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Loo ESTIMATES FOR CONSERVATION LAWS WITH 
HYPERVISCOUS PARABOLIC TERMS* 

WALTER CRAIGt 

1. Introduction. This paper considers the question of L00 a priori estimates for 
hyperbolic conservation laws which are regularized with higher order parabolic terms. 
These are in the form 

(i) dtu + dxf(u) = (-iy-1d2
x
su 

uo{x)^u(x,0)eL'x'. 

The boundary conditions are that u(x, t) = u(x + 2-JT, t). The analysis will involve L°° 
estimates of the linear parabolic equation 

(2) dtv = i-iy-'d^v 

vo(x) =v(x,0) GL00, 

which is studied both on the circle; v(x, t) — v(x + 27r, t) and on the line x 6 M. Such 
questions are motivated by numerical spectral methods for solutions of hyperbolic 
conservation laws [2]. In this light it is fitting to contribute this paper to a special 
volume in honor of Cathleen Morawetz, who has had an interest throughout her career 
in nonlinear partial differential equations and their numerical solution. 

Standard parabolic theory implies that solutions to (1) and (2) are smooth, given 
L00 initial data, at least locally in time. The purpose of the analysis in this paper is 
to give an a priori L00 estimate on the solutions, and to understand the behavior of 
this estimate as s —Y +oo. Incidentally, s > 1 can be taken to be any real, but for 
simplicity we will let s > 1 be an integer. For 5 = 1 the classical parabolic maximum 
principle holds for both (1) and (2), implying the simple a priori estimates 

(3) ||ifc(a;,t)||i,oo < ||uo(aO||L~   , 

with constant C = 1, and furthermore the strong maximum principle holds. In 
contrast to this, for s > 2 there is an estimate for (1) of similar form 

(4) IK^*)llLco<C(5)|K(a:)||Loo   , 

but in general C(s) > 1. Furthermore there is more structure to the question, in that 
any constant which is to be taken uniformly in t e [0,-hoo) satisfies C(s) ~ O(s) for 
large s. However the solutions actually exhibit an initial layer in time; that is to say 
there is an initial time interval [0,T(s)] in which C(s) gives the a priori bound. After 
this short time interval the L00 estimate becomes better behaved, and we have 

(5) sup      ||u(a;,t)||Loo < Co|K(aO||L~ 
T(s)<t<+oo 

for Co uniformly bounded as s -> oo. The size of this initial layer is exponentially 
small in s; indeed T(s) ~ 2~s. 
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There is a related initial layer for the linear parabolic equation (2), posed over 
the circle x G [0, 27r). It is well known that for s > 1 the parabolic equation does 
not satisfy a maximum principle. The convolution kernel for the solution may change 
signs, unlike the case s = 1, and this may cause constructive interference for highly 
oscillatory initial data vo(x). However solutions of the equation do obey a maximum 
principle after an inital layer in time. Indeed there is a time Tpos-(s) after which the 
solution kernel becomes positive, and the strong maximum principle will hold. 

ACKNOWLEDGEMENTS. I would like to thank Heping Ma and David Gottlieb of 
the Division of Applied Mathematics at Brown University for drawing my attention 
to this problem, and Jochen Denzler of the Technische Universitat - Miinchen for his 
advice. 

2. Results. Let's start the analysis with the solution kernels of the linear 
parabolic equation (2). There are two cases to consider, x G [0,27r) with periodic 
boundary conditions, and x G JR. The integral kernels of the respective evolution 
operators are called 

(6)      ^ Kr(x,t) = ±:j2eikXe~k2st 
2
*,   - ke2z 

and 
roo 

(7) Ka{x,t) = ±- j"  e^e-'-'dk . 
27r J_00 

Using (6), the nonlinear equation (1) can be rewritten using Duhamel's principle 

/.27r 

u(x,t)= /     K?er(x-y,t)uo(y)dy 
Jo 

(8) 
-ff    KTix -y,t- T)duf(u(y, T))dydT 

Jo Jo 

rt    rtn rt      nZTV 

/    /     dxKr{x-y,t-T)f{u{y,T))dydT. 
Jo Jo 

The main a priori L00 estimate of this paper is the following. Suppose that \f(u)\ < 
Co(\u\d). 

THEOREM 1.  Let u(x,t) be the solution of the nonlinear parabolic equation (1), 
with initial data uo(x) G L00. Then there is a uniform L00 estimate in time, 

MM)IU~ < C(S)(\\UO{X)\\L- +IMaOlli~) 

with C(s) = O(s) for large s.  When t > T(s) ~ exp(—5log(2)) is outside of the initial 
layer, an estimate holds for the solution that is uniform in s as s —> oo. Indeed 

Mx,t)\\Loo < CO(\\UO{X)\\L~ + \\uo(x)\\U), 

where Co is independent of s, and independent oft for exp(—5log(2)) < t < +oo. 
The following results are some of the ingredients that will go into the proof of the 

main theorem. 
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THEOREM 2. Let u(x,i) be a smooth solution to equation (1), then the following 
elementary estimates hold, 

p2Tx P2TT 

(i)       /    u{x,t)dx=  I    uo(x)dx = 27ruo 
Jo Jo 

(9) (it)     \\u(x,t)\\L2<\\uo(x)\\L. 

(m)    J  \\d8
xu{x,T)\\2L*dT < -||uo(a 

/o 

Proof. These facts depend of course on the form of the nonlinear equation. Cer- 
tainly 

A^TT nZTV nZTt 

dt    u(x,t)dx=     (-dxf(u) + (-iy-1d2
x
su)dx = o 

Jo Jo 

for spatially periodic solutions u(x,t). The L2 estimates follow from the calculation 

1 /»27r /'27r p27r 

-dt        u2{x,t)dx= u{-f\u)dxu)dx + (-l)s-1        udlsudx 
2 Jo Jo Jo 

r2ir n2-K 

= /     dxg{u)dx - /    {ds
xu)2dx, 

Jo Jo 

where dug(u) — uf'{u). The first term vanishes, and the second term gives a positive 
contribution, when integrated over a time interval: 

(10) \\\U{XMI*+ f\K<X,T)\\l,dT=\\\uv{x)\\l2, 

which gives statements (9) (ii) (hi). D 

Estimates on the integral kernels Ks and K^ev', as well as dxKfer will play a role, 
and we use one of the simplest criteria for boundedness of an integral operator: 

PROPOSITION 3. For 1 < p < 4-oo there are estimates of the solution operators 
for equation (2) on Lp; 

Mx,t)\\Lp <C|MaOllLp, 

with C = JQ
n \Kfer(x,t)\dx = J^0

(X)\K8(x,i)\dx.   The constant may depend upon t 
and/or s. 

In case s = 1 it is a simple fact that Ki > 0 for t > 0, so that the absolute value 
signs are superfluous, and one may take C = 1. For s > 2 the kernel may change sign 
(in the periodic case it will change sign for t small), and in general the constant is 
bigger. We will be more precise as to the behavior of the solution kernel. 

THEOREM 4. Consider the linear equation (2) posed on the line x G JR. The 
solution kernel (7) satisfies the estimate 

(11) \Ks{x,t)\ < ^e-^T^^ai)^ +1) 
t^s t^s 
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with constant C~1(s) = (tan(^:)/2s)2^T(2s — 1). Through proposition 3 this implies 
that the linear equation (2), posed on 1R, satisfy an a priori L00 estimate 

(12) IM:M)||z,oo(^) < C(s)\\vo(x)\\Loo(R). 

Remark that C(s) — O(s), and that as stated in the introductory paragraph, this is 
an estimate valid uniformly in t. The proof of this theorem will be given in section 4, 
along with the proofs of the next two statements about L1 estimates of the solution 
kernel. 

THEOREM 5. Consider the linear equation (2), posed with periodic boundary 
conditions on 0 < x < 27r, 

v(x,t) = v(x + 27r, £). 

Then v(x,t) satisfies the additional estimates 

(13)(0 Mx,t)\\L- <C(8)\\vo(x)\\L- 

(12){n) \\v(x,t) -VO\\L<*> <  x \\vo(x) -VO\\L°O.- 
t^s 

Recall from (9)(i) that VQ = -^ f^ vo(x)dx. For large time t, estimate (13) is 
stronger, while the estimate (12) provides a uniform estimate for equation (2) over 
the half line 0 < t < +00. The time at which there is this exchange of strength of 
these L00 estimates occurs for T(s) ~ exp(—2slog(s)). More relevant 'though is the 
time T(s) where for t > T(s), \\v(x:t)\\Loo < 2\\VO(X)\\L°°• From the exponent of (13) 
this is clearly for T(s) ~ e~slo^2\ giving an exponentially small initial layer for the 
linear problem. 

One notices in (8) that the L00 estimate also may depend upon the derivative of 
the solution kernel with respect to x. For purposes of the nonlinear theorem we have 
the following bounds on the L1 norm of the derivative of Ks. 

THEOREM 6. The following estimate holds 

(14)(t) [ " \dxKfei(x,t)\dx < ^-e-^^ , 
JO ts 

where Ci is independent of s and t. Furthermore, for t > T(s), 

(14)(«) \\dxK»*T{xML~ < Coe-t^l 

3. Proof of Theorem 1. Before giving the details of proof of the linear L00 

estimates, we will refer to them in order to give the nonlinear result. Using the 
expression (8) of Duhamel's principle, we see 

27r 

(15) IKs, *)|Uoo <     / * Kfer(x - y, t)uo(y)dy 
Jo 

+ 
Jo     Jo 

dxKrr(x-y,t-T)f(u(y,T))dy dr. 
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The first term of the R.H.S. obeys the direct linear estimates, either (12) of Theorem 
4 in the initial layer 0 < t < exp(-slog(2)) or by using (9)(i) and (13), 

(16) 

< 

/     Krr(x-y,t)uo(y)dy 
Jo 

/»27r 

/     Krr(x-y,t)u0(y)dy-u0 
Jo + M 

<(l + 2Coe^^i))|K|U0o. 

Of course the principal effort of the proof is to also control the nonlinear contributions 
to the growth of \\u(x, t)\\Loo, corresponding to the second term of the R.H.S. of (15): 

rt        r27r rt        /»27r 

(17)        /      /     dxKr{x-y,t-T)f{u{y,T))dy 
JO     Jo 

dr 

< 
•/0 Jt-T(s) (t - r)J t-T(s) (*-T)' 

where the first term used (14)(u), and the second term used (14)(i) in the estimate of 
the R.H.S. 

To simplify this estimate, let's make the particular choice that f(u) = u2. Then 

(18) \\fWx,T))\\L*  = MX,T)\\12 < \\U0(X)\\12 

by Theorem 2, (9)(ii), therefore we find that 

(19) /       S Coe-^-^^\f{u)\\LldT<Co\\Mx)\\U. 
JO 

If 0 < t < T(s), we remark that this term does not even appear in (17). Assume then 
that T(s) < t, we will pursue the second term; 

(20) 
/. 

1 

t-T(s)  (t - T) 
T\\f(u(x>T))\\L~>dT 

<-{C\?f'^f'(Ljf^i 
1/P 

odr 

with the usual Holder inequality pairing I + i = 1. Setting p' = s - 1 (close but not 
equal to s) 

(21) TG 
i 

s-l 

dr' = s—iT(s) •(—i). 

Recall that T(a) ~ exp(-slog(2)), then it is easy to see that this factor is uniformlv 
bounded in s > 2. 

Again to simplify the argument, assume that f(u) = u2 as above. Prom (20) we 
need to bound the factor 

(22) (/ hX-dr) 
\Jt-T(s) J 

1/p 
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with p = (s - l)/(s - 2).  (In case s = 2, set p' = s - 1/2 and adjust this argument 
accordingly). 

LEMMA 7. We have estimates of the form 

(23)     f       MxrfUUdT < Cotalltio^Hi, + f       \\d°u(x,T)\\hdT) 
Jt-T(s) V Jt-T(s) ' 

<C7oCr(*) + l)|Ma:)||i-. 

Proof.   This is the Sobolev lemma, used in conjunction with Theorem 2, (9)(i) 
and (ii). For each r in question, 

\\u{x,T)tL„{x) < Co(||«(ar,r)||ia(ie) + \\ds
xu(^r)\\2L2{x)) 

by the Sobolev lemma, as s > 2 (s > 1/2 will do). Integrating over the time interval 
(t — T(s),t), we obtain 

/ M*,T)\\2Looix)dT <   f CoMx,T)\\2L2(x)dT+ [ Co\\dS
xu(x,T)\\2L2(x)dT. 

Jt-T(s) Jt-T(s) Jt-T(s) 

Using (9)(i) on the first term, and (9)(ii) on the second, 

<CoT(s)\\Mx)\\h + Co\\uomb- 

Since the L00 norm bounds the L2 norm over the circle, this finishes the proof. D 

Returning to expression (22), 

(24) ([*       WuX-dA 
\Jt-T(s) ) 

<       sup       \\n{x,T)\\QLOQ{x) x I  / |Ka:,r)||icodrJ      , 
t-T(s)<T<t K  ,        \Jt-T{s) ) 

where the exponent is Q — 2 - 2/p = 2/(5 — 1), 

(25) <(      sup      \\U{X,T)\\L~>{X)\    XCOIMSOIIJ??". 
W-T(5)<r<^ ) 

We first prove the estimate which is uniform in t > 0, which however blows up as 
5 —> oo. Define 

M(t) =   sup  ||w(a;,r)||Loo, 
0<T<t 

then combining (12) and (19) (25) to control (15), we find an expression 

(26)       sup  ||iz(a;,T)||L«> 
0<r<t 

/ \Q 2s-4 

^C^IKC^IUco+ColM^llico+Col   sup  |Ka?,r)||Lco)    IKWH/"1 . 
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When s > 3 the exponent Q < 1, resulting in the expression 

(27)(») M(t) < C7(||«o(a;)||L-)(l + MQ(t)) , 

which implies that 

(27)(M) M(t) < (C(s)\\uo(x)\\Loo + ColKWHioo)^. 

This gives the uniform in time estimate with constant C(s) ^ (s(s-1)/(s-3) ~ O(s). 
Now consider the case where t > T(s) is outside of the initial layer. Reiterating 

(15), we have the expression that 

(28) ||u(M)IU~ <     /"" K^(x-y,T)uo(y)dy 
Jo L°° 

Jo 

+ f        7r^Trll/(ti(y,r)).||Lcodr. 
Jt-T(s) (t-T)' 

Assuming again that f(u) = u2; the first two terms are bounded by 

(1 + 2Coe-*(^))|KI|L~ + ColMlloo. 

The estimate for the last integral again uses the Holder inequality in time: 

(29) /'       ^^\\ui{y,T)U„dT 

( rT(.)     r \ Vr' (rt \1/p 

In this case make a different choice for p,p', namely p' = 2 will do (or if s — 2,p' = 
3/2). The R.H.S. is bounded by 

(30) CoT(S)^ (j^)1    \\t
tTs 

dr) M2(T)- 

Use the estimate (27) of M(£) which is globally valid, we find that 

(29) < Co^+^^C^T^T (IKWIU-+ IKWHioo)1^. 

Since T(s) ~ exp (—5log(2)) this term is clearly uniformly bounded as s —)• oo. This 
finishes the second estimate of Theorem 1. 

4. Linear estimates. This section finishes the analysis of the paper, by verifying 
the estimates of the linear equation (2) that are stated in theorems 4, 5, and 6. The 
Fourier representation of the solution kernel for (2) posed on the line x G iR, is that 

-1 fOO -i /»oo 

(31) Ks(Lx,t) = — eikxe-k2°tdk=  eikve-^'dk,    y = x/t&. 
27r J-oo 2-7rt57 7_00 
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Assume without loss of generality that x > 0 (the kernel is symmetric), we will deform 
the contour of integration in (31) into the upper half-plane, to an appropriately chosen 
position. The one that we choose consists of an arc Fi of radius R and two rays, r2, Fs, 
at angles TT/SS and TT — TT/SS, as pictured here: 

In the exponent of (31), iyk — k2s considered along the arc Fi, the real part is bounded 
by |re (iyk — k2s)\ < —y tan (TT/SS) R + R2s. This is minimized over R by the choice 
ytan(7r/8s) = 2sR2s~1, hence it! = (tan(7r/8s)/'2s)^^y^^. Notice that the con- 
stant (tan(TT/SS)/2s) 2^rT = 0(1) is bounded for large s. The integral over Fi therefore 
has the bound 

(32)        f  eikye-k2sdk  <  T  "   V*tan<£>*+*a'ita0 

< e-(25-l)(tan(7r/85)/2S)*T^rf^T   Aan(^)\ »- ^_j_ ^ 

The constant in the exponent is C"1^) = (2s - l)(tan(^)/2s)2^T = 0(s~1). 
The estimates over the contours r2 and Fs are similar; one notices that 

(33) f  e^e-^dk 
r+oo 

<    /          e-pytSin(7r/8s)e-p23/V2^ 

~ JR 

< e-Rytcin(7r/8s)    /          e"P    /V^d/ 
_                                  JR 

<e-C-1(s)y^-i ^ 

This finishes the proof of (11). To estimate the norm of the evolution operation from 
L00(M) to L00(1R), it suffices by proposition 3 to estimate the integral 

_C-l(s)(_t)27 
e t2* 

-co 

poo 

/CO /»' 

\Ks(x,t)\dx<Co / 
-oo J — 

<2Coy    e"0-1^)"2-1 (i/^ + l)dj, 

x \ 23-1     , \ dx 

= 2(7o   C(s) 
2s 

2s-1 
+ c(s; 
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which demonstrates the estimate (12). 
The kernel of the problem on the line is now used to estimate the problem on the 

circle 0 < x < 2TT. By the method of images, 

KFT{x,t)=   Y,  Ks(x + 2<KJ,t), 
j=-oo 

therefore 

(35) /     \K*"(x,t)\dx=   Y,   /     l^rr(^ + 27ri, t)\dx 

■/ 

J=-oo 
CO 

\K8(x,t)\dx <C(s), 

which through proposition 3 gives the first estimate (13) (i).  To analyse the second 
estimate, we use the Fourier series expression of the solution kernel 

(36) Kr(x,t)=   £   ^etoe-^ = ^ + £icos(Me-^ 
k= — oo 

When one considers v(x,t) — VQ it is tantamount to considering the sum over k > 1, 
which has an L1 estimate 

n2ir 

Jo 
^-cos(fc£)e  *2** 
k>l 

■k-"t 

The last sum is bounded by an integral, as e       'is decreasing in k, 

(37)        1 yy**' < 1 pV2^ = 1 f -K^e-^ 
*££ ~ * h *Jt     2st^^ k>2 

< 
(     ZS     \       i A.       t(2s~l) 2s £     L\    2s     > 

Estimate (13)(ii) follows from this statement, which finishes the proof of Theorem 5. 
The final result that is needed occurs in theorem 6, where we must estimate 

derivatives of the kernel. It is sufficient to study the sum 

(38) 
fc>i 

+ Efce" ■*•"* 

k>2 

The function log(fc) - k2st has a maximum at k = (2st)   ^ , therefore 

(39) 
k>2 Jl 

-Ly'e-*2-*dib+ f+00    ke-k2stdk, 2stJ J^rf 

where the first term is taken to be zero if (l/2st) < 1. As above, the first term can be 
estimated by the quantity (2s)~27t~^e~t^~^~\ and the second term looks like this 

(40) 
r+oo 

ke tdk-- 
(lir)57 2 J(i)4; (sir) 

+oo 

=5/ Z  Jl/28 
-td i  = 

1 
2st 

e   1*. 
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which has coefficients of t~l/s bounded for large s. The L00 estimates of the kernel 
work in the same way, so that (14) (i) and (ii) follow from this. 
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