|i2il<C(|0 + |W|), 

\VRl\<C(\6\ + \\79\ + \d29\), 

\Ri\ < C7(|vr| + |r| + \d2e\ + \d3e\), 

{ \(d/dr + Av)Ri\ < cm + \ve\ + \d2e\ + \dz9\ + \dte\ + \dtvd\), 

where \d29\ = £^=1 ^S/dXidx^ and |a3^| = £?,,•,*=! Id^/dxidxjdxkl 

5. Weighted Estimates for the Approximate Solutions. By simple calcu- 
lation, we have, with the help of the inequality 

that 

(5.1) 

Tae-OT <C       VQ > 0 

N"r||p<Cit-t(1-F), 
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for 1 < p < +00 and a > 0. It follows from the weighted estimates about the singular 
integral (cf. Stein [23-25]), that 
(5.2) 

IMa%<C|||a:|0T||r<CtS-$<1-*>, l/p=l/r-2/3,l<r<3/2,0<a<l-3/p, 

\\x\aV§\\p<C\\\x\ar\\r<Cti-i(i-}:), l/p=l/r-l/3,l<r<3,0<a<2-3/p, 

IM^IIp^ciiM^riip^t-fa-^ i <p< +0O;_i/p<a < 3_3/p_ 

In the following, let a = 3/7 - 3/p for 7 < p < +00. Let a; G QSA, then |a; -y\ > A 
ior y 6 D. According to (4.9) and the expression of 6, it is obvious that 

l-Ril + IVp-RJI + |^| + |(5/ar + A„)J2i| < C(|^| +*r) 

for x € ftsA and y e D.   Thus the theory on singular integral operator (cf.   Stein 
[23-25]) implies that 

LEMMA 5.1. Let a = 3/7 - 3/p for 7 < p < +00. Then for 3 < r < +00, we have 

(5.3)    \\Ri\\r,n3X + llV^iU^ + Ui^lkfis, + \\(d/dT + Ay)Ri\\r,Q3X < cH+&, 

Ilia; - y\aR\\\r,n3> + \\\x- y|aVyi?i||P,n3X + |||a; - y\aRi\\r,n3X 

(5.4) +1113; - vnd/dr + Av)iJi||r,nsA < cr*-*+*. 

Since 

|V^i| + |V,|V^i|| + IV^H + \Vx(d/dT + Ay)Ri\ < Cm/\x - y\ + tT/\x - y\) 

for x e ftsx and y G D.   Thus the theory on singular integral operator (cf.   Stein 
[23-25]) implies that 

LEMMA 5.2.   Let a = 3/7 - 3/p for 7 < p < +oo. Then for 3/2 < r < +oo, we 
have 
(5.5) 
l|V^||r,nw + ||VB|VyiJi1|||P>ng,+||VIiZillr,n„+||Vit(a/ar+Al,)iii||P,n3, ^C?*-1"1-*,. 

|||x - v\aVxB\\\r,nsx + \\\x - i/|aVa|Vvi?1|||P,n3^ + |||x - 2/|aVx^||r,n3 

(5-6) .X        8i8 

+\\\x - y\aVx(d/dT + Ay)i?i||P,Q3A < Cr 14-2F+27. 

Now we can give our main weighted estimates as follows. 

LEMMA 5.3. Let a ej 1n J p and (1 + |a;|2)a/2a € Lp{n) for 7 < p < +oo, and 
a = 3/7 — 3/p. Then there exists a constant S such that, if ||a||p < S, the following 
weighted estimate is valid for k > 0 and t > 0, 

(5.7) IKl + lafr/VHp^CA 

where A only depend on ||a||i and ||(1 + |a;|2)a:/2a||p. 
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Proof. For convenience's of presentation, we drop the right upper label of the 
approximation solutions uk and use b to denote u1*"1. By the interpolation inequality, 
a e Lq(ft) for every q G [l,p] and 

p-q p(g-i) 
/K Q\ IUII     s* ll^ll ^(p-i) ll^ll lip-1) (5.5) ||a||g <. Hall!        ||a||p 

First let ||a||p < Si, then Lemma 3.3 hold. It is obvious that 

<x>a<2a/2(<y>a +\x-y\a). 

Let Ju = || < x >a u\\p^. Applying (5.1), The Young inequality, Minkowski inequal- 
ity and Holder inequality, we can estimate I{ in (4.7) as follows, 
(5.9) 

|| < x >a li\\p>Q3X < C\\ [   [ \b\\u\(y)<y>a\VT\(x-y,t-T)dydT\\PtQ3X 
Jo Jsi 

+ C\\ f I \b\\u\{y)\x-y\a\VT\{x-y,t-T)dydT\\Pvzx 
Jo Jn 

nt rt 

<C       \\<y>a\b\\u\\\2m(t-r)^-i-^dT + C       |||6|N||2n(*-r)"7-*dr 
Jo Jo 

rt mp-p + 2m p-lm 3 13 

<C Ji,|H|p
m(P"2,    \\u\\?lp-2)(t-T)^-z-^dT 

JO 

pt np—p+2n p—4n 

+c    ||&UM|P"(p-2) IHI2"('-a)(t-- 
rt mp—p+2m p—4m 

C /   J!)||a||p
m(!'-2)   |H|2

m(p-2) (* - ' 
Jo 

T)   
7   4'" dr 

<C I   Jh\\a\Lm(p-2)   l|u||om(p-2'U-r)A-*-^dr 

+C||a||p"<p-2) N^^B^ -£,! + £;) 

mp-p+2r7x p-4m /** 5(p-4m) , J_       1       _3 mp-p+2m p-4m f*    
<   C||a||pm(P"2      iV(po)m(p-2)      /       JftT      7m(p-2)^_r)2p       2       4m ^r 

+C7||a||?^"iV(po)^i). 

Here we have used Lemma 3.3, po = 42/41, m = 41p2 - 42p/(14p2 + 66p - 28) and 
n = 41/20 - 31/(5(p - 2)). For /|, it holds that 
(5.10) 

\\ < x >a P2\\PIQ3X <C\\ f   [ \b\\u\(y)<y>aT(x-y,t-T)dydT\\p^3X 
Jo JD 

+C\\ (   f \b\\u\(y)\x-y\aT(x-y,t-T)dydr\\Ptu3X 
Jo JD 

<C f ||b||p|H||2(t - T)-UT + C f \\b\\p\\u\Ut - r)-it-*dr 
Jo Jo 

,tl„JL,      x„,3    1, 
k4'4' 

<q|a||p||a||2
MJV*(P0)B(7,:r)dr 

+C||a||p||a|ir+21/I0^13/20-21/10P(PO)B(| - 1 | + |)dr. 
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Note the fact 

,   -*-9(z-yt-T) = —?-[   Vnx-y-z,t-T), 
y dyidyj ' dyidyj JR3 

Using (5.2) instead of (5.1), the estimates of 1% and II are completely similar to that 
of !{ and I2. Then we have 

II   ^   T   ^    PI I      r^ -L   11   <r   T   ^^    Pll      ^ ||  <^ X >     ^3||p,ft3A -h I)  <« X >     ^4llp,^3A 

mp-p+2m p-4m /** 5(p-4Tn) 3 j 3 

<    C||a||pm(p"2)  A^(po);;rTF3^ /   J6r~TMP-V (t - T)^~^~^dr 
Jo 

+C\\a\\P^N(po)^^ + C\\a\\p\\a\$N*(po) 

(5.11) +C||a||p||a||^/20+21/10piV13/20-21/iop(po). 

Let XD be the characteristic function of D, i.e., XD = 1 for y € D, 0 for 2/ ^ D. 
Similar to the above discussion, we have that 
(5.12) 

\\ < x >a PB\\p>aa)i     <C\\ f   [ XD\b\\u\(y)<y>a\VyR\\(x-y,t-T)dydT\\Pv3X 
Jo Jn 

+C\\ [   [ XD\b\\u\(y)\x-y\a\VyR\\(x-y,t-T)dydT\\p,n3X 
Jo Jn 

<C f ||6||P||xz>«||7/6(*-r)-*dr+C / ||6||2|H|3(i-r)-*dr 

5p-12 7 

< C\\a\\pN(po) + CMpw ||a||2
6(p-2)   20 N(po) % 

^IUOSA    < C\\ [ \a\(y) <y>a r(x-y,t)dy\\p^ 

+C\\ f \a\(y)\x-y\ar(x-y,t)dy\\p,n3, 
Jn 

<C||<y>aa||p + C||a||7 

<C\\<y>aa\\p + C\\a\\f^\\a\\f^. 

Similarly, 

< x >a r7\\P9nax <C\\<y >« a\\p + CIMI^ ||a||p
7 
_6p_ 

7(p-l) |U||7(p-l) 

By the fact that suppyiij  C D and \R[(x,y,t,0)\ < C/\x - y\ for x G fisA-   We 
estimate Jg as follows 

11 <» >a 4\\P,n3X    < C\\< x>« f ^M^||Pi^ 
Jn F " y\ 

< C\\ < X >a XDa||3p/(3+2p)  < C'Hollp. 

Here we have used the weighted inequality of singular integral operator. By Lemma 
5.1 and 5.2, we have, for ig, that 

II < x >a P9\\P,n3X <C\\ f   [ XD\U\ <y>a Kd/dr + Ay)R\\dydT\\p,n3, 
Jo Jn 
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in 
rt 

< 

+C\\ f   [ XD\u\\x-y\°\{d/dT + Ay)n\\dydT\\Ptn3X 
Jo Jn 

C fttXDuhrW+wit-Tr^dT+C /"||Xi?«l|r(*-r)-2/7+3/2r' 
Jo Jo 

<CN(p0) + N(1-^), 

where r' — r/(r - 1) is a sufficient number. Similarly, 

|| <x>a li0\\P,n3X <CN(p0) + N(^). 

Note that 

*4:7rdxiJR3 \x-y\ JR3  \x - y\2 

By the weighted inequality of singular integral operator, we get 

\\<x>a Jjillp,^ < C\\ < x >a XDuWsp/is+p) < C\\a\\p. 

Applying Lemma 3.3 and the Minkowski inequality, we obtain, from above dis- 
cussion, that 

p —4m f 5(p — 4m) JJ i 3_ 
(5.13) Ju<    C||a||piV(po)m(p-2)  /   JbT   7m(p-2)^_r)2p   2   4m dr 

Jo 
p(2n-l) p-4n 13 7 

+c(||a||/(p-2) N(po)^v + ||a||p||a||2
20iV2o(po) 

+ l|a||p||a||^/20+21/10piV13/20-21/iOp(po) + MpN{po) 

5p-12 7 

!26( + l|a||P
6<P"2, ll«ll26(P"2)   20N(Poy- 

P-7 6p 1QQ    . 

+|| < x >a all, + Hall^-1' Hall^-1' + N(po) + N(—)). 

Let A be the terms in bracket. By the above discussion, it is obvious that JUo < CA. 
By induction, we have Juk e Loo(0,r;Lp(n)) for arbitrary T > 0. Thus (5.13) give 
us that. 

p — 4m 
(5.14) Ju < C\\a\\pN(p0)^vJb + CA. 

Therefore, there exists 62 such that if ||a||p < S*, C||a||pA^(po)p~4m/(m(p"2)) < 1. 
Taking S = minj^i,^}- Then (5.14) implies our result if ||a||p < 5. U 

LEMMA 5.4.   Assume the conditions of Lemma 5.3 hold. Then we hold uniform 
estimate as follows 

(5.15) i1/2||<x>aVi/||p<CA 

Proof. Let /{ and /^ denote the first two terms at the right hand of (4.6).  The 
other terms at the right hand side of (4.6) are same as Ic- 1^. Differentiating in 
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x at both side of (4.6), we have, by the Minkowski inequality, that 

3 

(5.16)     || < x >a Vu\\p,n3X <    C,El(\\<x>aVri\\p,ttn + \\<x>aVIi
2\\p,aax 

i=l 
11 

+ £||<z>«V/j|U3A). 

Employing Lemma 5.2 instead of Lemma 5.1 in the above discussion, we can obtain 
that 

3      11 

i=l i=5 

So we only need to estimate the first two terms at right hand side of (5.16). Due to 
(4.9) and the Young inequality, we have that 

||<s>*V/j||Pfn3A<    C\\ f   [ IbWVulKy^WWTKx-y.t-^dydrW^, 
Jo Jn 

+C\\ f   [ \b\\Vu\\x-y\a\Vr\(x- y,t-T)dydT\\p,Q9X 
Jo Jn 

< cf Ku\\bMt-T)-7sdT+C [ ||6||7/2||Vix||p(t-r)-^*dr 
Jo Jo 

< C ['KvWbwf^WbW^a-rridT 
Jo 

pt 2(2p-7) 3p 

+C /   ||VW||p||6||2
7(-2» \\b\\l^{t-T)-^dT 

Jo 

< C,||a||*||a||2
5^"*||a|||nfey / KuT-i(t-T)-idT 

Jo 
3__21_ 2(2p-7)       3   I    21 10p-14 

-Ur'lloll5       10p IUII   7(p-2)        S^iOP |U|| 7(p-2) '  ^ll^llPO 11^112 \W\P 

Here Ku = \\ < x >a Vu\\p. Similarly, 

\\<x>°vmp,na><    Gllalllllalll^'^llall^ f K^Ht - r)-idr 
3__21_ 2(2p-7)       3   |    21 10p-14 

+C\\a\\l 10p||a||2
7(p-2)    F+10p||a||;(p-2). 

Thus by Lemma 3.3, we have 

t^KuKCA + CM^Mf^'^M^t1* f KuT-i(t-T)-ldT. 
Jo 

By the Gronwall inequality, we obtain our estimate. D 
Because of the appearance of the function 6 in the expression of uk, we only 

choose a not to exceed 1 — 3/p for 3 < p, according the theory on singular integral 
operator (cf. Stein [24]). However, in order to obtain the uniform estimates about 
time variable, we must restrict a no to exceed 1/2 — 3/piovp > 6. Thus, the estimates 
(5.7) and (5.15) are valid for any 0 < a < 1/2 — 3/p and p > 6. In this paper, for 
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sake of simplificity, we take a = 3/7- S/p for 7 < p < oo. In view of the procedure of 
the proof of Lemma 5.3 and 5.4, the value of a don't affect on the uniform estimates 
about the term depending on J&, it only change the estimates about terms containing 
factor \x - y\a and /| - 1^. Thus, similar to the above discussion, we can obtain, for 
P < 1 - 3/p, that 
(5.18) 

II < x >? uk\\p < C||a||piV(po)*^|| < x >? tx*-1!!, + C(T)A 

ti'H < x >? Vu% < C{T)A + C(T)A /   || < x >? Vuk\\vT-s (t _ T)-idr 
Jo 

for 3 < p < +oo and any T > 0.   Therefore, by Gronwall inequality and small 
assumption on ||a||p, we have 

LEMMA 5.5. Let a e J ^ J p and (1 4- \x\2)^2a G Lp{n) for 3 < p < +oo, and 
0 < 1 - 3/p. Then there exists a constant 6 such that, if ||a||p < 5, the following 
weighted estimate is valid for A: > 0 and 0 < t < T, 

f  \\(l + \x\2)^u%<C(T)A, 
(5.19) { 

{ t^Ul + \x\2)^2Vuk\\p < C{T)A. 

where A only depend on ||a||i and ||(1 + |»|2)^2a||p- 
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