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TWO-STREAM INSTABILITIES IN PLASMAS* 

S. CORDIERt, E. GRENIERt, AND Y. GUO§ 

Abstract. One of the classical fluid models to describe plasma dynamics is so-called 'two-fluid' 
model, where electrons and ions are regarded as two compressible fluids. It is well-known that in 
many circumstances, two streams of charged steady fluids with different constant speeds are linearly 
unstable. It is shown in this article that they are indeed nonlinearly unstable in a dynamical setting. 

1. Introduction. The two-stream instability is one of the most classical ex- 
amples of velocity space instability that occurs in plasma physics. Some devices like 
traveling waves amplifiers are based on this phenomenon. On the other hand, it is also 
one of the reasons in the failure of some controlled thermonuclear reactions schemes 
(see [7] page 449). 

We shall study the following three classical cases arising in the 'two-fluid' model 
in plasma physics. Let the spatial variable x belong to the periodic interval T = M/Z. 

We first consider two beams of cold pressure-less electrons with densities ni{t,x) 
and velocities Ui(t, x), moving in a fixed ion background. In one space dimension, the 
Euler-Poisson equations are 

dtrii + dx(niUi) = 0, 

(1.1) dtui + UidxUi = E, 
me 

dxE = -47r(ni + n2 - 1), 

where i — 1,2, E(t,x) is the self-consistent electric field, and me is the mass of an 
electron. We also impose the neutral condition which is invariant for all time: 

(1.2) [n1(t,x)+n2(t,x)-i\dx = 0. 

With the same notations, we next consider two streams of electrons with pressure 
moving along one direction in a motionless ion background. The Euler-Poisson system 
now takes the form: 

dtrii + dx(niUi) = 0, 
1 e 

(1.3) dtUi + UidxUi + —dxpi(ni) = E, 
rti me 

dxE = -47r(ni + ^ - 1), 

where i — 1,2. Here the Pi(ni) are the corresponding partial pressures which are 
given strictly increasing functions, so called pressure laws, of the density. Typically, 
one consider adiabaticpi(n) = C^n7 for some d > 0 and 7 > 1, or isothermal pressure 
law Pi(n) = Cilogn, where Ci is a temperature. We also assume (1.2). 
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In the last case we consider two streams of moving ions and electrons. The Euler- 
Poisson system now consists of 

dtrij +dx(ujnj) =0, 

(1.4) dtUj + UjdxUj H dxpj(nj) = J-E, 
rij rrij 

dxE = ni -712, 

for j = 1,2, where # G Td (periodic d-dimensional torus), E is the electric field, nj(t,x) 
are the densities of ions and electrons respectively, Uj(t,x) are their velocities, rrii are 
their masses, qi = +1, qe = — 1, and the partial pressure pj are given functions as in 
system (1.3). We also assume neutral condition (1.4) as: 

(1.5) /   (ni(t, x) — n2(t,x))dx = 0. 

For notational simplicity, we use [•, •] to denote the transposition of a vector. In 
the study of Cauchy problems of all three systems (1.1), (1.3) and (1.4) with periodic 
boundary condition, clearly a constant vector [n^n^^i,^^] with n^n® > 0 is a 
steady state solution if nj + n® = 1 in the cases of (1.1) and (1.3), or a solution to 
(1.4) if nj = 712- In contrast to the case when ions and electrons move at the same 
speed Ui = u® (see Appendix A), if u® and i^ are different, this simple equilibrium 
is not always linearly stable. This is a very well-known physical phenomenon, called 
two-stream instability in plasma literature, see pll6-pl69 in [9]. We shall discuss the 
conditions for linear instability in section 3. The main goal of this article is to show 
that this kind of linear exponential instability indeed implies the dynamical instability. 
Let w(t) = [ni(t) — raj,.ra2 0O ~ n2iui(t) - wj,^^) — ^2]- 

THEOREM 1.1. In (1.1), (1.3) and (1.4)> if the steady state [n^n^u^u^] is 
linearly unstable then it is nonlinearly unstable: for any s arbitrary large, there exists 
eo > 0, such that for any 5 > 0 arbitrary small, there exist solutions w5(t,x) to the 
corresponding evolution (1.1), (1.3) or (14), such that \\w5(0,x)\\H3tjd) < 5 but for 
some T6 — 0(| ln<5|), we have 

(1.6) Ik'CrVJMx") > €<>. 

and 

(1.7) II^V)!!^,) > eo. 

We remark that such instabilities occur before the possible break-down of the 
smooth solution (Theorem 2.1): that is, for all 8 > 0, 

sup   \\ws(t,.)\\Hs{Td) < +00. 
0<t<T5 

Moreover, the escape time T6 is determined by the exponential growth rate of the 
linearized system. 

The passage from linear instability to nonlinear instability in PDE setting is sub- 
tle in general, especially when high-order perturbations in the full nonlinear equations 
consist of severe unbounded terms (usually with higher derivatives not controlled by 
linear estimates). In kinetic models for plasma, using a dominant linear growing mode, 
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Strauss and the third author have developed methods to study weakly spatially inho- 
mogeneous equilibria, [5], [6] (see Appendix B). In a different study of instabilities in 
perfect fluids [4], the second author has developed another approach in which higher- 
order growing modes are constructed. This method seems more general, particular 
for investigations of spatially inhomogeneous equilibria. 

The abstract frame work is given in section 2. Notice that the key assumption 
enables us to prove the nonlinear instability is (A2), which is an estimate of the 
spectral radius of the linearized operator in terms of its eigenvalues. In section 4, we 
verify (A2) in different Euler-Poisson systems to apply the abstract instability result. 
For the Euler-Poisson system (1.3) and (1.4) in presence of pressures, (A2) follows 
easily. On the other hand, the proof of (A2) for the pressure-less system (1.1) is more 
delicate. Because of the difference of the two speeds u® and u®, certain compactness 
for solutions to the linearized system is obtained. An alternative proof for instability 
in the presence of pressures ((1.3) and (1.4)) is given in Appendix B. 

2. Abstract Instability. Based on the paper of [4] we first establish the passage 
from the linear instability to nonlinear instability in a general L2 framework. 

Let 0 e 0 C IRn be an open subset. For a > 0 small enough, ft contains a ball of 
center 0 with radius a. Consider the system of equations 

d 

(2.1) dtw + Y, MwWw + L(w) = F(w) 

where w(t,x) E Mn for some n > 1, x — (xi,...,a;d) E Td, Ai(w) are n x n real 
matrices, L{vS) and F{vS) are n dimensional vector valued functions defined on fi, 
depending in a C00 manner on w. We assume that L is linear with respect to w and 
the nonlinear part F satisfies F(0) = 0 and F^O) = 0 (in applications, F is quadratic 
in w). 

The main assumptions are 
(Al) Ai are symmetrizable matrices : there exists a n x n positive definite matrix 

S{vS) > aid with a > 0, for all \w\ < cr, such that for every 1 < i < d, SAi 
is a symmetric matrix. 

(A2) There exists a C00 eigenvector r of - J2i Ai(0)di - L such that 

(2.2) ||e[-£^0^-LV)ll^ < C,(A)exp(At)|K)||H-, 

for every v E Hs, where 0 < ReA < A < 2ReA, and A is the eigenvalue of r. 
The main theorem in this section is the dynamical instability of the zero solution 

to (2.1). 

THEOREM 2.1. Assume (Al) and (A2). Then the stationary solution to (2.1) 
w(t) = 0 is nonlinearly unstable: for any s arbitrary large, there exist eo > 0, such 
that for any S > 0 arbitrary small, there exists a solution ws(t) of (2.1) such that 
lh*(0,.)lltf' <8 but 

(2.3) sup   \\w5{t,-)\\Hs{Td)+   sup   |h//(UllL~(^)<^/2; 
Q<t<T8 0<t<Ts 

(2-4) II^(T
J
,-)IILP(TCI)>CO>0, 

where T6 = 0(|ln5|), for any 1 <p < oo. 
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The proof of this Theorem relies on two ingredients. First, we estimate the 
difference between the true solution and an approximate solution by basic energy 
estimates. Then, we construct an approximate solution with high-order accuracy. 
Notice that this Theorem can be extended to the whole space case (see [4] for more 
details). 

We first estimate the error v = w — </>, where 0 is an approximate solution. 

LEMMA 2.2. Assume (Al). Let s > [d/2] + 1, and let (j){t,x),R{t,x) G L%C(H
S). 

There exists a continuous function #s(v) such ihat if v satisfies 

d d 

(2.5) dtv+^Aitf + v^iV+Y^Mt + ^-M^ 

then we have 

(2.6) ftllMli;< 5.(11 WIUIIMII.)||Hll2 + |||i?||i;, 

where the norm \\\ • \\\s is defined by (with S in (Al)) 

(2-7) |||T/|||2= X)  fd^vS^ + v^v. 

Proof of Lemma 2.2. The proof is straightforward by classical energy methods as 
in [8], [3]. Notice that since 5 > a/d, 

(2.8) alMI*. < HHH, < Cidl^l^., |H|/rOII*lk- 

provided s > [d/2] + 1, for some nondecreasing function Cf
s. 0 

We now construct an approximate solution.  Let 8 be a small positive constant 
(independent of 5). We define T6 by 

(2.9) e = SeReXT5. 

LEMMA 2.3.   Assume (Al) and (A2) and fix an integer N > 0.   There is an 

approximate solution wa — Ylj=i ^rj to (2.1) such that 

d 

(2.10) dtw
a + ]£ Ai{wa)diWa + L(wa) =Ra

N + F(wa). 
i=l 

Moreover, for every integer s > 0, there is 6 sufficiently small, such that ifO<t<T5 

as in (2.9), rj and R% satisfy 

(2.11) Hrvllif < Cs,ivexp(iRe Xt), for 1 < j < N, 

(2.12) ' WRNWH* < CS,N5N+1 exp((7V + l)ReAf). 

Proof of Lemma 2.3. We shall construct r/ satisfying (2.11) inductively on j. 
For .7 = 1, choose the eigenvector r in (A2) with its eigenvalue A. We construct 

(2.13) ri(t,x) - rexp(Xt) +fexp(A^), 
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where 7 denotes the complex conjugate. Clearly ri satisfies (2.11), and 
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Rai = J2lM6ri) - MO^Sdin - FiSn) 
i=l 

satisfies (2.12). 
Assume that we have constructed rj which satisfies (2.11) and (2.10) for j < N. 

We now construct r^+i. Let 

w, = "£6krk(t,x). 
k=i 

(2.14) 

We then define 

d 

(2.15) hj+1(S) = Y^lMvj) - MOmwj - Fiwj). 

For 0 < t < T6 and with 9 small, we can expand hj+i(5) in term of S around 5 = 0. 
The coefficient of the (j + l)-th order term (which is a function of (t,x) still) is 
/lu+ MO) ^ 
{t| ;,'. On the other hand, notice that for 0 < t < T\ (i+i) 

(,17)      ^) = |^ + o(!^rf). 

Plugging (2.16) and (2.17) into (2.15), we obtain 

(2.18) 
(i + 1)! E r>li,h,>--,lN+i     h   h . .JN fl.r

lN+i 
jl j2,-"JN + l4   jl    32 JN     l   JN + l 

Zi+*2+..+*;v-fi=j+l 

where lk > 0,1 < jk < j and ^j^.V.'^+i,; depends on Ai and F.   By induction 
hypothesis (2.11) for rJfc, 1 < jk < j, we obtain 

(2.19) 
0" + 1)! 

< Cs Ne^h+l2+-+lN+^neX * = C, Are(j'+1)ReA *. 
i?3 

We now define the r^+i as the solution of 

O+i), /iu+ '(0) 
dtrj+1 + ^Amdirj-n + L(rj+1) = -ff^f 

i=l O' + l)! 

with initial data rJ+i(0,x) = 0. By (2.2), (2.19) and Duhamel principle, 

\\rj+i{t,.)\\H.<C feW-^ 
Jo 

< cWj+1>ReAt 

^+1)(0) 

(i + i)! 
(r) dT<CN /

teA(*-'-)e«+1)ReArdT 
Jo 
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since j + 1 > 2, and A < 2ReA. Hence (2.11) follows. 

Having constructed all ry, for 1 < j < N,we now define wa = Ylj=i ^rj' Clearly 

d Ar-1(p+1/i(i+1)ro) 

ti U   {j +1)! 

Let Wj be replaced by wa in (2.15), we define 

d 

h{8) = 53^^°) " MWiV* - F^a)' 
i=l 

We define 

(2.20) RaN = -E   i^   +m, 
j=i 

so that (2.10) is valid for wa. Replace Wj by wa in expansions of (2.16) and (2.17). 
Notice that h(S) is quadratic in wa, its j + 1-th order term is the same as in ftJ+i(5), 
for all 1 < j + 1 < iV. Therefore, R^ consists of only those terms of orders at least of 
N + 1. From the argument in (2.18), we deduce that jR^- satisfy (2.12) by using (2.9) 
to control terms of orders higher than iV + 1. D 

Now we are ready to prove Theorem 2.1. 

Proof of Theorem 2.1. Based on the approximate solution w0, in Lemma 2.3, for 
which N will be chosen later, we now construct a family of solutions w6 which are 
unstable. We define w5 to be the solution of (2.1) with initial data wa{G). We know 
that w5 exists in small time since the matrices Ai are symmetrizable. We want to 
bound w6 — wa and estimate the existence time interval for ws. Let v = ws — wa 

which satisfies v(0, •) =0 and 

d d 

(2.21)     dtv + Y, A^wa + v)d^ + Y, [A^wa + *) " Mv*)] 9i^a + L(v) = 
i=l 2=1 

-Ra
N + F(w5)-F(wa). 

Using Lemma 2.2, with s = 2d, 

ftllMHL < 92dmwa\\U IIMMMIIi* + III^IHL 
< 32d(||ka|||2d, |||^|||2d)|||^||2

2
d + C52(N+V exP(2(Ar + l)ReA*). 

Let T (depending on S) be the first time t (possibly infinite) such that either |||^0|||2rf = 
a/2ov\\\v\\\2d = a/2: 

T = sup{ * : \\\w«m\2d < a/2, \\\vm\2d < a/2.} 

As i;(0) = 0 and as |||^a(0)|||5 = 0(6), T is well-defined for 5 small enough. 
Recall (2.9). We claim that for some 8 small enough, T5 < T. 
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Proof of the claim. Suppose the opposite T6 > T. For t < T, we have, using 
(2.8), 

N N N 

IIKIIbd < tf^Mff*. < Y,^expijBsXt) < ^C^' < a/4 

provided 8 is small. 
On the other hand, for t < T, with s = 2d, 

dt\\\v\\\ld < 92^12, a/2)||M|||d + C8^N^ exp(2(iV + l)ReAi). 

Using Gronwall inequality and choosing N such that 

(2,2) W>*M-i, 

and g2d as defined in (2.6), this insures 2(A^ + l)ReA > Q2d(pl2, a 12) and we get 

(2.23) ||M||2d < C,JiV+1exp((iV + l)ReAf) = C0N+1. 

But |M|#2d  < a-1|||t'|||2d and ||v||if2d controls IMIL
00

-   Therefore ||f||ij2d  < a 12 
provided 9 is small enough. 

Hence T5 < T by their definitions. The claim is proved. 
Notice for 0 < t = T5, by further choosing 9 small enough, we have 

N 

IKIU^^IKII^-^^'IKIU! 

JV 

> C(5exp(ReAr'5) - ^ C^-7' expO-ReAT"5) 
J=2 

Moreover, from (2.23), we conclude 

Ik'llLi > IklUi - Ik5 - TU
0
|UI > IKH^ - c\\\w

5 - wa\\\2d 

D 

3. Dispersion relations and growing modes. In this sectiopr, we demonstrate 
that many equilibrium state [n^,^],j = 1,2 with uj / u% for (1.1), (1.3) and (1.4). 
Without loss of generality, we assume i^ < i^- The following computations are 
classical in plasma physics and can be found for instance in [7]. Let us first consider 
the 2 cold electrons beams without pressure, the Euler-Poisson system (1.1). 

The mass conservation for the perturbation density p^ = pj exip(ikx — iut) and 
velocity Uj = Uj exp(ikx — iut) gives 

-upj + k{n^Uj + pjU^) =0,  j = 1,2, 
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The momentum equation for such cold electron beams leads to 

—iuuj + iku^Uj = E, 
J 3 me 

where E is the perturbation of the electric field which is related to the perturbation 
of densities through the Poisson equation 

ikE = -47re(pi + fe)- 

Eliminating the densities, we get the dispersion relation: 

where Upj = 47rn^e2/me is the squared plasma frequency of the z-th beam. 
We want to compute the roots of (3.1) in the variable y = u/k, where the wave 

number k = 27rZ, with an integer /. In other words, for a given equilibrium state 
[ripu^j = 1,2, the dispersion relation 

k -(y-u°r + (y-u°r-gM 

determines the possible values of y in terms of the wave number k. There are always 
at least two real solutions (out of the the interval bounded by [t/J, u®]). The instability 
with wave number k relies on the existence of complex roots. Notice that the minimal 
value of g(y) on the interval [w?,^] 1S reached for the unique root (in the interval 
[^1,^2]) of the third order polynomial (in variable y) 

tajifo-t^'+u&fo-ti?)8. 

A simple solution can be found in the special case 

n?=nO,   «? = -< 

In this case, the plasma frequencies are equal upi = uP2 — ^p and the minimal value 
of g{y) is 2Up/\ui\2, obtained at y — (i/J + u^)l2 = 0. Since the spatial variable 
satisfies 0 < x < 1, the wave number k has to be greater than 27r. Finally, this 
proves that the linearized system is unstable (with complex y) if u;p > ^itu®. From 
the physical point of view, this means that the plasma frequency is greater than the 
typical frequency ( l/wj being the time for the electrons beams to cross the domain). 

In the general case, the minimum in [w?,^] (for V — u/k) is obtained for 

?/o   2/3 ,    0   2/3 

y ~~    2/3 ,  2/3  ' 

and there exists complex root y provided that 

7/°  - 7/° 
(3.2) 2/3

2       '     ,   > 27r. 
(^1

/3+^2/3)3/2 

We have proved 
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LEMMA 3.1.   The system (U) is linearly unstable around [n^u^n^u^] if and 
only if (3.2) holds. 

Let us now consider the case (1.3) with pressure p. 
The momentum and mass linearized equations in this case are modified as 

where c| = p^n®)/^ is the squared thermal velocity associated to the j-th beam 
of electrons, j = 1,2. The thermal velocities measure the velocity dispersion of the 
electrons. The two-stream instability occurs for cold plasma for which Cj <C HuJj — w?||. 
Notice that, for neutral particles, there is no electric field and the above relation gives 
the velocities of the fluid acoustic waves 

cu/k = u® db Cj. 

Then, using again the Poisson equation, we obtain the following dispersion relation : 

(w - feu?)2 - c?fc2      (CJ - kul)2 - elk2 ' 

Let us assume k fixed. The r.h.s. is a function of u with 4 real poles ku^ ± Cjk 
(j = 1,2). When the two poles associated with different species are entrelaced, there 
are four real solutions in u (for example if u® — C2 £ [w? — ci,^ + ci]). When 
the relative speed is so large that the roots are not interlaced, some roots become 
complex. In the physically relevant case i.e. for cold plasma, the relative speed is 
greater than the thermal velocities. Using classical result on the perturbation of the 
roots of polynomials, we obtain: 

LEMMA 3.2. The system (1.3) is linearly unstable (resp. stable) around 
[nj,tt5, n^,^] for sufficiently small value of Cj, j = 1,2 if (3.2) is true (resp. false). 

A more precise criterion may be found in some particular cases. Note that the 
above analysis could be extended to the case of electrons and ions drifting with respect 
to each other, which includes the linearized Euler-Poisson system (1.4) with d — 1. 
See for instance pl66 of [9]. Another way to get such dispersion relation for (1.4) 
relies on the Vlasov theory. Assume a plasma with an equilibrium distribution of 
cold electrons /e(v) = b{v) and ions with a drifting speed w? i.e. fi(v)5(v — u®). This 
equilibrium state is electrostatically perturbed with an oscillation of frequency u. The 
dispersion relation reads 

1 = -^ + Pl 

w2      (w-jfcu?)2' 

For any fixed value of k the two-stream instability condition 

3/2 

iKlK^e     l + (^)2/3 
(JU. pe 

insures the existence of complex roots. The unstable wave has velocity somewhere in 
between the velocity of the two streams. Since the sign of the charge does not appear 
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in the above dispersion relation, the same analysis can be carried out. We refer to [7] 
for a physical presentation of this phenonenon and the related Penrose and Gardner 
criteria. 

These results have also been confirmed by computer simulation experiments (by 
computing the orbits of all charged particles in a plasma using the actual forces 
between particles) [1]. This two-stream growth mechanism was demonstrated exper- 
imentally in 1949 by Pierce and Heibenstreit in [10, 7]. 

4. Two-stream instability. We now prove Theorem 1.1 by applying the ab- 
stract Theorem 2.1. We first normalize all physical constants to be for notational 
simplicity. 

Proof of Theorem 1.1 for (1.3) and (1.4). It suffices to just consider (1.4), the 
case of (1.3) is similar. 

The Euler-Poisson system (1.4) takes the form: 

(4.1) 

with 

Here 

dtw -f A{w)dxw + L(w) = 0, 

W = [fli - nj, 722 — ^25 ul ~ uli u2 ~ u2]' 

(4.2)       A(w) = 

and 

/        u? + w3 

0 
Piirf + w^/ni 

0 

0 

0 
p,

e(n0
e+W2)/nl 

( 

0 

0 1 + m j 

0 
+ ' 
0 

n° + w-z 

(4.3) L{v) = 

0 
0 

\ 

m, -'E 

\ -m. -lE J 

Let us check assumptions (Al), (A2) and (A3) of Theorem 2.1. We take 

Let 

(4.4) 

m wlKI <:f-.KI<y}. 

5 = 

V 

0 
0 
0 

0 
p'e(n0

e+W2)/ne 

0 
0 

0 
0 

n° + wi 
0 n0

e+W2 J 

S is positive definite and SA is a symmetric matrix, therefore (Al) is true. Since L 
is compact from L2 to L2, (A2) is straightforward by Lemma 4.1 with K — L and 
T = A(0)dx- As ^4(0) and L have constant coefficients, taking Fourier series, we see 
that for a given eigenvalues A we can take an associate eigenvector which is a plane 
wave, and which is therefore smooth. By the neutral condition (1.2), L commute with 
spatial derivatives. This proves (A2). Theorem 1.1 is then a consequence of Theorem 
2.1. 
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Proof of Theorem 1.1 for (1.1). In order to use Theorem 1.1, we first take x 
derivative in the momentum equation to rewrite (1.1) as: 

dtrii + Uidxni = -nidxUi, 

dtui + E = -UidxUi 

dt{dxUi) 4- Uidx(dxUi) + dxE = -dxUidxUi, 

where i — 1,2, and the electric field is still given by the Poisson equation. By letting 

W = [m -711,712 -n^Ui - Wi,U2 " ^2' 9xUi, dxU2}, 

we reformulate (1.1) as 

(4.5) dtw + A(w)dxw + L{w) =■ F(w) 

where A(w) = diag(ifci,tX2,0,0,ui,tX2) with wi = ^3 4-^5,^2 = W4 + Wj, and 

L(iy) = [n?9a;'ai,n25a;U2,^ + w?3a;'Ui,£, + 'U2^^2,^E,aa;E] 

= [n?it;5,n^e,E + UiWs, E + U^WQ, -wi - W2,-wi - ^2]- 

We also have 

F(w) = [-(ni - n^S^ui, -(712 - nl)dxU2, -(wi - u\)dxui,-{u2 - u%)dxU2, 

-(^ui)2,-^^)2] 

= [-^1^5, -^2^6, -W3W5, -^4^6, -w;2, -^el- 

Clear ly, (Al) is satisfied. 
We now check (A2). In order to verify the estimate for the spectral radius in 2.1, 

we now state a lemma which was essentially proven by Vidav [11]. 

LEMMA 4.1. Let Y be a Banach space and T be a linear operator that generates 
a strongly continuous semigroup on Y such that ||exp(—£T)|| < M. Consider 

dv     ^ 
— + Tv + Kv = 0, 
at 
v(0) = fo 

where K is a bounded operator from Y to Y and Q-IIT+K] — e~tT is compact from Y to 
Y for every t. Then, (T + K) generates a strongly continuous semigroup exp(—t(T + 
K)) and the spectrum of (—T — K) consists of a finite number of eigenvalues of finite 
multiplicities in {ReA > 6} for all 6 > 0. These eigenvalues can be labeled by 

ReA > ReAi > ... > ReAn > 6. 

Furthermore, for every A > ReA; there is a constant CA such that 

|| exp(-t(T + K))\\LiYtY) < CA exp(At). 

We now apply Lemma 4.1 to the pressure-less case (4.5). We shall study its linear 
operator near w = 0. Notice that the components equations for w^ and W4 in (4.5) 
are decoupled from other unknowns. We therefore only need to study the following 
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reduced linear system to verify (A2).  We decompose the reduced (ignoring ws^w^) 
linearized operator as: 

(4.6) — + Tv + Kv = 0 
at 

where v = (wi,W2,W5,we), acting on Y = L2, where 

'u?     0     0 \ / 0      0     n°     0 

(4.7) Tv = T1v + Tav=\0n    i   .5,     0n\dxv + 

and 

0     0    <    0 
0     0     0    u§. 

Kv = 

0       0      0     n% 
-10      0     0 

V 0     -10     0 

Notice that for the unperturbed semigroup e Tt, we have the following conservation 
law: 

WMmh + IMOIIi* +railM*)ll£3 +n§||t;4W||i2 = constant. 

Hence we deduce that 

l|c"Ttvo|U2<M||t;o1U2. 

In order to get (A2), by lemma 4.1, it suffices to show that for every t, {e~^T+jft:^ — etT} 
is compact in Hs. We first show this is true for s = 0. For the case s > 0 we just 
repeat the same argument by taking more spatial derivatives. 

From (4.6), we can express e'^+^vo in term of e~Ttvo plus the source term 
—Kv as: 

^+Tv = -Kv. 
dt 

Therefore, from DuhameFs principle, 

v(t) = e-F+Wvo = e-Ttvo - f e-T^-T\Kv){r)dT, 
Jo 

where v(t) is the solution to (4.6). Notice that by (4.7), e~Tlt is a system of transport 
equations with constant speeds u® and u®: 

e~TlSg(x) = [g^x - u0
1s),g2(x - u^s),gs(x - u^s),g4(x - v%s)] 

and 

e-Tag(x) = e-T's-T>sg(x) = e'^'lg^x - u0
1s),g2(x - u0

2s),g3(x - u\s)^{x - u^s)] 

for a four vector function #, since Ti and T2 commute. Hence, 

(4.8) [e-F+tf]* _ c-Tt]vo = _  t* e-nt-r){Kv){T)dT 

Jo 

Jo \V2(T,X-U"1(t-T)) 
\Vi(T,X-V%(t-T)). 
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where v(t) e L2 is a solution to (4.6) and T2 is the constant matrix defined in (4.7). 
The key observation is that the right-hand side of (4.8) indeed is compact for solution 
v(t) to (4.6) due to different propagation speeds. We define di = dt+u^dx for i = 1,2. 
We represent 

(4.9) dx = -1     [ft-fc]. 
til (Xo 

Using (4.9), we take x derivative in (4.8) to get 

0 

dx[e-[T+K]t - e-Tt)vo = ^s f e-^-r) I 0 dr 
u? - u0

2 J0 [dx - d2]v2(T, x - u\(t - r)) 
\[di-d2]v1(T,x-u0

2(t-r))/ 

Since v(i) G L2 is a solution to the equation (4.6), we know that both ^2^2 and divi 
are in L2. On the other hand, notice that diV2(T,x-Ui(t-T)) and 92Vi(r, x—i^^—T)) 

are exactly derivatives of v over two different characteristics. We now integrate over 
r to get (vi being the same): 

f   e-T^t-^d1V2{T,X-ul{t-T))dT 
Jo 

Jo dT 

= V2(t,x)-e-T2tV2(0,x-u0
1t)- [ e-T2{t-^V2(T,x-u0

1(t-T))dT 
Jo 

which again is in L2. Therefore, we verify that e~^T+jft:^ - e~Tt is compact and (A2) 
is valid from Lemma 4.1. □ 

Appendix A. Stability of One-fluid Plasma. We show that if vO- — u®, i.e. 
if the ions and the electrons have the same speed, then u>0 is dynamically stable. The 
proof is classical and relies on the construction of a Lyapounov functional, following 
the 'energy-Casimir' method. We first notice, using Galilean invariance, that we can 
reduce to the case u® = u® =0. We then define the energy as 

(A.l) £(w(t)) =   £    fdmaTlaul+Paina)} + J  /' \E\2 

Here Pa is a strictly convex function (typically, Pa = -^f^n^ if 7 > 1, and Pa(na) = 

Cana\nna for 7 = 1). 
We then observe that 

U{w{t))=£{w(t))- J2 A^^J + P^OK-O} 
a=i,e Jo 

is constant in time, positive, convex near w0 and that Ti(w0) = 0. We therefore have 
stability (in a norm linked with H). 

Appendix B. Instabilities for (1.3) and (1.4). In this section, we give a 
brief sketch of another proof of Theorem for p > 2 for the Euler-Poisson system (1.3) 
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and (1.4) with pressures by using only the linear growing mode ri in (2.13), Lemma 
2.3. As in Lemma 2.3, we choose ws(0^x) = 6wi(0^x) as in (2.13). We define 

T = sup{t: \\w6 - 5w1(t,x)\\2 < ||r||2^ReAV2}. 

We recall T6 as defined in (2.9) with 6 a small constant, and recall that the linear 
operator L as in (4.3) is compact operator from L2 to H1. 

We now estimate the growth of ll^Wll^d in terms of ||if;<5(t)||2 on 0 < t < 
min[T, T6]. Notice that from the compactness of L, for any e > 0, 

\\\L(ws)\\\2d<e\\\w5\\\2d + Ce\\W%. 

By the standard energy estimate (with cj) = 0 as in Lemma 2.2), we obtain 

ft\\\u>s(m\2d < 9(\\\wsm\2dm^m\2d+c\\wsm2, 

where g is continuous and g(0) = e. By definition of T, \\ws(t)\\2 < 3/2||r||2eReA' for 
0 < t < T. By a standard bootstrap argument, we have 

(B.l) Ik'WIIfl™ < (?o<5eReAt 

for 0 < t < min[r, T5\ and with 6 in (2.9) sufficiently small. We can further choose 

2|M|2ReA 
e<9o = CoA 

In particular, ws(t) is a classical solution for 0 <  t  <  minfT,^].    By the 
Duhamel's principle, we have 

ws(t) =dWl+ f e£(t-r)>l(u;<5(r))^w<5(r)dr. 

Here £ = -A - L. By Lemma 4.1 and (B.l), for 0 < t < min[T, T5], we have 

\\ws(t) - Swifo < [ e^'-^WAiw'iTVdjw'WWudT 
Jo 

< f eA(<-^||^(^(T))||2d||U;'5(T)||2ddr 

- 2ReA-A ^e      >   - 2ReA - Ad e <    2 

since 6 < 60 ■ Hence T5 < T and we deduce the theorem by: 

sup   \\w5(t)\\2d < Co6eReXt < C0e = a 12; 
0<t<Ts 

11^(^)11^2 > SWwiU, - \\ws(t) - SwiWv 

= e\\rh-l\\rh = l\\rh = e0. 
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