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ON THE UNIMODALITY AND THE BELL-SHAPE OF 
NONCENTRAL DISTRIBUTIONS* 

ANDREA VAN AUBEL* AND WOLFGANG GAWRONSKI* 

Abstract. Various analytic properties of the noncentral XnM> -^11,^2(^)5 and student's tm(A) 
distribution are studied. Supplementing earlier results of Das Gupta, Sarkar and Minko, Petunin, 
who showed the strong and the strict unimodality of the XnW distribution respectively, in this 
paper it is proved that strict unimodality for -Frij^M and tm(A) holds as well. For all three 
distributions the strict unimodality is obtained as a consequence of a sharper result saying that each 
of the corresponding densities is bell-shaped. Moreover in any case the unique mode is a strictly 
increasing function with respect to the noncentrality parameter A. 

0. Introduction and summary. Classical statistical tests, which are based on 
normally distributed observations, naturally lead to the noncentral xLWi Fniin2(X), 
and student's tm(X) distributions. Here and throughout we adhere to the terminology 
of Johnson, Kotz, Balakrishnan (1995) where A is the noncentrality parameter and 
n,ni,712,m > 0 denote the various degrees of freedom. In view of their statistical 
meaning usually n,ni,7i2,ra are restricted to positive integers. However in this 
paper it is convenient to consider the degrees of freedom as positive variables rather 
than as discrete parameters. It is well-known that the distributions Xn(^) and 
■^ni,n2 W> ^ ^ 0? both are supported on the positive half axis and possess densities 
being analytic functions on (0,oo), whereas the tm(X) distribution, A € IR, is 
supported on the whole real line with an analytic density on IR. For a collection of 
explicit formulae we refer to Section 1. It is the purpose of this paper to prove a series 
of analytic properties for the aforementioned probability distributions. 

We begin with unimodality and remind some basic definitions. Suppose that F 
is a probability distribution function on the real axis. Then F is called unimodal 
with mode M if F is convex on (-oo,M) and concave on (M, oo) (Dharmadhikari, 
Joag-dev (1988)). Further let a := ini{x € TR\F(x) > 0} and b := sup {x G 
IR|.F(:E) < 1}. We call F strictly unimodal with, mode M G (a, 6), if F is absolutely 
continuous on (-oo,M) U (M, oo) with density / = F' such that / is strictly 
increasing on (a, M) and strictly decreasing on (M, b) (Sato, Yamazato (1978)). 
Obviously strict unimodality implies "simple" unimodality and the uniqueness of the 
mode. Apparently when dealing with convolutions the concept of strong unimodality 
is important (Ibragimov (1956)). Here F is called strongly unimodal if the convolution 
F*G again is unimodal for all unimodal distribution functions G. Consequently every 
strongly unimodal distribution a fortiori is unimodal. 

Since all noncentral distributions under consideration possess an analytic density, 
p say, on their intervals of support, showing strict unimodality amounts to proving 
that the equation p'fa) = 0 has exactly one solution x = M G (0, oo) (or IR) 
which then is the corresponding mode. In the central case, i.e. A = 0, for all 
three distributions the densities are elementary functions and a unimodality proof 
reduces to an easy exercise of beginner's calculus. However, if A ^ 0, then for 
all densities only representations in terms of infinite series, parameter integrals, and 
higher transcendental functions are known. This lack of simplicity, as known from 
other important probability distributions (Sato, Yamazato (1978), Yamazato (1978)), 
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in general causes some difficulties for proving unimodality. At various places in the 
literature the unimodality of the noncentral distributions x^(A), Fniin2(X), tm(X) 
is claimed or silently assumed which is supported by graphical plots obtained by 
numerical approximations (e.g. Johnson et al. (1995), Kiihlmeyer (1970), Narula, 
Levy (1975)). But as far as the authors are aware the only rigorous unimodality 
proof exists for the noncentral XnW distribution. Using the convolution structure 
of the XnW distribution Das Gupta, Sarkar (1984) proved the log-concavity for the 
corresponding density which is equivalent to strong unimodality via the well-known 
criterion of Ibragimov (1956). Minko, Petunin (1988) showed the strict unimodality 
of the XnW distribution provided A>0, n>2orA>2, n = 2(n G IN), by using 
intricate properties for quotients of Bessel functions. 

We prove strict unimodality for all three types of noncentral distributions (Sec- 
tion 2) by verifying the stronger property that the corresponding densities are "bell- 
shaped" . The latter notion is intimately connected with the graph of the density of 
the normal distribution. To be precise we call a probability density p bell-shaped of 
order r G IN, if the support of p is an open interval, (a, b) say, and if for all positive 
integers k < r the derivative pW exists and has precisely k zeros on (a, b) and 
all zeros are simple. If the latter property holds for every order r, then for short we 
say that p is bell-shaped (Karlin (1968), p. 325). Thus a bell-shaped density of some 
order belongs to a strictly unimodal distribution. In view of the Rodrigues formula 
for Hermite polynomials Hk 

(0.1) Hk(x) = (-1) V2 (£) V*2 ,        & € IN, 

(Szego (1985), p. 106, (5.5.3)) and the fact that Hk has only real zeros which are all 
simple we have a precise formulation that the density of the normal distribution is 
bell-shaped. The density of the central xl, distribution is given by 

1   e"*/2 

T(n/2) 

n > 0. Now by the Rodrigues formula for the Laguerre polynomials L);. (Szego 
(1985), p. 101) 

(0-2) tfHx) = ^)(!)~*4f "^(f) .        * > 0- 
and, since the zeros of the orthogonal polynomials L^ , a > — 1, all are simple and 
positive, we get the bell-shape of order [f J for the central Xn density, n > 2. 
Here and throughout the paper for real £ the symbol L£J denotes the integer which 
is uniquely defined by L£J < f < LfJ + 1- Similar statements are readily verified 
for the central Fniin2 and tm densities. In Section 2 we establish that the density 
of the noncentral XnW distribution is bell-shaped of order |_f J, when n > 2, A > 0, 
the density of the noncentral ^^(A) distribution is bell-shaped of order [^J, 
when ni > 2, 722 > 0, A > 0, and the density of the noncentral tm(X) distribution is 
bell-shaped, when m > 0, A E H. Hence all these distributions are strictly unimodal. 
The underlying proofs are based on a unified approach using essentially the concept 
of total positivity and in particular certain variation diminishing transformations of 
the type 

p^x)=2 TMI) y ' x> o' 

K(x,y)f(y)dy 
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where K is a suitable "sign regular" kernel. Concerning the theory of total positivity 
we refer to the standard monograph of Karlin (1968). We have listed some of the 
relevant ingredients of this theory in the next section. 

Another look at the graphs of the densities under consideration suggests mono- 
tonic dependence of various quantities with respect to A and the degrees of freedom 
(e.g. Johnson et al. (1995), Kiihlmeyer (1970), Narula, Levy (1975)). In Section 3 for 
all cases we prove that the mode is a strictly increasing function of the noncentrality 
parameter. Furthermore we study monotonicity properties of the mode with respect 
to the degree of freedom in case of x^(A) and Fni^n2{\) and the variation of all 
densities with A.  The proofs again make use of the theory of totally positive kernels. 

1. Auxiliary results. In this section we fix the precise terminology and collect 
some preliminary results most of which are known in the literature. 

We start with the definition of the underlying noncentral distributions in terms 
of the corresponding densities (Johnson et al. (1995)). Throughout the paper we 
assume that the positive numbers n,ni,n2,m (not necessarily integers) denote the 
degrees of freedom of the noncentral distributions and the real number A indicates the 
noncentrality parameter. The central  Xn  distribution is defined through its density 

1   e"*/2 

oW := 

and the noncentral Xn(^)   distribution,  A > 0, is given by its density 

1   e~x'2   fx\2-1 

{1-l) Pn'oix) '=  2 W2j (2)        '        X > 0' 

C1-2) PnAx) := X/ ~~ji~ (2) Pn+2^0(a;)'      X>0' 
3=0        J' 

The density of the central student's tm distribution is defined by 

(1.3) Wl):_7__±5l->5(1 + _) ,        ieK, 

whereas in the noncentral case the density of the £m(A) distribution,  A E Ht, is given 
by 

(1.4) hmtx(x) := .^±1    *      ,  /    ^exp(-J-i(xW-J--A)2)^,x€lR. 
2  2   ri^jwrnn Jo \    z    z     \ m / 

Putting 

(1-5) ^n1,n2,0W :—    p/njN rfll2.\    ,- , n1+n2    5 X > 0, 
1 V 2 / i V 2 /    (1 + X)      2 

Z) tfm^.oW :=   - 

by 

(1.6) 9nun2,o(
X) :=    — 5ni,n2,o(— x)   , X > 0, 

we denote the density of the central  Fni?n2 distribution and further with 

(1.7) 0ni,n2,A(aO :=  Yl ""Tvo)   ^i+2J>2,o(^) ,        3;>0, 
3=0     J' 
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the density of the noncentral Fnlfna(A)  distribution,  A > 0,  is defined through 

(1-8) gnunzAx) := J" ^ni.na.A C^x)   , » > 0- 

Following the approach in the analysis of variance the ^^(A) distribution can be 
defined as that of the quotient of the quadratic forms— ^jii xij and ^ Y^Li X2j> 
where Xn,..., Xini, X2i,...,X2n2 are independent random variables, Xij being 
normally distributed with expectation Sj and variance 1, A = Z)j=i ^> an(i ^2i 
are standard normal variates. Omitting both factors ^ and ^ the corresponding 
quotient is distributed according to the density (1.7). The associated distribution is 
called rescaled Fnun2(X) distribution which for some instances is easier to handle 
than the ^^(A) distribution (e.g. Das Gupta, Perlman (1974), Sarkar (1983)). 
In any case the central distribution is obtained from the noncentral one by putting 
A = 0. Next we introduce the modified Bessel function of the first kind and order 
i/ 6 H  (e.g. Watson (1966), p. 77) given by the expansion 

^ ^ = g nk+u+w (2) 
which throughout we use for real and positive z only. For further reference we record 
the following representation of /^ as an infinite product involving the zeros j^k of the 
Bessel function Ju (Watson (1966), pp. 77, 482, 498 , 502) in 

LEMMA 1.1. For v > — 1 and z > 0 we have 

where 0 < >,i < >,2 < • • •   and 

00      1 1 
<L11> E^- = K^ -ri ilk      4(i/ + i)- 

As consequences from the definitions above we infer some known representation 
formulae (see Johnson et al. (1995), chapters 29, 30) in 

LEMMA 1.2.  With the notations above for x > 0  we have 

(1.12)      Pn,x{*) = y(x+x)/2 (f) ^ v (^). 

POO 

(1.13) PnAx)=    /        Pm,d{x-y)Pn-mJ\-5(y) dy, 
Jo 

where 0<m<n, 0 <6 < A, 
pOO 

(1.14) Sni.rw.Ate) =     /        PmAxy) Pn2fi(y)y &, 
Jo 

(1.15) gniwA*) = —      Pnux {zrxy) Pn2,o(y)y dy- 
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Our next auxiliary results use some special properties of functions of two real 
variables. More precisely, they are based on various concepts such as total positivity 
(TP), sign regularity (SR), reverse regularity (RR), Poly a frequency functions (PF) 
and related ones. We take the definitions of these notions and standard results from 
Karlin's monograph (1968) which we choose as basic reference work for some relevant 
analytic properties of the noncentral densities Pn,\, #ni,n2,A> ^m,A as well. In partic- 
ular we make frequent use of extended sign regular functions of order r 6 IN (ESRr). 
These are real valued functions K e Cr-i(X x Y) (X,Y C IR being open intervals) 
such that for each m = 1,..., r  the sign 

/       Qi+j-2 \ 
em{K) := sign det^—^^r^ K(x,y)j 

is constant and different from zero on X x Y ; that is  (em(K)) is a finite 
\ / 771=1 

sequence of plus and minus ones. In case em(K) = 1, m = 1,..., r, K(xy y) is called 
extended totally positive of order r (ETPr) with respect to (re, y) on X x Y and if 
Em(K) = (-l)m(m-1)/2

) m = 1,... ,r, then the attribute extended reverse regular of 
order r (ERRr) is used. Further the notations ESRQO, ETPQO, ERRQO are employed, 
when the defining property holds for any r € IN. Many interesting kernels K(x,y) 
are generated by simple kernels. Therefore we collect some composition laws which 
are given in Karlin (1968) directly or can easily be derived via standard techniques 
from total positivity (Karlin (1968), pp. 99, 157). 

LEMMA 1.3. Suppose that X,Y,Z,U,V C IR  are open intervals,  r G IN. 
i) IfK(x,y), L(x,y) are both ETP2 (ERR2) on X x y, then K(x,y)L(x,y) is 

ETP2 (ERR2) on XxY. 
ii) IfK(x,y) is ETP2 (ERR2) on X x y, then the kernel L(x,y) := Kix^y)'1 

is ERR2 (ETP2) on X x y. 
hi) If f £ Cr_i(X), g € Cr-i(Y) are both positive on X and Y respectively and 

K(x, y) is ESRr on X x Y,   then the kernel 

L(x,y) := /(a:) ^(2/) K{x,y) , (rr,y) G X x y, 

Z5 ESRr on X x y iin£/i em(L) = £m(i;(r), m = 1,... ,r. 
iv) If (j): U ^ X, ip :V -* Y are both strictly monotone and surjective functions 

with inverses 0_1 G Cr_i(X), V-1 € CV_i(y) and K(x,y) is ESRr on X x y, 
£/ien ^/ie kernel 

L(u,v) := if(<Ku), ^(v)) ,        (u,i;) G C/ x V, 

(\ 77i(m—1)/2 
sign(0/(u) t/;7(v))J £m(^)? m = l,...,r. 

v) Suppose that L{x,y) and M(y,z) are both ESRr on X x y and y x Z 
respectively. If p is a positive a-finite measure on Y with at least r points of increase 
and the kernel K is defined by 

K(x,z) :=  / L(x,y)M(y,z)dp(y) ,        (x,y) G X x Z, 

^fte integral being absolutely convergent on X x Z such that r—fold differentiation 
with respect to x and z under the integral sign is permissable, then K(x1z) is ESRr 

on X x Z with £:m(if) = em(L)sm(M), m = 1,..., r. 
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The following result deals with maxima of ESR2 function (Karlin (1968), pp. 158, 
159). 

LEMMA 1.4. Suppose that X, Y c H are open intervals and the real function 
K(x,y) is ETP2 (ERR2) on X x Y. Assume also that for each fixed x G X K(x,y) 
has a unique maximum at y = (f){x) which is a differentiable function of x. Then <f> 
is a strictly increasing (decreasing) function of x. 

Now we turn to sign regular properties of the noncentral densities in (1.2), (1.4), 
(1.7), (1.8). First we consider the dependence on the argument x and the noncentral- 
ity parameter A. Applying Lemma 1.3 repeatedly to the representations (1.12), (1.9), 
(1.15), (1.4) in Karlin (1968), pp. 118 - 121, the following result is established. 

LEMMA 1.5. Suppose that n,ni,n2,m > 0 are fixed. Then Pn,\(x) and 
9nun2,\(x) are ETPoo with respect to (x, A) on (0,00) x (0,00) whereas hm,\{x) 
is ETPQO with respect to  (a;, A)   on IR x IR. 

Second we deal with the x^(A) density regarded as a function of the argument 
x only. 

LEMMA 1.6. Suppose that   n > 0   and A > 0  are fixed. Then we have: 
i) Pn,\(x — y) ^ TP^nj+i with respect to (x,y) on IR x IR (for the definition 

of the symbol L£J see Section 0) and P2,\(x) is PF2, i.e. P2,\(x — y) is TP2 with 
respect to (#, y) on IR x IR, 

ii) Pn,\(% + y) is ERR^nj+x with respect to (x,y) on (0,00) x (0,00) and moreover 
it is ERRQO   when n is an even integer, 

iii) Pn,o{xy) ERRQO with respect to (x,y) on (0,00) x (0,oo) whereas Pn,\{xy) 
is ERR2 on  (0,00) x (0,00)   if and only if A < n. 

Proof i) The first part is established in Karlin (1968), pp. 107 - 109, and the 
asserted TP2-property of P2,\(x - y) is equivalent to the log-concavity of P2,A(^) on 
(0,oo) which has been proved by Das Gupta, Sarkar (1984), pp. 56, 58. (See also 
Theorem 1.2 below where a different proof for the log-concavity of Pn,\(%) is given, 
n>2.) 

ii) Putting qn,\{x) •= ex/2 Pn,\(x) ^n (1-12) from Lemma 2.3 in Karlin (1968), 
p. 109, we obtain that qn,x(x + y) is ERRoo when n is an even integer and in general 
the ERR^n j+1-property follows from the proof of Theorem 2.1 of Karlin (1968), pp. 
107, 108. Via Lemma 1.3, hi) these results are transfered to pn,\(x + y). 

hi) Since the function e~xy is ERRQO the first assertion immediately follows from 
(1.1) and Lemma 1.3, hi). In order to prove the second one we observe that 

(Qi+j-2 \ 2 Q2 

dx" Qyi-i Pn,x{xy)J = pn,x{xyf g^ iogPnAxy). 

Because ofpn,\(xy) > 0 for x, y > 0, we have that Pn,x{xy) is ERR2 on (0,00) x (0,00) 
if and only if the right hand side of (1.16) is negative on (0,00) x (0,00). By (1.10) 
and (1.12) we get  (1/ = 2=2) 

giving for x,y > 0 (observe (1.11)) 
o2 -^ OO -2 
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and 

sup iogPn,x(xy) = -l + \ JT    1   =-I(l-^). 
B.y^O    ^  ^ 2 ^     J^ 

Summarizing the proof is complete. D 

Next we have a look at the central Xn density and the density of the central 
rescaled Fniin2 distribution both regarded as functions of x and the degrees of freedom. 

LEMMA 1.7. 
i) The function pn,o(x) is ETPoo with respect to  (x,n)   on (0, oo) x (0, oo). 
ii) If ni > 0 (ni > 0) is fixed, then §ni,n2,o(^) is ETPQO (ERROQ) with respect to 

(#,rzi) f(x,n2))   on    (0,00) x (0,00). 

Proof, i) This part follows readily by an application of Lemma 1.3, hi), iv) to 
(1.1), since the function exy is ETPQO. 

ii) By Lemma 1.3, iv) it is easy to verify that the kernels 

(1.17) ffifoy) := {-^f , K2(x,y) := (j^)" , x,y > 0 

are ETPQO and ERRQQ on (0, oo) x (0, oo) respectively. Now another application of 
Lemma 1.3, hi) to (1.5) proves our assertion. We remark that in Das Gupta, Perlman 
(1974) the TP2-property is shown. □ 

A short inspection of the central Fnifn2 density in (1.6) illustrates that gm^iz) 
is neither TP2 nor RR2 with respect to (x,ni) or (#, 712). Also the central £m density 
in (1.3) fails to satisfy TP2 or RR2 with respect to (x,m) on IR x (0,00). 

LEMMA 1.8. Suppose that A > 0  is fixed. Then we have: 
i) Pn,x{x) is TP2 with respect to {x,n) on (0,oo) x [2,00), 
ii) gniin2,\(x) *5 ETP2 with respect to (x,ni) on (0,oo) x (0,oo) (722 > 0 being 

fixed), 
hi) gni,n2,\(x) is ERR2 with respect to (#,722) on (0,00) x (0,00) (ni > 0 being 

fixed). 

Proof. Part i) is established in Das Gupta, Sarkar (1984), p. 56, (see also Ghosh 
(1973)) and for ii) we rewrite (1.7) as 

1/   x   \ni/2/    1    \n2/2    r00 /   x   \y 
(1.18) ^.^(^-(—j        {—) ^    Kinun*^—) dp(y), 

where p is the measure attributing the Poisson weight e ., (^)J' to the point y = 
jij G INQ, and the kernel ^(ni,77,2,2/) is defined by 

K(n1,n2,y) :=    .n       r(f + y)T(f)- 

On account of Euler's well-known integral for the Betafunction 

r(^ + y)r(^) 
r(^ + y) 

= [ t^+y^il-t)^-1^,       ni,n2>0, y>0, 
Jo 
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repeated applications of the composition rules in Lemma 1.3 and of (1.17) to (1.18) 
establish part ii). Very similar reasonings prove iii). □ 

The above collected results for sign regularity of the noncentral densities can for 
instance be used to derive a couple of monotonicity properties of the power functions 
of various classical statistical tests and of percentage points (e.g. Ghosh (1973)). Also 
in some cases these properties of the densities can be transfered to the corresponding 
distribution functions (e.g. Das Gupta, Sarkar (1974), Finner, Roters (1993), Ghosh 
(1973)). 

2. Bell-shape and unimodality. This section is devoted to our main results. 
To begin we consider the known results of Das Gupta, Sarkar (1984) and Minko, 
Petunin (1988) on the unimodality of the XnW distribution. 

THEOREM 2.1. Suppose that n > 2, A > 0. 
i) The XnW distribution is strongly unimodal. Moreover the function logpn)A 

is  strictly concave on    (0, oo)   unless  (n, A) = (2,0), where P2,o(x) = ^e~x/2. 
ii) // n > 2, A > 0 or n = 2, A > 2, then the XnW distribution is strictly 

unimodal whereas   p2i\   is strictly decreasing on  [0, oo)   when A < 2. 

Proof. We present a short reasoning different from the original one given by 
the above mentioned authors. As in the proof of Lemma 1.6, iii) we employ the 
representations (1.10) and (1.12) implying  (z/ = ]1^) 

PnA*) - ^V e-^'V II (l +  £) ,        - > 0, 2n/2r(S) 11 V ^ 

and 

(2.2) (^)2l0^W = -^-A2 g   (A^F 

From (2.2) we infer the statement on the concavity and part i) follows from Ibragimov's 
criterion for strong unimodality. To establish ii) in view of (2.1) and (1.11) we observe 

oo ,        n > 2, x
l%^l0^'^ = 

and 

lim   —logpni\(x) = -- 
x-^oo   ax Z 

in any case.   Further, by (2.2), for x > 0 we have    (-^j   logpni\(x) < 0   unless 

(n, A) = (2,0)   where p2,o(x) =   ^e"*/2-   Hence, if n > 2, A > 0  or  n = 2, A > 2, 
then the derivative  p^ x   possesses exactly one zero on   (0, oo)   being a simple one. 
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This implies the strict unimodality. Finally, if n = 2, A < 2,  then (2.1) for  x > 0 
yields (use (1.11) again) 

P2,\(x) 

= -i ,A = 0 

<-| + AE   F- = -|(l-|)<0   ,0<A<2, 
i, Jfcrrl     •'0.* V / 

which completes the proof. D 

THEOREM 2.2. // n > 2, A > 0, £/ien the density pn,\ of the XnW distribution 
is bell-shaped of order  [f J- 

Proof. For the central case A = 0 the reasoning has been given in Section 0. Thus 
in the sequel we assume that A > 0. Further suppose that k € IN and Nk denotes 
the number of zeros of p^ 'x on (0, oo) counting multiplicities. We derive lower and 
upper bounds for Nk- 

Let k < ?*. Then on account of the Rodrigues formula for Laguerre polynomials 
(0.2) and (1.2) we get 

(2.3) P!»=| f; ^)w<*)(ir' 4i+'-'-i) (i),. > o. 
j=o    J- 

Next, by the orthogonality of the Laguerre polynomials (see Szego (1985), p.100, 
and observe k < f)  for  u = 0,..., k — 1  and all j E INQ  we obtain 

oo 

0 

and hence 
poo 

(2.4) /      x" rffltodx = 0 ,        i/ = 0,...,fc-l. 

Thus p^   changes sign at least fc times on   (0, oo)   (see Polya, Szego, vol.1 (1971), 
p. 65) which implies  Nk > k. 

Concerning the upper estimate we employ (2.3) again together with the represen- 
tations 

for the Laguerre polynomials (see Szego (1985), p. 101, (5.1.6)) and 

fk + OL\   _ r(fc + a + l) 

Kk-vJ (fc-i/)!r(a + z/ + l) 

for the binomial. This gives 

^u)-e~(x+x)l2(xY~k~i T T (k)       {~ir      (-Y*" (-Y Pn,AW-     2fc+i     ^2/ ^ £j  \v) j!r(f +j + v-k) \2J        V2/ 
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and further (j + u = p) 

p=0 

where 

r(f + p-k)T(p + l) 

i/=0 

w= E(iy-ir(iy'/p(P-i)...(p-u+i) 

is a real polynomial of p with precise degree k. Thus the coefficients of the power 
series part in (2.5) change their signs at most k times and by problem 38, p. 43, of 
Polya, Szego, vol. II, we get Nk < k. Summarizing the proof is complete. D 

In the sequel by M = M(A) we denote the unique mode if it exists. Occasionally 
we specify this mode by M^2(A), Af^fA), M^^^A), M^(A) for the distribu- 

tions XnW, Fnun2(A), Fnun2(\), tm(X) respectively. Further we mention that the 
unimodality of the XnW distribution as stated in Theorem 2.1, ii) also is a conse- 
quence of Theorem 2.2. This is obvious for n > 2, A > 0, and if n = 2, then for 
P2,A  from the proof of Theorem 2.2 we conclude 

(,e, *,_{«;   j}   0|*<». 

here we have used the formulaeP2)\(0+) = | e_A/2 > 0, p'2 A(0+) = \ e~A/2(^-1) 

which result from (1.2) and (2.3) respectively (note that L[a\x) = -x + a+1, Szego 
(1985), p. 101). Consequently  x2 (A)  has a unique mode satisfying 

^        «?*(«{ *!!;!f:^JlA0"ra'A>* 
THEOREM 2.3. // m > 2,n2 > 0,A > 0, then the density gniin2l\ of the 

Fni?n2(A)   distribution is bell-shaped of order  [^J- 

Proof. Again as in the proof of Theorem 2.2 we estimate Nk the number of zeros 
0f 3ni,n2,A on (O?00) counting multiplicities. To this end we employ representation 
(1.15) of Lemma 1.2 which implies 

(2-8)     g^i*) = (^)fc+1 f\Lklx(^xy)pn2Ay)yk+1dy, x>o. 

First let  1 < k < ^ k e IN.  Then using Fubini's theorem we compute the moments 

f Jo 
k—v    roo   /    poo   /      \ ^+1 

1°° f (I)   "V^&yM^M^y 
for  i/ = 0,..., k - 1.   Upon substituting  f = ^-xy  in the inner integral from (2.4) 
we obtain 

f Jo 
X" 9nln^\(X)dx = 0 . V = 0, . .., A - 1. 



UNIMODALITY OF NONCENTRAL DISTRIBUTIONS 243 

Thus 9n^n2x changes sign at least k times on (0,oo) and hence Nk > fc. Concerning 
the upper estimate from (2.8) we get 

for any k G IN. By Lemmata 1.6, hi) and 1.3, iv) the kernel Pn2Jo{t/x) ls ETPQO 

and in view of the preceeding theorem the function p^ ' x has precisely k changes of 
sign on (0, oo) provided that k < ^ Now another application of Theorem 3.2 in 
Karlin (1968), p. 239, yields  Nk < k which completes the proof. D 

COROLLARY 2.4. If 712 > 0 and m > 2, A > 0 or m = 2, A > 2, tten tfie 
Fnijn2(A) distribution is strictly unimodal whereas #2,712,A ^ strictly decreasing on 
[0,00)   wften A < 2.  /n any 0/ £/iese cases ^fte unique mode exists and satisfies 

(2..»)    <,,,«{ ^; IE::^ A > 0 or m = 2, A > 2 
< A<2. 

Proo/. This follows from Theorem 2.3 directly when ni > 2 and if rii = 2, 
then from (2.9) and (2.6) we conclude 0 < Ni < 1. Further, by (2.8) and the 
remarks following (2.6), we have   #2,n2,A(0+) =  ^e'^2 > 0 and #2,n2,A(0+) = 

3^- ni(ni + 2)e~A/2 f ~ - 1J.   Consequently for #2,712,A  from ^e Proof of Theorem 

2.3 (see (2.9)) we infer 

Ar       f 0 ,     ifO<A<2 
Nl = \ 1,     ifA>2, 

which completes the reasonings for the corollary. D 

We mention that the statements of Theorem 2.3 and Corollary 2.4 hold for the 
rescaled  Fni,n2(\)  distribution as well. In particular, by (1.8), 

(2-11) <,n2(A) = ^M„^n2(A) 

is valid. 

THEOREM 2.5.   For all   m > 0   and   A £ IR the density   hm,\   of the   £m(A) 
distribution is bell-shaped. 

Proof. For k € IN we let iV^, iVjT, JV£ be the numbers of zeros of h\Jx on 
the sets (0,00), (—oo,0),{0} respectively, each counting multiplicities. Our starting 
point is the representation (1.4) giving 

where x > 0, 

w 
^ m+h+l T^ ( rr, \ fe + 1 /— 2—1— r^f Jm^- v? 
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and Hk denotes the k—th Hermite polynomial (see (0.1)). 

First we estimate the number of sign changes of h\Jx  on 1R from below. Using 

Fubini's theorem and the substitution £ = xJ-^ — -4= in (2.12) we compute the 
moments 

I™  x" h^x(x)dx = cpm)^ Jo°°tn-1±i^e-i H" (e+-^"^(fle-^dAdt 

for i/ = 0,..., k — 1. Because of the orthogonality of the Hermite polynomials the 
inner integral vanishes. As before we conclude that hln\ changes sign at least k times 

on B and thus iV+ + iV~ +N%>k. 
Second we estimate each of the numbers  iV^, iV^T, N®  from above. 

i) Suppose that x > 0 in (2.12). Upon substituting y = xJ-^  we get 

where d := 2c(2m)^m+A;+1^/2. Since the kernel e~my lx is ETPQO again an application 
of Theorem 3.2 in Karlin (1968), p. 239, implies 

iV^ < number of sign changes oiJlAy jz J as y G (0, oo). 

ii) If x < 0, then in (2.12) introduce the variable y = —xJ--^. Similarly we 
arrive at 

N^ < number of sign changes of Hk ( - y y=) as y G (0, oo). 

iii) Finally, putting x = 0 in (2.12) it is readily verified that 

hmm    (-i)'r(^)^ ,x 
^m^W - ^/^X      m+i    r- nk\ /o)' r(f jm-^-y/n v     v2' 

In view of the well-known fact that iJ^ has precisely k real zeros all being simple 
ones, combining i), ii), iii), we end with N£ + Nj^ + JVj < fc. This completes the 
proof. □ 

If we pay attention to the case k = 1 in the preceeding proof and observe that 
Hi(y) = 22/ (see Szego (1985), p. 106), then we may exhibit the following important 
consequence. 

COROLLARY 2.6. For all m > 0 and A G 1R the tm(X) distribution is strictly 
unimodal and its mode satisfies 

(2.13) sign M^ (A) = sign A ,        M^(-A) = -M^X). 
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3. Monotonicity properties. Plots of the noncentral densities suggest mono- 
tonic dependence of various quantities with respect to the noncentrality parameter 
and the degrees of freedom (e.g. Johnson et al. (1995), Kiihlmeyer (1970), Narula, 
Levy (1975)). It is the aim of this section to establish proofs for some of these in- 
dicated properties. We start with a collection of some formulae which are readily 
derived from (1.1), (1.2), (1.5), (1.7). 

LEMMA 3.1. 
i) // n,ni > 2,n2 > 0, A > 0,   then for x > 0  we have 

(3.1) Pn,\(X) =  2 {Pn-2,X(X) - Pn,x(X)) > 

(3-2) ffnlfn2lA(a?) = y (§ni-21na+2lA(a:) " 9nlln2+2Ax)) • 

ii) // n,ni,n2 > 0, A > 0,   then for x > 0  we have 

(3.3) dXPn^X^ = 2 (Pn+2'A^ ~ PnA*)) > 

(3-4) Q^grn^xfa) =  2(^i+2'n2,A(^) - 9nun2.\(x)) • 

hi) If n, ni > 2, n2 > 0, A > 0,   then for x > 0   we have 

(3.5) dxPnA^ = ~gxPri-2Ax)^ 

/o  n\ 9   ~ /    \ 9    „ ,    . 
(3.6) Q-9nun2Mx) = ~n2 oT5fn1-2,n2+2,A(^). 

We mention that formulae (3.1), (3.3) are contained in Johnson et al. (1995), 
pp. 442, 443, Cohen (1988), Ruben (1974). In view of (3.1), (3.2) we observe 
that the modes M% (A), M7fijn2(A)   occur as the unique solutions of the equations 
Pn-2,x(x) = PnAx) and 9ni-2,n2+2t\(

x) = 9n1,n2+2,\(x) respectively. This fact is 
already mentioned by Johnson et.al. (1995), p. 451. Next we turn to monotonicity 
properties of the modes with respect to the noncentrality parameter thereby extending 
the information obtained in (2.7), (2.10), (2.13). 

THEOREM 3.2 
2 

i) // n > 2 (n = 2) is fixed, then M% (A) is a strictly increasing function of 

Xe [0,oo) (xe [2,oo)). 

ii) // ni > 2,77-2 > 0 (fti = 2,n2 > 0) are fixed, then M^in2(X) is a strictly 

increasing function of A € [0, oo) (A G [2,oo)j. 

iii) If m > 0  is fixed, then M^X)   is a strictly increasing function of A G IR. 

Proof. Suppose that p(xy A) is any of the three noncentral densities and assume in 
the cases i) and ii) that A varies in the open intervals (0, oo) and (2, oo). By the results 
of the preceeding section p attains a single maximum at x = M(A), the mode, which 
is the unique solution of the equation   ^ p(x, A) = 0.   Since   -^ p(M(A), A) / 0, 
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the implicit function theorem implies that M(A) is a differentiable function of A. 
Now according to Lemma 1.5 for all cases p(x, A) is ETPoo and Lemma 1.4 proves the 
asserted monotonicity property with respect to A on the corresponding open intervals. 
The extension for part i), ii) to the boundary points A = 0 and A = 2 now follows 
from a simple continuity argument. D 

REMARK.   We add a short direct proof of Theorem 3.2, i) without refering to 
2 

the theory of total positivity. To this end write M(A) = M% (A) as above. Prom 
p'n A(M(A)) = 0, A > 0, and the implicit function theorem we get 

^(M(A))^M(A) + A|^(M(A))=0. 

Since jgr p„tx(M(X)) < 0 and & & Pn,A(M(A)) = | ^n+2iA(M(A)) (see (3.3)), 
we show that the latter quantity is positive. This follows from (1.13) which implies 

p'n+2A(M(\)) =   / p2,o(y) <A(M(A) - y)dy > 0. 
./o 

Next we turn to monotonicity properties for the mode of the XnW an<^ -^ni^M 
distribution with respect to the degrees of freedom. In the central case from (1.1), 
(1.5) it is easily verified that 

M*2(0) = n - 2 , M,fliBa(0) =  5LZ| ,        n>ni > 2, n2 > 0, 
Tl2 -T £ 

from which the monotonic dependence is obvious. For the noncentral mode M% (A) 

Sen (1989, p. 109, (2.11)) proved M^12(A) < M£2(A) provided A > 0, n > 2. The 
general case is treated in 

THEOREM 3.3. Suppose that A > 0  is fixed. 
i) Then M% (A)   is an increasing function ofne [2,oo). 
ii) If n2 > 0 is fixed, then M^in2(X) is a strictly increasing function of 

ni G (2,oo) whereas for fixed rii > 2 Af,fljn2(A) is a strictly decreasing function of 
n2 E (0,oo). 

Proof i) Suppose that 2 < z/i < z/2, 0 < xi < X2. Then, by the TP2-property 
of Pn,\(%)   according to Lemma 1.8, i), 

det(pUilx(xj)) > 0 

holds which implies that the quotient 

(3.7) P^Ax) is increasillg for x e (o, oo). 

Let Mi := M£(\), i = 1,2, and assume that M2 < Mi. Because pUux (pv2,\) is a 
strictly increasing (decreasing) function on (M2,Mi) we have that Pv2,\(x)/pUl,\(x) 
is strictly decreasing for   x e (M2,M1).   This contradicts (3.7). 

ii) The central case is obvious and if A > 0, then both statements follow from an 
application of Lemma 1.4 in connection with Lemma 1.8, ii), iii). D 
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Concerning the mode  M£lin2(\)  we exhibit that the results of Theorem 3.3, ii) 

cannot be transferee! to the mode of  Fniin2(\),   since   M,fljn2(A) =   ^2--W^1>n2(A) 
(see (2.11)). Actually numerical calculations indicate that   M^ n2(A)   is monotonic 
with respect to the degress of freedom only when A is restricted to certain subintervals 
of (0,oo). 

Supplementing Theorem 3.2 we prove 

THEOREM 3.4 Suppose that n,ni,n2 > 2, m > 0  are fixed. Then 
i) pnj\(M% (A))   is a strictly decreasing function of A E (0,oo), 
ii) 9ni,n2,\(MElin2{\)) is a strictly decreasing function of A G (0, oo), 
iii) /imi^(M^l(A))   is a strictly increasing (decreasing) function of A E (—oo,0) 

(AG(0,oo)). 

Proof   Assume that   p(x1 A)   is any of the three noncentral densities with the 
corresponding mode M(A). In view of 

A p(M(A),A) = p'(M(X),X) AM(A) + |^ p(M(A), A) = A p(M(A), A) 

we determine the sign of the right most quantity. 
i) In the XnW  case we employ (3.3) together with (1.13) giving 

^ PnAM(X)) = \ 0W2,A(M(A)) -pnjA(M(A))) 

-Kl P2,o(y) Pn,A(M(A) - y)dy - pnjx(M(\)) 

2 y      P2,o(y) (pn,A(M(A) - 2/) - pn,A(M(A))) dy, 

and the latter quantity obviously is negative. 
ii) First we consider the Fniin2(X) distribution the mode of which satisfies 

<,n2(A)<MnVn2_2(A) 

according to Theorem 3.3, ii). Using this information together with formula (3.6) of 
Lemma 3.1, iii) we obtain 

Q^9nltn2AMnun2W) = ^^^2   ^^^^^^^(M^^^A)) < 0 

which on account of (1.8), (2.11) implies 

^flnx,na,A(M^1>na(A))<0. 

iii) In the tm(X) case differentiate (1.4) to obtain 

d_ 
dx hm,x(M(X)) = a   r t^e'i exJ~(M(X)^-X)2] (M(X)^-X) dt, 

where 

a := 
^r(f) 2^r ? K/m5F 
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Adding  c h,
mX(M(X)) = 0  with a constant c the choice of which is made below we 

get 

A ^(M(A)) = a £ t°P e-i exp( - \{uW^l-xf) 

Now, putting c := M(A)/A, A ^ 0,  we arrive at 

sign— hmix(M(X)) = -sign A ,        A ^ 0. 

This completes the proof. D 

We close this section by investigating the variation of the XnW an^ ^^ ^1^2 W 
density with respect to the noncentrality parameter. 

THEOREM 3.5.   Suppose that  n,ni,m,x > 0, 712 > 2   are fixed.   Then for all 
A>0 

OX 

and 

8 P».A(X){ MO       If      11 < J M„*«(A) 

Proo/. The assertion concerning the XnW case follows from (3.5) and Theorem 
2.2. To prove the second part first we consider the rescaled Fniin2(X) distribution 
and write (3.6) in the form 

d   „ . N        / .N d   „ .' 
fa  5rn1+2,n2-2,AW = "(^2 " 2)— tfm^AW- 

Thus from Theorem 2.3 we conclude 

dx' [~9n1,n2Ax){   >    }   0 if X j   J   }   M^+^.^A) 

and (1.8), (2.11) finish the proof. D 
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