
METHODS AND APPLICATIONS OF ANALYSIS. © 2000. International Press 
Vol. 7, No. 2, pp. 275-294, June 2000 002 

WEAK COUPLING LIMIT OF THE iV-PARTICLE SCHRODINGER 
EQUATION* 

CLAUDE BARDOSt, FRANgOIS GOLSE*, AND NORBERT J. MAUSER^ 

Abstract. This work is devoted to the derivation of a nonlinear 1-particle equation from a linear 
AT-particle Schrodinger equation in the time dependent case. It emphazises the role of a so-called 
"finite Schrodinger hierarchy" and of a limiting (infinite) "Schrodinger hierarchy". Convergence of 
solutions of the first to solutions of the second is established by using "physically relevant" estimates 
(L2 and energy conservation) under very general assumptions on the interaction potential, including 
in particular the Coulomb potential. In the case of bounded potentials, a stability theorem for 
the infinite Schrodinger hierarchy is proved, based on Spohn's idea of using the trace norm and 
elementary techniques pertaining to the abstract Cauchy-Kowalewskaya theorem. The core of this 
program is to prove that if the limiting AT-particle distribution function is factorized at time t = 0, 
it remains factorized for all later times. 

We offer this contribution to Cathleen Morawetz as an expression of our admiration and friend- 
ship and in recognition of the influence that her work on the interaction of mathematics and physics 
has exerted on us. 

1. Introduction: Scalings, hierarchies and formal derivations. The sub- 
ject matter of this paper is the derivation of a nonlinear 1-particle Schrodinger equa- 
tion from the linear TV-particle Schrodinger equation in the so-called weak coupling 
limit. Both bounded and unbounded potentials, including the case of the Coulomb 
potential (leading to the Schrodinger-Poisson system) are considered. 

The asymptotic relations between the various linear and nonlinear models con- 
sidered here, starting from the linear iV-particle Schrodinger equation, are abstracted 
in the following diagram 

h-±o+ 
linear N-body Schrodinger equation —> linear N-body Vlasov equation 

; 4- 

JV-H-oo iV-H-oo 

h->o + 
nonlinear 1-body Schrodinger (- Poisson)      —>     nonlinear 1-body Vlasov (- Poisson) 

We are concerned with the leftmost vertical arrow, i.e. the "weak coupling" limit 
and do not discuss the horizontal arrows i.e. the " classical limits" (see [9], [12] for 
the case of the Schrodinger-Poisson system). Likewise, the diagonal limit, i.e. the " 
classical + weak coupling limit" corresponding to letting simultaneously h -> 0+ and 
N -» +oo is not considered in the present work (we refer to [13] for the case of a 
bounded, real analytic interaction potential). Hence h is considered as fixed in the 
sequel. 
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The starting point of this derivation is the Schrodinger equation for the wave 
function tyjv = ^(#1, #2, •••5 XN, t) of N interacting particles, which reads 

(1.1) ihdt^N = ~     £     ^tfjv + i        J]       VdXj-Xt^tf 
l<j<N l<j<k<N 

(1.2) ^N(t = 0) = *^(a?i,a:2, ...,xN) 

The factor 1/N in front of the potential V is the standard "weak coupling scaling", 
as discussed e.g. by Spohn in [18]. It corresponds to assuming that collective effects 
of order 1 can be observed over a unit length of the macroscopic time scale. 

The potential V is assumed to be real-valued and bounded from below, but no 
assumption is made as to its sign. In other words, attractive as well as repulsive 
interactions are amenable to the methods presented in this paper. 

The following notations will be used constantly in the sequel 

XN := (X1,X2,:.,XN) ,Xn := (x1,X2, ...,£„) ,X^ := (xn+i, ...,xN) 

YN := (2/1,2/2, ...,2/JV) ,^n := (2/1,2/2, -,2/71) ,1^ := (2/n+i,...,2/iv) 

^AT := (^l,^2,—,^iv) ,^n := (^l,^2,---,^n) , ^/V •'= (zn+i, ..., Zflf) 

The state of the iV-particle system can also be described (see for example [8]) by 
the density operator pN(t) acting on L2(1R3)N or equivalently by its integral kernel, 
known as the density matrix p]y(X]y,Y]y,t). For a general "mixed state" we have 

(1.3) PN(XN,YN,t) = Y^ ^NMXN,t)9Nik(YN,t) , 
keiv 

where A^ > 0 are the "occupation probabilities" satisfying Ylk ^ = 1- However, 
the iV-particle Schrodinger equation is linear, so that we can assume without loss of 
generality that the density matrix is that of a "pure state" : 

(1.4) pN{XN,YN,t) =PN(XI,X2,:.,XN,2/1,2/2,...,2/JV,*) = ^N(XN,t)^N(YN:t) 

This density matrix p]sr(X]s[, Yjy, t) is the integral kernel of the density operator /S/vW, 
the time evolution of which is given by 

(1.5) PN(t) = e-^pN(0y-^ 

i.e. the density operator pN(t) satisfies the "von Neumann equation" : 

(1.6) ihdtpN = HNpN - PNHN . 

Equivalently, the density matrix must satisfy 

Ti2 

(l.l) ihdtPN{XN,YN,t) = - — [kxN -^YN}pN{XN,YN,t) 

+^   E   [^(ki-^D-^ltfi-wDWC^,^,*). N 
l<j<k<N 

The operator pjy is of trace class, its trace being given by: 

TrpN(t) = JpN(XN,XN,t)dXN =  [\$N(XN,t)\2dXN = j ^{XN^CLXN = 1 
(1.8) 
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after normalization. 
The "marginal distributions" or "partial traces" are introduced according to the 

formula : 

(1.9) PNA*) '= Tbin+iMPN® = I PN(xn, zn
N, yn, z% t)dzn

N. 

We further assume that the initial data satisfy the relation 

(1.10) pAr(a:i,^2,...,^n,2/i,y2,...,2/n,0) 
::::Piv(^(7(l),^(2)5---5^a-(n)52/(7(l))2/a(2)5--)2/c7(n)50) 

for any permutation cr of the set {l,2,3,...,iV}. This encodes the fact that we are 
considering the statistics of undistinguishable particles. This property is preserved by 
the time evolution of the von Neumann equation, so that (1.10) implies that 

(1.11) Piv(zi, £2,..., En, 2/1, 2/2, -.,2/71,0 

= PN(X(T(1) , aV(2), •••, £<7(n), 2/<7(l) J 2/(7(2), •••> 2/<r(n) > *) 

holds for all t G iR. 
Assuming that the initial iV-particle distribution satisfies (1.10), we obtain from 

a rather straightforward computation that the marginal distributions pN,n(t) solve 
the system 

(1.12) ihdtPN,n(xn,Yn,t) 

f)2 

= -y[Axn - AyJpAr,n(Xn,yn,t) 

+ iV     ^    [Vilxj -xk\) -Vdyj -yk\)]pNAxn,Yn,t) 
l<j<k<n 

+ —^    Yl [V(\XJ -Z\)-V(\yj-Z\)}pN,n+l(Xn,Z,Yn,Z,t)dz. 
l<j<nl 

Observe indeed that the missing term in (1.12) is the one corresponding to applying 
the partial trace Tr[n+1^N] to the summation that appears as the last term in the 
right hand side of (1.7) restricted to the subset of indices {(j,'k) | n + 1 < j, k < 
N}. Since this restricted sum involves only terms that obviously vanish on the set 
{(XJV, FJV) | X% = Yf}}, applying the partial trace Tr[n+i5iv] does not contribute any 
additional term in (1.12). 

The system (1.12) is called the "TV-particle (finite) Schrodinger hierarchy". Ob- 
serve in particular that for n — N one recovers the equation (1.7) for PN,N = PN- 

Introducing the operators Cn,n+i mapping n + 1-particle densities to n-particle 
functions formally defined by 

(1.13) Cn,n+i(pAr,n+l)(^n,^n) ' = 

Yl    h.V(\xJ ~z\) -V(\yj - z\)]pNin+i(Xn,z,Yn,z)dz , 
l<j<n 

the A^-particle Schrodinger hierarchy is rewritten as: 

h2 

(1.14) ihdtPNAXn,YN,t) = - — [Axn - &Yn}pN,n{Xn,Yn,t) 
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+ N       S      ^(l^ _ ^D " V(\Vj ' y>c\)}pN,n(Xn,Yn,t) 
l<j<k<n 

N — n 
+ —TZ (Cn,n+lPN,n+l)(Xn,Yn,t) ,      VVi = 1, . . . , TV , 

(1.15) PN,n(Xn,Yn,t) = 0 ,     Vn > N. 

The "infinite Schrodinger hierarchy" is obtained from the TV-particle (finite) 
Schrodinger hierarchy by letting N -> +00 while keeping h fixed and giving up the 
constraint (1.15). We denote by pn the n-particle marginal distribution involved in 
the infinite Schrodinger hierarchy which of course differs from pjv.nj the n-th marginal 
distribution involved in the iV-particle (finite) hierarchy. Letting formally TV ->> +00 
in (1.12) leads to: 

h2 

(1.16) ihdtpn(Xn,Yn,t)=- — [AXn - AYn]Pn(Xn,Yn;t) 

+   E   J[V(\^-^\)-V(\yj-^\)]Pn+i(Xn,z7Yn,z,t)dz. 
l<j<n 

A function pn of the variables (Xn, Yn) is henceforth said to be factorized if it is the 
n-th fold tensor power of a function p = p(xi,yi), i.e. 

(1.17) pn(Xn,Yn)=   Y[   P(xk,yk). 
l<k<n 

Observe that if ip(x,t) is a solution of the (nonlinear)  "self-consistent, 1-particle 
Schrodinger equation" 

(1.18) ihdtip(x,t) = -—Ax*Jj(x,t) + / V(\x-z\)\i;(z,t)\2dz.iP(x,t) 

then 

(1.19) P = il>(x,t)*l>(v,t) 

is a solution of the "self-consistent von Neumann equation" 

ihdtp{x,y,t) = - — [Ax-&y]p(x,y,t)+[V{\x-z\)-V(\y-z\))p(z,z^^ 

(1.20) 
while the (sequence of) factorized n-particle densities 

(1.21) pn{Xn,Yn,t)=   J]   p(xk,yk,t) 
l<k<n 

is a solution of the (infinite) Schrodinger hierarchy. On the other hand, at t = 0 (cf 
(1.8)): 

(1.22)      ^,n+1(Xn,rn,0)=    JJ   Mxk,0)Wi^)      H      [ \1>(zk)\2dzk 
l<k<n n+l<k<NJ 

=   11 ^(a:A»0M2/ife,0)=   JI p{xk,yk,Q) 
l<k<n l<k<n 
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As a consequence a uniqueness result for the hierarchy (Corollary 5.3 below) implies 
that, with initial data factorized as in (1.17), the solution of the hierarchy is given by 

(1.23) Pn(Xn,yn,t)=     JJ    ^(Xfc, *)^(2/jfe, t) 
l<k<n 

with ^(xk^t) solution of the self-consistent Schrodinger equation (1.18). The factor- 
ization, assumed at t = 0 for the finite hierarchy, will in general get lost at later times 
due to the presence of the interaction potential V; however it is recovered in the limit 
as N -> +oo. 

In the sequel we establish two types of results: 
1) under very general assumptions (containing in particular the physically relevant 

case of the Coulomb potential) the solution of the finite hierarchy is shown to converge 
to the solution of the infinite hierarchy; 

2) for bounded potentials, the infinite hierarchy is shown to possess a single solu- 
tion determined by its initial data; in particular, the limit as N -> +oo of the sequence 
PN,n+i is factorized and coincides with the functions given by the self-consistent, 1- 
particle, nonlinear Schrodinger equation. 

However, our method for the proof of uniqueness does not encompass the case of 
the Coulomb potential, and fails to provide a derivation of the Schrodinger-Poisson 
equation which remains an open problem. 

We conclude this introduction by recalling why the Cauchy problem for the N- 
particle Schrodinger equation is well-posed. 

THEOREM 1.1. Assume that the real-valued interacting potential V(|a;|) is of the 
form 

(1.24) V(\x\) = Viflxl) + V2(\x\)  with Viflzl) G L2(iR3)  andV2(\x\) G L00^3). 

Then 
1. The operator H^ defined in L2(1R?N) by 

(1.25) irJV*=y   Y,   A^*+^     E     nbi-**!)* 
l<j<N l<j<k<N 

with D(H]s[) = H2(1R    ) is self-adjoint. In particular, IHM is the generator 
of a unitary group. 

2. for any ip1 G Hl(]R?), the self-consistent, 1-particle Schrodinger equation 
(1-18) with initial data ip(',0) = ip1 has a unique solution tp G C(iR; iJ1(iR3)). 

The proof of point 1. can be found in Kato's book [6] (Chapter 5, section 5, 
Remark 5.6), with details in [7]. As for point 2., it is a particular case of Theorem 
3.1 in [4] (see also [2]). 

2. Preliminaries on trace class operators. As will be shown below the trace 
norm is the relevant physical quantity used both in the existence proof for the infi- 
nite Schrodinger hierarchy with a locally L2 potential and in the stability result on 
this hierarchy in the case of a bounded potential. Indeed, the operators PN,n{t) are 
nonnegative and of trace class with trace norm 

(2.1) J PNAXU, Xn, t)dXn = Tr pN(t) = 1. 
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In order to use this property, the following result concerning trace class operators 
on products of Hilbert spaces is needed. While it seems elementary, we could not 
find it proved or even explicitly stated anywhere else. First we recall the following 
classical notations: let Hi and H2 denote two Hilbert spaces. The set of Hilbert- 
Schmidt operators from Hi to H2 is denoted by C2{Hi,H2)', the set of bounded 
operators on Hi is denoted by C{Hi) while ^(Hi) designates the set of trace class 
operators on Hi. We recall that Cl(Hi) is an ideal in £(Hi), while C2{Hi,H2) is an 
JC(HI) — £(#2) bimodule. We refer to [5] §19.1 for the basic definitions concerning 
trace class and Hilbert-Schmidt operators. 

LEMMA 2.1. Let HQ := L2(M3n x M3m) and Hi := L2(M3ri). Let K e C^HQ) 

have the integral kernel k = k(Xn, Zm, Fn, Wm): 

(K<l>){Xn,Zm):= f      f     k(Xn,Zm,Yn,Wm)(f)(Yn,Wm)dYndWm. 
J]R3n Jm3rn 

Note that in the sequel we use the abbreviative notation z = Zm and w = Wm. For 
a.e. z e M3m and a.e. w G M3171, let KZiW be the operator on L2(]R3n) with integral 
kernel &(•, z, ',w): 

(2.2) (Kz,wiP)(Xn) = [     kiXntZiYmwMYJdYn. 

Then 
1. the map h M- [z i-> KZiZ+h], defined a.e. in h £ ]R3m, eventually extended to 

heJR3™ as a continous function, belongs to C\M3m;L1 (JR3m;C1 (L2(lR3n)))), 
2. for a.e. z G ]R3m, Kz,z G Cl{Hi), 
3. 

(2.3) Tr I      Kz,zdz  < [      Tr\Kz,z\dz<Tr\K\ 
J]R3rn JM3™ 

Proof. Let ([/, \K\) be the polar decomposition of K. Hence 

K = L*Li with Li := \K\^2 G C2(H0) and L2 := l^l1^^* e c
2(H0). 

The operators Li and L2 belong to C2(Ho) and thus have integral kernels h and h 
in L2(]R3n x M3m x M3n x iR3m), with 

(2.4) A;(Xn,z,yn,w) =  f jhiXn'.Zm',Xmz)li{Xn'.Zj,Yn,w) dXn
f dZj . 

In particular, for a.e. in z and w G IR3rn: 

Zi(.,., ',w) G L2(lR3n x lR3m x ]R3n) and l2(., •, .,z) G L2(lR3n x M3m x lR3n). 

Hence the operators Li\w with kernel h (•, •, •, w) and L2\z with kernel feO, v, 2) belong 
to C2{Hi,Ho) for those values of z and w, which is a.e. in ]R3rn. Again for those 
values of z and w, Kz,w G ^(^i) since, as can be checked directly from (2.4), 
KZiW — L*2>Li\w. In particular, 

\Kz^zjrh - Kz,z+K'\&{Hi) < WL^zicHHiiHo) lLi\z+h> - il|z+/ilU2(ffi,^o) ' 
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so that, by the Cauchy-Schwarz inequality we have a.e. in h and h' G IR3m 

(2.5) [WKz^+h-Kz^+vWcHH^c 

<  (  /  \\L2\z\\2C2(HuHo)dz) [J  \\Ll\z+h' -Ll\z+h\\2C2iHuHo)dz^ 

= ||I/2||£2(ifo)||/i(-,-,-,- + h' - h) - ll\\L2(lR3nxlR3™xlR3nxlR3™)- 

The last factor in the right side of (2.5) converges to zero with \ti - h\ since the group 
of translations acts continuously on L2 functions. This establishes point 1. Point 2 is 
an obvious consequence of point 1. 

The first inequality in (2.3) being trivial, only the second remains to be proved. 
Proceeding as in (2.5) shows that 

(2.6) j \\Kz,z\\CHHl)dz < (J tL2lz\\
2cHHuHQ)d^      (| \\Lnz\\2cHHuH0)

dz) 

= ||L2||c2(ifo)||L1||£2(H0) = |||^|1/2^||z:2(H0)|im
1/2||^(Ho) 

which implies (2.3). □ 

A direct consequence of relation (2.3) is the following 

COROLLARY 2.2. The restriction mapping k i-» k(-,z,',z) on functions that are 
integral kernels of trace class operators is well defined for a.e. z G iR3m and induced 
at the level of integral kernels by K t-» Kz^ which is a linear contraction mapping 
from £1(i2(^3n x iR3m)) with values in L^M^-X^^iM371))). 

The linear map K H> / KZjZdz is continuous from C1(L2(lR3n x M3™)) to 
£1(L2(iR3n)) in the norm topology, but not in the weak-* topology (whose definition 
is recalled below). Still, the weak-* topology is a natural tool for the convergence of 
the finite to the infinite Schrodinger hierarchy because of (2.1). 

REMARK 2.1. Given a separable Hilbert space H, the weak-* topology on Cl(H) 
is the one induced by the family of semi-norms T \-> \Tr{KT)\ indexed by compact 
operators on H. The weak-* topology on L00(iR+;C1 (H)) is the one defined by the 
family of semi-norms 

Th-> f Tr(K(t)T(t))dt 

where K runs through L1(iR+; 1C(H)) (IC(H) denoting the algebra of compact operators 
on H). 

The next lemma provides a crucial argument needed in the course of section 4. 

LEMMA 2.3.  Consider a sequence Ln G C1(L2'(]Rd)) converging to 0 in the weak-* 
topology, such that the integral kernel ln of Ln satisfies 

(2.7) \ln{z,z + ti)—ln(z,z)\dz-±0     as\h\->Q,   uniformly in n. 
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Then, for any x € Cc(M
d), 

/ ln(z,z)x(z)d 'z -¥ 0      as n —>• +00 . 

Proof.   Let 0 e C(Md) supported in the unit ball of Md such that 0 > 0 and 
f<l)(z)dz = 1. First, because of (2.7) 

/ ln(z, z + h)x(z) -^(j) ( - j dzd/i - / Zn(2, z)x{z)dz 

< sup   / |Zn(^,2? + ft) -Zn(^,^)|x(^)d2f  / -^(/)f-Jd/i 

< ML- sup      \ln(z,z + h)-ln(z,z)\dz 
\h\<eJ 

Hence 

in n as e—)-0. (2.8)      ln(z,w)x(z)-j<l> I j dzdw^j ln(z,z)x(z)dz, uniformly i 

On the other hand, for each e > 0, (z,w) *-> x(z)jz<t> {^f^) 'ls the integral kernel of a 
compact operator on L2(]Rd). Thus, for each e > 0, 

/ ln(z,w)x(z)-^(j) 
w — z 

dzdw -> 0, as n —> +00. 

The announced result follows from this last statement and the uniform convergence 
(2.8). D 

3. A priori estimates for the iV-particle Schrodinger hierarchy. We start 
this section with a variant of the Cauchy-Schwarz inequality applied to the marginal 
distributions. While straightforward, it provides estimates which are useful in the 
sequel. 

PROPOSITION 3.1.  The marginal distributions satisfy the inequalities 

(3.1) jJ\pN,n^Yn,t)\2dXndYn < 1 

and 

(3.2) \pNin+1(Xn,Z,YnrZ,t)\ < pN,n+l(Xn, Z, Xn, Z,t)* pN,n+l(Yn, Z,Yn, Z,t)* 

for all t G M. 

Proof. The inequality (3.1) follows immediately from the relation: 

(3.3) JJ\pn(Xn,Yn,t)\2dXndYn 

= // / *N(Xn, Zn
N, t)*N(,Yn,ZK,t)dZn

N    dXndYn 

< jj \y{Xn,Zn
N,t)\2dXnZ% jj \y{Yn,Z%,t)\2dYndZ% 
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while the inequality (3.2) follows from the fact that 

(3.4)        \pN,n+1(Xn,z,Yn,z,t)\ 

-  I y(Xn, z, Ztf-\t)*(Yn9 z, Zp1, t)dZn
N
+1 

< (J\*(xn,z,zz+\t)\*dz^y 2 (ll*^,^,^1,*)!2^^1) 

D 
Another basic result is a ft-dependent estimate on the kinetic energy of the iV- 

particle system. 

PROPOSITION 3.2. Assume that the interacting potential is of the form 

V(\x\) = V+(\x\) + V-{\x\) with V+{\x\)>0,V+eL2(lRs),V-(\x\))>-Cpot>-oo. 
(3.5) 
Assume further that the initial data *^(a;i,..., xN) satisfies the assumption of indis- 
tinguishable particles (1.10) and has the energy 

(3.6) £Nin 

= \tf E   IWxi&N&NtfdXv + jj   Y,    [v^j-^mI
N(xN)\2dxN 

1<3<N l<j<k<mJ 

= 0(N) 

as N ->• +oo. 
Then, for any j such that l<j<n, the solution ^N of the N-particle Schrodinger 

equation satisfies 

(3.7) suv   J\Vx,9N(XN,t)\2dXN < C^^tf1') +2m?' 

Proof. The conservation of energy implies that 

l^2   E    fNx^N(XN,t)\2dXN-Cpot^     E     I f^N(XN,t)\2dXN 
1<0<N l<j<k<m 

<kn2  E    /\Vxj*N(XN,t)\2dXN + ±    E     /nkj-sjfcl)l*AK*iv,i)|2<tf-tf 

— £N,h • 

The inequality (3.7) follows from this, (1.8) and the identity 

[\\7XjyN(XN,t)\2dXN = l-   J^    [\VXjyN(XN,t)\2dXN:    l<j<N, 

implied by the assumption of indistinguishable particles. D 

COROLLARY 3.3. Under the same assumptions as in Proposition 3.2, and again 
abbreviating z = Zm and w = Wm, consider, for any compactly supported continuous 
function 0 on M3n, the sequence of functions A:jv,n defined by 

kNjn(z,w,t) =        @(Xn)®(Yn)pNin+i(Xn,z,Yn,w,t)dXndYn 
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It satisfies the following equicontinuity property: 

(3.8) sup / \kNtn(z,z + h) - kN,n(z,z)\dz < C||0||ioo|/i| 
tern 

with 

C = —^y- + 2 sup —h) . 
h2       N>I Nh2 

Proof In order to avoid cluttered expressions, we deliberately omit the variable 
£, which appears only as a parameter. First 

/  \kN,n(z,Z + w)-kN,n(z,z)\dz 

= JIIJ^0(xn)*iv(xn,z,^+1)0(rn) 

x [vNiYntZ + htZp1) - VNiYntZtZp1)] dZn
N
+1dXndYn 

< m\h 

dz 

1/2 

*jv||i3 (jjj l*Jv(r„, z + K Zn
N
+1) -^N{Yn,Z, Z^^dYndzdZ^1 

^lieil^Pivll^llv^^iil.i/ii. 

The last inequality is provided by the L2 version of the mean value theorem for H1 

functions: 

2 

<fc<|v/|£2|*|2. / \f(x + h)- f(x)\2dx =  f   I V/(x + sh) - hds 

One then concludes with the H1 estimate (3.7). D 

4.  Convergence of the finite to the infinite Schrodinger hierarchy. The 
above trace estimates turn out to ensure, with weak assumptions on the interacting 
potential V and modulo extraction of subsequences, that the marginal distributions 
pN,n converge to a solution of the infinite hierarchy. More precisely: 

THEOREM 4.1.   Assume that the potential x \-t V(|a;|) is bounded from below, 
belongs to C0(]R3 \ {0}) fl Lf0C(]R3) and vanishes at infinity: 

(4.1) lim   V(r) = 0 . 

Let \I>JV € C0(M+; L2(M3)) be a weak solution of (1.1) with initial data 3/^ satisfying 
the assumption of indistinguishable particles (1.10), the normalization (1.8) and with 
finite energy as in (3.6) where £(N,h) = O(N) as N -» +oo. It is assumed that 1 ; 

for all n > 1, 

PN,n = Pff^Xn, Yn) = f *^(^n, ^^(^n, Z^)dZ^ -+ & = p'jXn, Yn 

1 Since the problem is linear, the result can trivially be extended to initial data that are finite 
convex combinations of pure states satisfying the hypothesis. 
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in C^tfiM371)) weak-* as N -> +00. 
Let PN he defined by (1.5) with its marginal distributions pN,n defined by (1.9). 

Then, any limit point as N —> +00 of the family of partial traces (pN,n)n>i solves the 
infinite Schrodinger hierarchy (1.16) in the sense of distributions 2 and satisfies the 
initial condition 

(4.2) pn|t=o = Pn • 

Limit points for the sequence (pjv,n)n>i as N —> +00 are to be understood in 
the sense of the product topology on Iln>iL00(lR+]£1(L2(]R3n))), each factor being 
equipped with the weak- * topology. 

REMARK 4.1. The assumptions on V in Theorem 4-1 imply those in Theorem 
1.1. The assumption on EN,n implies that Corollary 3.3 applies. In particular, this 
assumption on ENyn is satisfied if initial data is factorized: 

(4.3) *k(*n)=   11   ^)'     /l#s)l2<fc = l,      [\V*p(x)\2dx<+oo. 
l<j<n ^ J 

REMARK 4.2. The notion of limit points in the product topology described above 
can be given a somewhat more concrete interpretation by the diagonal extraction pro- 
cedure. Let (pn)n>i be a weak-* limit point of (pjv,n)n>i as N -^ +oo. For each 
n > 1, there exists a subsequence of pjv,n converging to pn in L00{My, C1 {L2{JB?71))) 
weak- *. In other words, there exists an increasing function (f>n : IN* -> W* such that 
P4>n(N),n -^ Pn inL00{IR+]C1{L2{IRZn))) weak-*. Define 0(JV) = (t>N o ... o ^(iV); 
clearly 0(iV) is an increasing sequence of integers. By the construction of (j)n and the 
relation (1.15), one sees that p^N)^ -* Pn in L00(lR+;C1(L2(lR3n))) weak-* for all 
n > 1. In other words, the same subsequence of N leads to weak-* convergence for all 
n> 1. 

REMARK 4.3. In the particular case of the Coulomb interaction, the same re- 
sult holds with the trace norm replaced by the C2(L2(]R3n) norm. The proof relies 
on Leray's 3D variant of the Hardy inequality (formula (1.13) of [10]), called the 
"uncertainty principle" in [16] and [11]. 

Proof. As observed in (2.1), the partial trace operators satisfy the estimate 

(4.4) flp^nWIbtL^n)) = 1,      for alH E M . 

Thus the sequence (pN,n)n>i indexed by N is relatively compact in 
nn>iL00(JR+; C1^2^71))) equipped with its weak-* topology. 

Let now p^jv)^ be any weak-* converging subsequence as in Remark 4.2; from 
now on, we abuse the notation pN,n for any such subsequence without further apology. 

Since /^(L^JR3™)) C C2(L2(lR3n)) with continuous inclusion, the subsequence 
pN,n = PN,n{Xn,Yn,t) of marginal distributions converges to pn = pn{Xn,Yn,t) in 
L00(IRjr\L

2{IB?n x iR3n)) weak-*, and in particular in V'(m*+ x iR3n x iR3n). Thus 

2With the assumptions above, the interaction integrands [V(|;CJ — z\) — V(\yj — 2|)]pn+i 
(Xn,z,Yn,z,t) may fail to belong to L1(iR3;d2) for each (t,Xn,Yn)\ yet the integral f\y(\xj - 
A) - ^(l2/j - z\)}pn-\-i{Xn,z,Yn,z,t)dz is defined as a Radon measure (distribution of order 0) in 
the variables Xn and Yn. 
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the free part of the n-th equation in the TV-particle Schrodinger equation converges 
in the sense of distributions: 

ft2 h2 

(4.5) ikdtPN.n + y [Axn " AyJ/^n ^ i/ift/0n + y [AXn - Ayn]pn 

in ^(iR; x M3n x iR3n). 

Next consider x = x(^n,^n)5 a compactly supported continuous test function; 
then 

(4.6) JJ x(Xn, YJlVQxj -xk\)- VQyj - yk\)]pN,n(Xn, Yn, t)dXn,dYn 

-  (ff MXn'WWfo - Xk^ + lF(fe - »*l)l)2^ndyn) 2 

1 

JJ \pNAXn, Yn, t)\
2dXndYn 

The first integral in the right hand side of (4.6) is bounded since the potential is 
assumed locally square integrable; the second integral also is bounded because of 
the bound on \pNtn(t)\c* implied by Proposition 3.1 and the continuous inclusion 
Cl{L2{lR?n)) c C2(L2(m?n)). Thus the second term in the right hand side of (1.12) 
converges to 0 in V'(IR*+ x RZn x E?n) as TV -» +00. 

The last and most important part of the proof addresses the convergence (in the 
sense of distributions) of the interaction term, i.e. the third term in the right hand 
side of (1.12). Consider the three following continuous cut-off functions depending on 
two arbitrary parameters 0 < A < B: 

(4.7)0 < UA(r), UAB(r), ^(r) < 1, UA(r) + UABW + MO = 1, 

(4.8) ^(0 = 0 if i4>r,   [/AB(r) = 0 if r<y   and£ + l<r,  and [7B(r) = 0 if r <B. 

With the same test function x as above, consider the integral 

// / X(Xn' Yn)V^Xj ~ Z\)pN,n+l{Xn)Z, yn, Z, t)dzdXndYn =■ I* + J^ + 1% 

with the decomposition above defined by 

*" = JJ  J  X(Xn>Yn)V(\XJ ~ ^P^n+liXn.Z.Y^Z^UAdXj - z\)dzdXndYn 

lAB = JJ  J  XiXniYrjVQXj - zDpN^+xiXntZtYntZrfUABdXj - z\)dzdXndYn 

**   = JJ   jx(X^Y^V(\Xi - zDPNin+liXntZtYntZ^UBdXj - z\)dzdXndYn . 

We first estimate 1%. Without loss of generality, we can assume that \\X\\L°° = 1 
and that the support of x is included in (O'1 ({l}))2n, where 0 is some compactly 
supported and continuous function on M3. In the sequel, we set 

Q(xn)= JJ e(xk). 
l<k<n 
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By inequality (3.2) in Proposition 3.1, 

(4-9) l/^l 

= JJ J 0(X")0(y")F(la:; - zDPN.v+iiXnZ^zrfUAQxj - z\)dzdXndYn 

- lff^X^Q0/n)m\xj -zMpx^iX^Y^WAQxi -z\)dzdXndYn 

^///|e(^lle^)llV^-*l)l^.'H-l(^-.*,^n,*,t)W.n+l(K„,*>rn,«,t)* 

■UAQXJ - z\)dzdXndYn 

Thus by the Cauchy-Schwarz inequality 

l^l2 < ff J\Q{Xn)\i\V{\xj-z\)\ipN,n+x{Yn,z,Yniz,t)UA{\xj-z\)dzdXndYn 

(4-10) ■ ff f MYn^PNtn+liX^Z^mZ^UAQxj - z\)dzdXndYn . 

Taking into account Proposition 3.1 shows that the second integral in the right hand 
side of ((4.10)) is bounded by |e|i». Integrating first in the ^-variable and taking 
into account (2.3) as well as (2.1) leads to 

(4.11)   JJ J mX^lVdxj -znfp^+dYn^Y^WAQxj -z\)dzdXndYn 

= MIT1 sup  f l^)!2!^!^ - zDfUAdxj - zDdxj , 

Finally, 

(4-12)     |^|2 < mifimilT1 sup  [ lOixjtfWdxj - zDfUAQxj - zDdxj 
z£M3 J 

ZMfiP'UOUlT1 [       V(\y\fdy. 
•>\y\<A 

We next estimate Ig. Observe that, using again (2.3) 

1^1 < mh I KUBVXIXJ - z\)pN,n+1(t)ZtZ\cidz 

(413) < mUUBV\L- I lpN,„+i(t)zJcldz 

<\e\h\UBViL-\pNtn+1(t)icl. 
Thus, by (2.1) 

(4.14) |/^| < \e\UUBV\L-\pNtn+1(t)\£l = |0|||2 sup \V(r)\. 
r>B 

Since V is square integrable near r = 0, the estimate (4.12) shows that 

(4-15) IA -> 0     as A -> 0+, uniformly in AT > 1. 



288 C. BARDOS, F. GOLSE, AND N. J. MAUSER 

Since V tends to 0 as r -> +00, the estimate (4.14) shows that 

(4.16) IB -+ 0     as B -» +00, uniformly in iV > 1. 

It remains to analyze the term I^B. Without loss of generality, we assume that 
X is supported in jB(0,i?)2n, where 5(0, iJ) denotes the open ball of radius R > 0 
centered at 0 in M3. Let // 6 CC(M

3) such that /i = 1 on [-B - 1 - R; B + 1 + ij]; 
obviously 

■^AB =   //   / X(^nJ^n)^(kj-^|)^B(ki-^|)pAr,n+l(^n,^,^n,^^)M(^)^rf^n 

Define then 

lN(z,w,t) 

= JJe(Xn)Q(YnM\xj-z\)UAB(\^-^\) 
' [PN,n+l (Xn, z, Yn, w, t) - pn+i {Xn, z, Yn, w, t)] dXndYn . 

By construction, IN('-, *?£) is the integral kernel of a trace class operator LN(i), sat- 
isfying LAT € L^iC^^iM3)) as well as XAT -> 0 in L00(C1 (Mt; L2(M3)) weak-* as 
iV —> +00. Further, because of Corollary 3.3 and the assumed continuity of x H-> V(|a;|) 
on iR3 \ {0}, the family /AT satisfies the following equicontinuity property: 

/' 
\IN(Z,z + h^t) — IN(Z,

Z
->t)\dz -)• 0 uniformly in A^ and t > 0 as \h\ —> 0. 

By Lemma 2.3, 

/ lN(z,z,t)x(z)dz -> 0 in L00(1R+) weak-* as A^ -> +00. 

Thus 

JAB -> // / x(^nTn)V(|xj -2:|)t7AB(ki - z\)pn+1{Xn,z,Yn,z,t)dzdXndYn. 

(4.17) 
Grouping (4.15), (4.16) and (4.17) shows that 

(4.18) Cnin+iW\r,n+i -> Cn,n+ipn+i as iV -> +00 in ©'(^ x lR3n x iR3n) weak-*. 

This establishes the convergence of the finite to the infinite Schrodinger hierarchy. 
Finally, (4.5), (4.6) and (4.18) show that, for all C G C™(R3n x lR3n) 

dt J!pN,n(Xn,Yn,t)aXn,Yn)dXndYn G L00(iR+). 

This establishes the initial condition (4.2). D 

5. Stability of the Infinite Hierarchy and Factorization. In this section, 
we make the additional assumption that V G Loc(lR+). The infinite hierarchy can be 
recast in the abstract form 

(5.1) hdtpn = Anpn + Cn,n+lPn+l , Tl > 1 , 
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with Cn?n+i defined in (1.13) and An denoting the skew-adjoint operator 

(5.2) An = ij{&xn-&Yn). 

The trace norm is a "good" norm for both the operators An and Cnjn+i; this, together 
with its analogy with the L1 norm on functions, makes it a natural tool in studying 
these Schrodinger hierarchies, as noticed by Spohn [17]. More precisely 

PROPOSITION 5.1. 
i.  The operator An is the generator of a unitary group in C1 (L2(iR3n))). 
2.  The operators C^n+x are continuous from ^(^(M3^^))) to C1 (L2{lR?n))) 

with norm less than 2n\V\LOo^y 

Proof. Statement 1. follows from the definition of the trace norm, the formula 

e^(/n)^e-^A-o/noe+^A- 

and the fact that exp(+2^-tAn) is unitary on L2(lR3n). 
Let Fn+i e £1{L2(lR?n x iR3)) with integral kernel /n+i, and let Gn+i be the 

operator with integral kernel 

gn+i(Xn,z,Yn,w) = V(\XJ - z\)fn+i(Xn,z,Yn,w) - fn+i(Xn,z,Yn,w)V(\yj - w\). 

Since V G L00, Gn+1 also belongs to ^{^{E?71 x iR3)) and 

|Gn+l||£i(L2(iR3^xiR3))  < 2II^IU00 ||Gn4-ll£i(L2(^3nXdR3)) . 

Since Cn,n+\Fn+i is a sum of n terms of the form 

/ 
(Gn+\)z,zdz 

statement 2. follows from Lemma 2.1. D 
The proposition above naturally leads to the following statement concerning the 

stability of the infinite hierarchy. 

THEOREM 5.2. Assume that V G L00{1R+), and denote by Hn the Banach space 
£1(L2(iR3n)). Let (pn)n>i € T[n>i L00(JR+'i Hn) be a weak solution of the infinite 
Schrodinger hierarchy (5.1) with initial data (p^)n>i satisfying 

IPnltf„  <€n,      n> 1 

where (en)n>i is a given sequence of positive numbers. In addition, assume the exis- 
tence of a positive constant D such that 

(5.3) sup \\Pn(t)\\Hn <D,foralln>l. 
t>o 

Then, for all 0 < t < 2iv
h
hoo, 

\Pn{t)\Hn  <  2^   I       m       ](—T— 1      6n+m. 
m>0   x /    x / 
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Proof. Set zn{t) — e~tAn^npn{t)\ the n-th equation in the infinite Schrodinger 
hierarchy (5.1) becomes 

dtZn{t) = ^eXAnCn,n+1e-xAn+1zn+1(t). 

This last relation and Proposition 5.1 imply that, for all n G W* and alH > 0, 

Iterating this inequality leads to 

Mi)|if» < £« + E f M^)   n(n + l)...(n + k-l) [      en+^Sl.. .dSfc 

/ 9 ii vii    \?77' r 
+ ( r^— )    n(n + l)...(n + m- 1) /        |K+m(5m)||frn+md5i ...d5m , 

where Sk{t) is the fc-simplex of size t, i.e. 

5fc (*) - {(5!, . . . , 8k) | 0 < 5!  < . . . < Sk < t] . 

The A:-dimensional volume of Sk{t) is tk/k\ and thus 

The last term is equivalent to 

m«(mi=iyD 

for each fixed n > 1 as m —> H-oo. Thus it vanishes in the limit as m —>• +oo for all 
0 < t < 2]iw-^7, leading to the announced inequality. D 

This stability statement obviously implies a uniqueness result for the infinite 
Schrodinger hierarchy. 

COROLLARY 5.3. Let (pn)n>i and (Pn)n>i be two solutions of the infinite 
Schrodinger hierarchy, obtained by the limiting procedure of the previous section and 
which coincide at time t = 0.  Then they are equal for all t € 1R+. 

Proof Indeed, (1.8) implies that 

IPIV) - P2n(t)\\Hn < 2,    for all * > 0 and n G W*. 

Applying Theorem 5.2 to (p^ - p2
n)n>i with en = 0 for all n > 1 and D = 2 proves 

that 

Pn(t) = p2
n(t),    neN*,    \t\< 

Since the infinite Schrodinger hierarchy is autonomous and the bound (1.8) uniform 
in time, this implies that p^t) = p^it) for all t E M and all n G N*. 0 
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This uniqueness result implies in turn the following factorization property, estab- 
lished by Spohn [17] by a somewhat different method. 

THEOREM 5.4. Assume that V £ L00(M+) and that V(r) -> 0 as r -* +00. For 
any ijj1 e iy1(iR3) and ||

/
0
/
||L

2
 = 1; define 

pl
n(Xn,Yn)=   H  tfkziWiVj)- 

l<j<n 

Let pM,n be the weak solution of the finite Schrodinger hierarchy defined by 

pN>n(Xn,Yn,t) = e-*""diXnYrJe-"*11" , 

where HN is the N-body Schrodinger operator defined in (1.25). 
Then : As N -> +00, pjsf,n -» Pn in L00(1R+] C1 (L2(lR3n))) weak-*, with pn given 

by the formula 

(5.4) pn(Xn,Yn,t)=   J]   MxjttMyjit) 
l<j<n 

where ip is the solution of the self-consistent, 1-partide Schrodinger equation 

(5.5) mtix, t) = -y A^a, t) + I V(\x - y\)\il>{y, t)\2dy if,(x, t) , 

with initial data 

This is a straightforward consequence of Corollary 5.3, since the formula (5.4) 
defines a solution of the infinite Schrodinger hierarchy which satisfies 

ipnwu. = \m\% = 1 
because the self-consistent Schrodinger equation leaves the total mass I^WIU2 invari- 
ant. We refer to [4] for a survey of existing results on the self-consistent Schrodinger- 
Poisson equation. 

6. Conclusion. We give a careful presentation and "marginal" improvements of 
the theory of weak coupling limits that represent the next step towards the derivation 
of the Schrodinger-Poisson equation. 

In 1977 Braun and Hepp [1] derived the Vlasov equation from a system of iV 
classical particles. They assumed the interacting potential bounded in C2 and prove 
the convergence of the classical Liouville hierarchy to the Vlasov hierarchy. They 
avoided addressing the question of the uniqueness of solutions of the infinite hierarchy, 
but nevertheless succeeded to prove that the limits of iV-particle marginals (in the 
large N limit) coincide with factorized products of solution of the Vlasov equation. 
Their argument rely on a clever use of probabilistic methods (such as the strong law 
of large numbers to establish the propagation of chaos and the central limit theorem 
to analyze fluctuations about the mean field). 

Such an argument does not seem to work for the limit ft -> 0, N -+ +00 of 
a system of quantum particles. This might explain why Narnhofer and Sewell [13] 
had to prove a uniqueness theorem for the Vlasov equation. Since the corresponding 



292 C. BARDOS, F. GOLSE, AND N. J. MAUSER 

operator is very singular, stringent assumptions (equivalent to the analyticity of the 
potential) are required in that paper. 

Spohn [17] came up with the idea of using the trace norm to prove the convergence 
of the solution of the N-body Schrodinger equation to the factorized iV-body state 
driven by the self-consistent Schrodinger equation. His proof rests on the assumption 
of a bounded interaction potential, as in the previous section of the present paper. 
Being based on the Duhamel formula, his proof avoids the question of uniqueness for 
the inifinite Schrodinger hierarchy, although in a way very different from that in [1]. 

In the present contribution we tried to illustrate the difference between the proof 
of the uniqueness (with stringent assumptions) and the proof of the convergence of 
the iV-body Schrodinger hierarchy to the infinite Schrodinger hierarchy (under fairly 
general assumptions). 

One should observe that the proof of the Theorem 4.1 seems closely related to 
the proof of the "abstract" Cauchy-Kowalewskaya Theorem according to Nirenberg 
[14] and Nishida [15]. To make this connection clear one should introduce the scale 
of spaces: 

Hfl = {(Pn)n>l el[[Hn SUCh that   J2 0n\PnlHn  < +00} . 
n>l n>l 

On the other hand the proof of convergence to the infinite hierarchy may be 
interesting by itself. It is obtained here under very general assumptions and only the 
physically relevant estimates are involved in the proof. 

Indeed, in many cases such an infinite hierarchy appears as a linearization of a 
nonlinear problem. Therefore the existence of a solution for such an infinite hierarchy 
may be considered as the existence of some type of very weak solution of the underlying 
nonlinear problem. 

Furthermore, a closer consideration of the proof shows that the assumption of 
a factorized solution plays no role in the proof of convergence. At this level the 
only important thing is the assumption of indistinguishable particles. Therefore as 
observed by Spohn [18] and recalled by Cercignani ([3], p. 264), the solution of the 
infinite hierarchy also describes systems of a large number of correlated particles, 
when the iV-body density matrix is not of the factorized form. It seems the only 
available description of such systems, where the TV-body density fails to be factorized 
(i.e. satisfy what is called the molecular chaos assumption in classical physics, and 
the Hartree ansatz in the quantum case). Note that the Schrodinger hierarchy itself 
is the same for the "Hartree-Fock" and for the "Hartree" ansatz. In follow up work 
together with A. Gottlieb we shall be concerned also with the case of antisymmetrized 
initial data. 
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