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NUMERICAL VERIFICATION METHOD FOR SOLUTIONS OF THE 
PERTURBED GELFAND EQUATION* 

TERUYA MINAMOTOt, NOBITO YAMAMOTO*, AND MITSUHIRO T. NAKAO§ 

Abstract. A numerical verification method for radially symmetric solutions of the perturbed 
Gelfand equation is presented for the case in which this equation possesses turning points. We use 
Nakao's method with local uniqueness to enclose the continua of solutions and a bordering algorithm 
in order to treat a turning point. We describe verification procedures in detail and give a numerical 
example. 

1. Introduction. We consider radially symmetric solutions of the perturbed 
Gelfand equation 

{-- 
/-, -,>> ) "Aw    =    \f(u)    in ft, 
{   ' i •■      =0       on an, 

where Cl = {x e Rn\\x\ < l}(n > 3), f(u) = exp(u/(l + eu)) , A € R, and e G i?+. 
This equation arises in the theory of combustion and was proposed by D.A. Frank- 
Kamenetskii [4]. For some fixed e, the bifurcation diagram possesses turning points, 
the first of which corresponding to an explosive point. This explosive point is often 
denoted by XFK [2, 4], The equation (1.1) has been discussed by several authors 
[3, 9, 10, 15, 16]. For e = 0 a numerically verified value of XFK was obtained on the 
unit square[10]. However, the value for e > 0 has not yet been done. 

In this paper, we propose a numerical verification method for the existence and 
enclosure of solution curves for (1.1). If this method can be made to succeed near 
the first turning point, we can obtain a value for XFK- Briefly stated, our method 
consists of a combination of Nakao's method, (more precisely, it's extension to lo- 
cal uniqueness[19]) with linear interpolation and the implicit function theorem. By 
adjoining to (1.1) a suitably chosen equation characterized by a new independent pa- 
rameter /x, we can produce an equation which possesses no turning points, at least 
locally. This is carried out by applying a "bordering algorithm" [6]. We combine 
the bordering algorithm with the existence and inclusion method mentioned above to 
obtain the desired results near turning points. 

2. Change of parameters. A radially symmetric solution u of (1.1) is a func- 
tion of r = \x\. Assuming u to be such a function, (1.1) is reduced to the ordinary 
differential equation 

(     . ( -urr - ^Ur - Xf(u)    =    0   in J = (0,1), 
[Z'i) \tir(0)=u(l) = 0. 

Moreover, (2.1) can be transformed into the following integral equation: 

(2.2)    «(r) = -^ J\l - sn-2)sf(u)dS + ^ J\^=2 " V'^ftoda. 
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Now, we define the operators Zq : C[0,1] x R -» C[0,1] and Fi : C[0,1] x i? -> 
C[0,l]by 

(2.3) Li(ti,A)=fi, 

and 

(2.4) *!(«, A) = -A- Al - S"-
2)s/(u)ds + -^- A-lj - l),""1/^)*. 

71       Z Jr Tl — A JQ     v 

Then (2.2) can be written as 

(2.5) L1(ti,A) = F1(ti,A). 

Next, we define the subsets R(Li - Fi) C C[0,1] x R and MQ C R(LI - Fi) by 

R(Zii - Fi) = {(u, A) G C[0,1] x i2 | I?(Li - Fi)(ti, A) is onto} 

and 

Mo = {(^A) G R(Li -FOKLi -Fi)(ti,A) = 0}, 

where D(Li — Fi)(u,X) represents the Frechet derivative of (Li — Fi) at (u, A). By 
the Fink-Rheinboldt theory (Theorem 4.1, 4.2 [11]), R(I/i - Fi) is open and MQ is 
an one-dimensional manifold, because Li - Fi is a Fredholm mapping with index 
1. Moreover, we can conclude that KerD{Li - Fi)(w, A) is one-dimensional for any 
(w, A) € R(ii - Fi) by using the same argument in  [17]. 

Consider some fixed /x G R and r^ G J. We define Gi : R(Li - Fi) -*• C[0,1] x i? 
by 

(2.6) Gi(ti,A) = ((Li -F^^A),^^) - ^ 

for (u, A) G R(Li - Fi). Then we have 

(2.7) ZJGxfoAX^) = (/?«(£i -Fi)(ti,A)^ + 7^A(ii -F^KA),^^)) 

for 7 G i? and -0 G C[0,1], where Du and -DA denote partial derivatives with respect 
to u and A, respectively. 

We need a result similar to that obtained in   [17].   The proof of the following 
lemma can be carried out by the argument appearing there. 

LEMMA 1.   Let (u, A) G R(Za — Fi) and let (ipo,7o) be a basis of KerD(Li — 
Fi)(iz, A).  Then with ric G J such that ^o(^ic) ¥" 0; 

Dd (u, A) : Cp, 1] x R -> C[0,1] x R 

is bijection. 

To make a change of parameters, we choose ric as required in Lemma 1. 
From the implicit function theorem ([20]), for any (u,X) G MQ, there exist an 

So > 0 and a unique Frechet differentiable map 

(u(rie) -eo,v>(ric)-t-eo) 3 fi ^ (u(/z), A(/i)) 6 MQ 

such that (u, A) = (^(//Q), A(/io)) with /io = ^(^c)- 
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Also, for any /x 6 (u(rie) - €o,u(ric) +eo), the relation GI(U(JJ), A(/x)) = (0,0) 
holds. That is, 

(2.8) (Li - Fi)(t4(/i), A(/i)) = 0 and u(/x)(rj = //. 

Below, we present a method for choosing ric € J. For this purpose, we give the 
following lemma. 

LEMMA 2. [11] For any (u,X) E Mo, the tangent space T(U^MQ is identical to 
the null-space KerD(Li — Fi)(u,\). 

Now, let A : 0 = ro < ri < • • • < TM-I < TM = 1 be a uniform partition 
of J into subintervals [r^,r^+i] of length h = rj+i — rj(j = 0, • • •, M — 1), and let 
5/i C C[0,1] be a finite dimensional space depending on h which has the hat functions 
(f)j(j = 0,1, • • •, M — 1) as a basis. 

Then, we consider the following approximations of R(Li — Fi) and MQ: 

MLI - Fx) = {K, Afc) G 5^ x i?|Dn/lo(L1 - Fi)^, Afc) is onto} 

and 

MQ^ = {K, Afc) G MLi - F^UhoiLx - F^K, Xh) = 0}. 

Here II^o : C[0,1] -> 5/! is an interpolation operator defined by 

ftrj) = Hhotirj)       i = 0,l,...,M-l. 

Since we can show that MQ^ is one-dimensional manifold by using the same argument 
in [Lemma 5.1, [11]], we can consider the tangent space T(Uhi\h)Moh. Based on Lemma 
2, we compute the tangent vector th G T^uh,xh)^0h of the manifold Moh approximately, 
and choose the continuation index ic so that IV'o/i^JI = ||*/i||oo> where ipoh is the basis 
of T(uh,\h)Moh and ric is a nodal point of Sh- Then, choosing h > 0 sufficiently small, 
\ipOh(ric)\ can be made arbitrarily close to ||^o(^ic)||> 

and ||^o(^ic)ll 7^ 0. Therefore , 
we may expect DGi(u,X) is bijection for such r^ by Lemma 1. 

3. Enclosure of solutions with local uniqueness for a fixed parameter /x. 
The arguments outlined in this section are very similar to those in   [19]. We include 
this outline to make the present paper self-contained. 

We define the operator 11^ : C[0,1] x R -> 5^ x R by 

nfc(u, A) = (Hfcoti, A) for (u, A) G C[0,1] x R. 

Let (tx/j, Xh) G 5^ x R be an approximate solution of (2.8). We introduce the following 
"residual" fixed point form which corresponds to (2.8): 

(3.1) (S,A) = {Fi(uh + u,\h + \)-uh,\-(uh + u)(rie)+ii) 

= (IU0F1 (uh + u,Xh + X)- uh 

+(/ - Uho)Fi(uh +u,Xh + A), A - (uh + S)(ric) + /x) 

= F(2,A) (5, A) GC^lJxi?. 

This equation can also be written as 

^•^ \(j-nfc)(tt;)   =  (/-n,)F(^), 



254 T. MINAMOTO, N. YAMAMOTO, AND M. T. NAKAO 

where w = (u, A), and / represents the identity map on C[0,1] x R. 

ASSUMPTION 1. Suppose that restriction to Sh^R of the operator n^ [I-DF(Q)] : 
C[0,1] x R -> Sh x R has the inverse 

[Ih-A'i]-1 :ShxR->ShxR, 

where Ih = Uhl and A^ is a linear operator on Sh x R, an approximation to n/lJD.F(0). 

We apply a Newton-like method to the first equation in (3.2). That is, we intro- 
duce the operator as follows: 

(3.3) lUiV = Uh- [Ih - A'^Unil - F). 

Then we obtain 

(3.4) w = T(w). 

Here T is the operator on C[0,1] x R defined by T = IlhN + (I - Ilh)F. It is easy to 
see that w = T(w) and w = F(w) are equivalent. 

We now expand the operator T at 0 and describe the verification conditions 
with local uniqueness by using Banach's fixed point theorem. Setting w = (u, A) = 

M-l 

(Uhou + (/ — n/io)^, A), we write II^o^ = JJ Uifa an^ define 
j=o 

Mi^luil        (t = 0,l,---,M-l), 

(3.5) MM = |A|, 

(W)M+I = \\(I - n/io)w||c[o,i], 

where |M|cro,il = max ^(r)!,for v G CTO,!]. 1     J rEJ 

Choosing a positive vector W = (WQ, WI, • • •, WM, WM+IY G RM+2
, we define 

the set W by 

(3.6) W = {w G C[0,1] x i? | Mi < Wu i = 0,1, • • •, M + 1}. 

Next, we choose the vectors 

(yo,---,?M+i)tGiJAf+2,yi>o(* = o>...JM + i), 

such that 

(Tmi^Yi       (i = 0,...,M + l), 

(DT(wi)w2)i <Zi       (i = 0, • • • ,M + 1)       VtSI,t25 € W, 

and we define the set if in C[0,1] x R by 

£ = {v € C7[0,1] x R\(v)i < ?< H- Zj, i = 0, ■ • •, Af + 1}. 

Then the verification condition is described as follows: 
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THEOREM 1 (Local Uniqueness). If K C W holds for W (that is, ifYi + Zi < 
Wi), then there exists a solution to 

w = T{w) 

in K and it is unique within the set W. 

Outline of proof: 
First, we define a scaling norm || • \\w by 

IHb=   max   ^     v^ e c[o, i] x R. 

Second, we obtain the following two relations from the definition of this norm: 

T{W) C W and \\T{w2) - T(^i)||w < k^-wxWw    Vwuw2 € W 

for some k satisfying 0 < k < 1. Then Banach's fixed point theorem gives the desired 
result. □ 

4. Enclosing continua of solutions (w^, A^)Meeo for a small interval eo. 

4.1. Verification condition. We proceed to extend the results of Section 3 
for continua of solutions w^ := (u^\ X^)^eeo depending smoothly on fi. Here eo 
denotes a small real interval, and we set eo = [/io5/^i]- 

Let (u^, A^) and (u^, AjJ be the approximate solutions of (2.8) corresponding to 
fio and /xi, respectively. We define approximate solutions for all /x G eo as follows: 

ft        Mi-Mo Mi-Mo "        Mi-Mo Mi-Mo 

Then we define the mappings F and T for (M, u^  , A^  ) G eo x 5^ x i? as in Section 
3, and denote them as F(M) and T(M). That is, for «; = (u, A) e C[0,1] x i?, 

F^CCA) = (Frf +u,A^ + A) -u^^- (ti^ +a)(rie) +M), 

r(At)(^) = ^^(u?) + (i - n^)F(M)(^), 

where Il/jiV^)^) = Iihw - [Ih - A'^]'1 Uh{I - FM)(w) and A'^ denotes a linear 
operator on Sh x i^, an approximation of UhDF^iO) for some fixed /2 G eo- 

Choosing the vectors T* = (Yb, • • •, YM+I)* G RM+2
 and ^ = (Zo, • • •, ZM+I)* € 

i?M+2 such that 

and 

maxiT^O^iKYu 

M€eo v ^ 

and defining the set if by 

K = {v G C[0,1] x iJKuJi < Y- + Zi, t = 0,1, • • •, M + 1}, 

the following theorem holds for the set W which is defined by (3.6). 

THEOREM 2 (Uniqueness for small interval). If K C W, then there exists a 
solution to 

W(M)  =r0i) (#(/*)) 

in if /or a// // G eo, and z£ zs unique within the set W. 
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4.2. Verification Procedures by Computer. Defining the set W, we esti- 
mate K in Theorem 2 by computer. For the set K, we must estimate T^)(0) and 
DT(^(wi)w2 for any wi,W2 G W. First we note 

^(O) = [4 - A'^UhF^iO) + (/ - Uh)FM(0). 

We denote the finite part and the infinite one of T{fl)(0) by T^^O) and TJ^O), 
respectively, and consider a vector gft, € RM+1 whose elements are given by [gh]i : 

bdi = {H^^Ku^, A^Xri) - u^in)^ eeo}       i = 0, i,.. •, M - 1, 

[9h]M = {/i - w/i(M)(nc)|^ € eo}. 

In order to compute a vector 7^(0) which consists of elements max/i€eo(T^^(0))i, 
i = 0,1, • • •, M, we solve the following equation 

(4-2) GWr(0)=Sk 

Here Gh is an (MH-1) x (M +1) matrix which corresponds to [Ih - A'h „]. We estimate 
pt by interval value, because it is difficult to obtain an exact value of [gh[i. Using this 
interval solution of (4.2), we can determine Yi satisfying 

(4.3) max(r^)(0))i < Yu        i = 0,1, • • •, M. 

To obtain an upper bound for TJ^ (0), we use an error estimation for the linear 
interpolation: 

PROPOSITION 1 (Error estimation for linear interpolation [14]) The rela- 
tion 

||(J-nMHoo<-5-ll-zolloo 8 "dr2' 

holds for allv e C[0,1] U C2'00^, 1), where C2'00^,!) := {v € C^O,!)!!!^^ < 
dr* 

oo}. 

From the above proposition we have 

m^\\T^m\c[0,1]xR < ^ngjcll^Fa^.A^JHcio,!] =: YM+1. 

On the other hand, the operator DT^(wi) is defined by 

DT^im)^ = [Ih - A'^UhiDF^Wi)^ - A'^ILH^) 

+ (I- Uh)DFM{wi)w2       wuw2e W. 

Using (u;)j < Wi{i = 0,1, • • •, M +1) for w G W, we can estimate max(i^r(M)(wi)w2)i 

by solving some interval linear equations in the similar manner as in the case of Yi 
(See [19] for detail). 

We now describe how to obtain a set W which is specified by W. 
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First, we take the initial value W^o of Wi as 

Wito = Yi       i = 0,l,"-,M + l, 

and apply the following procedure. Considering that DT^(wi)w2 depends on W, 

(mdixDT(u)(wi)w2)i is denoted by Zi(w),i = 0,1, • • • ,M + 1 for any Wi,W2 6 W. 
/x€eo v   ' 

(i) Check the conditions 

Yi + ZiitfjKWit        (i = 0,l,.-->M + l), 

where k stands for the iteration number. If the above conditions are satisfied, 
then stop. This means that verification is completed, 

(ii) Otherwise, take 

Witk+1 = (1 + S^Yi + Z^k))        (i = 0,1, • • •, M + 1), 

for a certain positive number S and return to (i) after re-computing Zi. 

4.3. Smoothness for a continuum of solutions. We define the mapping 
G:int(eo)xC[0,1] x R -> C[0,1] x R as 

C?(/x,u,A):=(/-F(/i))(2,A), 

and consider the following equation with respect to (V'cbTo): 

Z)(~~)G(^^))(Vo,7o) = (D{zrx)(Li -F^u^ +u^,\^ +X^)^o,lo),MriJ) 

(4.4) =(0,1). 

Next we apply the verification method presented in the previous section to (4.4). 
That is, first, transforming (4.4) into the fixed-point form and using a Newton-Like 
method, (4.4) can be written as (V>OJ7O) = T,   -   x(/0o)7o), where T is defined in an 

vMjU't/u)/ 

analogous way as T in §3.j3econd, for this equation we choose a set $ like as W in §3. 
Considering the vectors Y and Z G i?M+2 such that max  max (T,   -   \{0))i <% 

^eeow(fi)ew    w>wM) 

and max  max (DT{   -   Mi)^2)i < Zi, 0i502 £ $, we define K by 

K:={vG C[0,1] x R\(v)i < % + Z*, i = 0,1, • • •, M + 1}. 

Then we have the following: 

LEMMA 3. If K C $ holds for $, then the mapping DG^-AII^W^) is a bijection 

for each ji G eo- 

Proof. If the assumption holds, there exists a unique solution to (4.4) in K for 
all /i G eo. From this fact, it follows that the equation 

i3(^I)C?(|i,fi;(M))(^i,7i) = (0,0) 

has no nontrivial solution. Since the linear mapping D(~~.G(iJ,,W(tJL)) is a Fredholm 

operator with index 0 from the compactness of D(~~F^(u,\), D ~~ Gdi^w^)) is 

onto according to the Fredholm alternative ([5]). D 
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The following theorem is a modified version of a similar result obtained in   [10]. 

THEOREM 3 (The smoothness of solutions). IfKcW and K C $, then 
there exists a Frechet differentiable mapping: 

int(eo) 3 /J, i—>• w^ 6 W 

such that G(/i,w^)) = 0 on // € int(eo). 

Proof. From Lemma 3, for some arbitrarily chosen (faw^) E int(eo) x W: the 
implicit function theorem gives an open interval V C int(eo) containing ft, and a 
Frechet differentiable mapping 

(4.5) V 3 fi t—> wM e C[0, l]xR 

such that G(fjL, w^)) = 0 for JJ, G V and iv^ = Wfr)- Without loss of generality, we 
can assume V is maximal with property (4.5). 

Let V denote the maximal subinterval of V containing p, such that 

(4.6) wM G W        for all fi G V, 

that is, we take a mapping : V 3 /J, »-)• w^ G W. If we prove V = int(eo), then we 
can conclude that w^ = w^ for all /J, G int(eo) due to the uniqueness of solutions 
in W- 

Assuming that V ^ m^(eo), there exists some //* G int(eo) n dV. Applying the 
implicit function theorem at (/x*,^^*)), we can obtain an open interval U C int(eo) 
containing /x* and a Frechet differentiable mapping, 

(4.7) U3ti^ tD(M) G C[0,1] x iJ, 

such that GbjLjWfa)) = 0 for /i G U and W(M*) = W(M*). 
o _ 

From the fact that w^*) G T^jW C W, the relation w)^*) G m£(W) holds. 

Thus, for some neighborhood U of //*, the continuity of u;^) with respect to /a GU 
gives the relation 

(4.8) iD(/i) G PV for all // e LT. 

From (4.6), (4.8) and the uniqueness of solution in W, we obtain 

(4.9) Wfr) = ^(^j for all /i G V fl C/. 

Then, since U is an open interval containing fi* G 9V, it follows that V S V U £7. 

By (4.9), {u(M) can be extended to the open interval VUU by w^, while V"Ui7 C V 

holds due to the maximality of V. This implies the relations V^VUlJ C V, but this 

contradicts the maximality of V\ D 

5. Verification for a large interval of parameters. In this section, we 
assume that the verification process on each small interval e* = [//j,Mi+i] (i = 
0,1,2, • • ♦, N) has succeeded for some fixed natural number JV, that is, the assump- 
tions of Theorem 3 are required for each i = 0,l,2,---,iV. 
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THEOREM 4. Let WW be an enclosure set of solutions for parameters ji £ e^. // 

If (*) c W^1^ 

or 

|f«+i) cW(i), 

^ften there exists a smooth solution continuum in WW U pr(2+1). Here, K^ is a set 
in which there exist solutions for parameters /J, G ei(see Fig.l). 

Proof. Let K^ C W^+1), and denote the solutions for e* and e^+i as {'w^^i}^ei 

C if^^ and {iy(/i),i+i}/i€ei+i C W^+l\ respectively. By the fact that verification has 
succeed for e* and Cj+i, there exist unique {tt5(M{+1),i} G if^^ and {w^m+^j+i} € 
^C^1) which are solutions on the contact point /Xj+i between e* and ei+i. Then, 
from the assumption IfW c W^+1) and the local uniqueness, 

%i+1),i = ^+1),me^(i)c^+1) 

holds.  This implies that {w^^i}^^ U {i5(M),i+i}^€ei+i is continuous at /ii+i. The 
remaining problem is to prove that {w^^i]^ei U {wd^^+^vzei+i ls smooth at //i+i. 

From Lemma 3, the implicit function theorem at (/ii+i, w^^^j) provides an open 
interval V C int{ei U ej+i) containing /Xi+i and a Frechet differentiable mapping, 

(5.1) V 3 ix .—> u;(/l) € C[0,1] x fl, 

such that W(M.+1) = ^^^^ and Gfavifr)) = 0 (i.e.   wM = FM(w^))).   Thus 

^(^i+x) £ -K"^ C WW implies w^) E VF^^ in some left neighborhood of //i+i, 
and therefore ^(^i)  = 'S(M),i in this left neighborhood due to uniqueness in W^. 

Moreover, W(ni+1) = iy(|ii+1),i+i € jRr(i+1) c W^+1) implies 'S(M) € Ty(i+1) in some 
right neighborhood of /Zj+i, and therefore ^^j = w^j+i in this right neighborhood 
due to uniqueness in W^l+1\ This implies smoothness of the curve {w^)^}^^ U 
{^),;+i]><Eei+i at/Xj+i. 

This argument can be applied to the case of K^+1^ C W^ in a similar manner. 
D 

Finally, we state a lemma that ensures the enclosure of turning points. In the 
following lemma, we suppose that the set W^ satisfies the assumptions of Theorem 

4, and Si = Wj^ which is the Mth component of W^'. 

LEMMA 4. (Bound for turning points) Let JJLJ < Hk < M for some 0 < j < 
k < I < N andli = [\h(lJ>i)-£h^h(lJ>i)+£i]> IfljClh = <i>Jk^h = 0, and Ijftli ^ <l> 
hold, then, there exists a turning point in [fij,fJii] (see Fig.2). 

Proof We assume that there is no turning point for any /J,' € (/Xj,^/). Without 
loss of generality, we may assume that A(^j) < X(iXk) < A(/i/). From the fact that the 
verification process has succeeded, it follows that A(/x;) € /«. Then, because IjCiIk = (j) 
and X^ij) < A(/Xib), 

Xhfaj) + £j < Xh(fik) - £k- 

Similarly, we can obtain 

Xh{lik)+£k < Xh(in) -Si. 
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M IKIloo Afc Kh wh KM wM KM+I wM+l 
1.32 1.32 3.39745 0.01633 0.01782 0.03057 0.03268 4.749E-6 5.022E-6 

1.818 1.818 3.5267413 0.02106 0.02275 0.03482 0.03662 8.044E-6 8.281E-6 
1.819 1.819 3.5267427 0.02108 0.02278 0.03484 0.03664 8.051E-6 8.288E-6 
1.82 1.82 3.5267433 0.0211 0.0228 0.03486 0.03666 8.058E-6 8.296E-6 
1.821 1.821 3.5267431 0.02112 0.02282 0.03488 0.03668 8.066E-6 8.303E-6 
1.822 1.822 3.5267411 0.02115 0.02285 0.03491 0.03671 8.073E-6 8.311E-6 

2.413 2.413 3.417046 0.03589 0.05178 0.05291 0.06968 1.198E-5 1.346E-5 
TABLE 1 

M = 320,£ = 0.05 

Therefore, we find that Xhi^j) + Sj < ^hfai) - d- However, this is a contradiction of 
the fact that Ij D // ^ </>. D 

Lemma 4 does not make sure the uniqueness of turning points, but we can con- 
clude the existence of ones without any special computations. 

W^ 

K^ ~C>: 
W(*+i) 

^; 

K^+V 

Hi 

FIG. 1. 
^+2 Hj 

FIG. 2. 
W M 

6. Numerical Examples. We now provide a numerical example for 
continua computations in three dimensional case n = 3 (Table 1). Here we 
use Wh :=      max     Wi, Kh :—      max     (Yi + ZA , and the parameter e is fixed 

i=0,---,M—1 i=0,"',M-l 
e = 0.05.   In these computations, we used the interval library PROFIL [7], which 
supports the interval linear system solvers proposed by Rump [12]. 

Here, WM stands for the bound |A — A^). Choosing fij = 1.32,//*. = 1.82 and 
fii = 2.413, the assumptions in Lemma 4 are satisfied. This means that a certain 
turning point exists in [/Xj,///]. From Table 1, we conclude the value 3.56341 is an 
upper bound of the first turning point. On the other hand, from Lemma 4 and Table 
1 it seems that the value of it's lower bound is 3.3647 by computing A/l(/ii) — e* on 
each ej. However, since Lemma 4 does not ensure the uniqueness of turning point, we 
can't guarantee that 3.3647 is an lower bound of the 'first' turning point. We carried 
out our numerical verification process without a bordering equation to find the lower 
bound of definitely first turning point.As the result, it is found that there is no turning 
point in A = [0,3.4]. From this fact, Table 1 and Figure 3, it is apparent that the first 
turning point (the explosive point) is contained in the interval [3.4,3.56341]. 
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FlG. 3. Bifurcation diagram for (2.8). The value of ||w||oo corresponds to the ordinate axis, 
and A to the abscissa. Here the black portion is the numerically verified part, and the gray portion 
is the approximate part. 

REMARK 1. In the present article, since we used an integral equation for the 
radially symmetric solution of the original problem, it is easily applicable to the 
higher dimensional case. This is the advantage of our method. On the other hand, 
other methods, e.g., [10] seem to be difficult to apply directly, even if the integral 
form is used such as (2.2), because the method requires to estimate the eigenvalue 
with smallest absolute value of the inverse of the linearized operator for nonlinear 
problems. 
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